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ABSTRACT

Dark matter currently makes up approximately 84% of the matter in our universe, but has

yet to be observed. A recent model by Grossman, Harnik, Telem, and Zhang proposes a

new form of dark matter called self-destructing dark matter which decays to standard model

leptons after an interaction in Earth. Motivated by this model, we perform two distinct

analyses looking at high energy events in the Sudbury Neutrino Observatory data between

1999 and 2003. In the first, we perform a null hypothesis test on the data between 20 MeV

and 10 GeV to look for any data which is not consistent with atmospheric neutrinos and

find no evidence for new physics. In the second analysis, we perform a dedicated search for

back to back lepton pairs from self-destructing dark matter. We find no evidence for the

self-destructing dark matter and place new limits on the rate of these events.
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CHAPTER 1

INTRODUCTION

According to current best estimates1, approximately 84% of the matter in our universe is still

unobserved[3]. Evidence for dark matter first appeared as early as the 1930’s in observations

of galaxy clusters. Later in the 1970’s, detailed measurements of galactic rotation curves

provided strong evidence supporting the hypothesis that the majority of the mass in these

galaxies was invisible. Over the past few decades, searches for this invisible matter have

been primarily focused on looking for weakly interacting massive particles, or WIMPs for

short. These experiments typically look for WIMP nuclear recoils in large liquid noble gas

detectors or in high purity bolometric crystals. However, despite all this effort no definitive

evidence for WIMP nuclear recoils has been found2.

Given the importance of discovering what makes up such a large fraction of the matter

in our universe, new models have recently been proposed which are more complex than the

single WIMP model. In 2017 Grossmann, Harnik, Telem, and Zhang published a new class

of models for dark matter called self-destructing dark matter[4]. In these models, some

fraction of dark matter is made up of a cosmologically stable bound state which can undergo

a transition to a short lived state through an interaction with normal matter in Earth. This

short lived state then decays into two or more dark photons which then decay into standard

model leptons such as electrons or muons[4]. Such a model predicts a visible signal on the

order of the mass of the dark matter particle instead of the kinetic energy. This puts these

models in reach of large neutrino detectors like the Sudbury Neutrino Observatory and Super

Kamiokande.

1. Specifically, according to the benchmark ΛCDM cosmology[3].

2. With the exception of the DAMA/LIBRA experiment which has seen a strong annual modulation in
sodium iodide scintillation detectors for many years. However, interpreting the energy of the excess events
and size of the annual modulation under a single WIMP hypothesis leads to a prediction which has been
ruled out by other direct detection dark matter experiments.
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Motivated by this model, in this analysis I look for anomalous events in the energy range

from 20 MeV to 10 GeV in data taken by the Sudbury Neutrino Observatory between 1999

and 2003.

1.1 Self-Destructing Dark Matter

In their recent paper[4], Grossman et. al. discuss three possible models for self-destructing

dark matter. In the first model, dark matter consists of a particle χ and its antiparticle χ̄

which form a positronium-like bound state which is prevented from decaying by the fact that

they orbit in a high angular momentum state. Through a scattering process with normal

matter, this bound state can transition to a low angular momentum state which promptly

decays into two or three dark photons V which couple to the standard model photon. Each of

the dark photons can then decay into an electron-positron or muon-antimuon pair. The other

two models also involve a dark matter particle and antiparticle pair which can annihilate

through an interaction with normal matter in Earth[4]. Figure 1.1 shows an example of a

dark matter decaying into an electron-positron pair visible in the detector.

Each of these models has a distinctive characteristics one could search for. In their paper

they discuss several characteristics such as event kinematics, opening angle, and direction-

ality to distinguish different models. However, as suggested by the authors themselves, in

an attempt to be as model independent as possible I will focus on only those characteristics

common to all of the models. In all of the self-destructing dark matter models the common

components are a dark matter bound state Ψ which can transition to a short lived state Ψ′

after an interaction with normal matter in Earth. This short lived state then decays to two

or more dark photons V which can decay into standard model leptons. The most striking

experimental signature for all of these models is one or more high energy pairs of leptons

with a fixed invariant mass. In the case where the dark matter pair decays to 2 V s these

lepton pairs will also have a fixed energy.
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Figure 1.1: Cartoon showing a dark matter decay.
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In this analysis I will focus on the case where the dark matter pair decays to 2 V s

and where the decay length of the mediator, LV is much greater than the size of the SNO

detector. In this case I expect to see a single lepton pair with a fixed energy and mass.

1.2 Analysis

In this thesis, I will perform two distinct analyses:

1. A null hypothesis test to test if the events in the energy range 20 MeV - 10 GeV match

what is expected from atmospheric neutrino events.

2. A detailed search for an electron-positron or muon-antimuon pair coming from a par-

ticle with a fixed mass.

The first test aims to be as broad as possible and will be sensitive to any departure

from known physics, not just a potential dark matter signal, whereas the second analysis

will look for specific signatures of self-destructing dark matter. The challenge in both cases

is correctly accounting for the expected atmospheric neutrino background and the uncer-

tainties associated with the flux and neutrino cross sections. The process for modeling this

background is discussed in Chapter 4.

In the first analysis, I will perform a 1D fit in energy to all multi-particle prompt events

which pass a series of cuts3. We then perform a multinomial test on the fit results and report

a p-value.

In the second analysis, I will add a term for a lepton-antilepton pair with a fixed invariant

mass and energy to the likelihood. I will focus on the simplest case of a slow moving mediator

which decays to a back to back lepton-antilepton pair. I will present a limit on the event rate

for electron-positron and muon-antimuon pairs per unit volume in the detector as a function

of these two parameters.

3. The run and event selection criteria are discussed in Chapter 7.
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CHAPTER 2

THE SNO DETECTOR

The SNO detector is a large water Čerenkov detector located approximately 2 km under-

ground in an active nickel mine in Sudbury, Ontario. The detector consists of approximately

10,000 photomultiplier tubes (PMTs) attached to an approximately spherical 16 meter di-

ameter PMT support structure (PSUP). These PMTs surround a 12 m diameter acrylic

vessel (AV) containing 1 metric kton of heavy water (D2O)[5]. Figures 2.1 and 2.2 show a

schematic drawing of the SNO detector and a picture taken from a camera mounted to the

PSUP.

Each PMT is connected via a long RG59-like cable to electronic racks on the deck above

the detector. The detector is triggered when a certain number of PMT hits1 occur within a

100 ns time window. When this happens the charge and time for each PMT hit are recorded

in a 400 ns window around the time of the trigger. All of the PMT hits recorded during this

window are then assembled together and called an event.

In addition to the approximately 10,000 regular PMTs the SNO detector also has 91

outward-looking PMTs (OWLs) mounted to the PSUP[5]. These OWL PMTs are useful in

tagging external muons.

The SNO detector observes charged particles traveling through the detector from the

Čerenkov light produced when they travel above the local speed of light

v =
c

n
, (2.1)

where n is equal to the index of refraction. This threshold corresponds to a kinetic energy of

approximately 0.8 MeV for electrons and 53 MeV for muons. The Čerenkov light, produced

in a cone with an opening angle of approximately 42 degrees, travels to the PMTs where it

is detected. As a rough rule of thumb, the detector will see approximately 7 PMT hits per

1. The threshold was typically somewhere around 20 PMT hits.
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Figure 2.1: An artist’s conception of the SNO detector.
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Figure 2.2: A picture of the detector taken from a camera mounted to the PSUP. This
picture was taken after the SNO detector was upgraded to work for the SNO+ experiment.
The major difference between the original SNO detector and this picture is the addition of
hold-down ropes to prevent the acrylic vessel from floating when scintillator is added.
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Figure 2.3: A possible neutrino event in the SNO detector shown using the XSnoed event
display program. Each dot represents a PMT hit in the detector and the color represents
the time of the hit.

MeV of energy for electrons. Figure 2.3 shows an example of a neutrino event in the SNO

detector.

The primary goal of the SNO experiment was to measure the ratio of the number of

charged current solar neutrino reactions, to the number of neutral current reactions in order

to resolve the solar neutrino problem. The charged current reaction,

νe + d→ p+ p+ e− (2.2)

is only sensitive to electron type neutrinos, while the neutral current reaction

νx + d→ p+ n+ νx (2.3)

is sensitive to all neutrino flavors equally. The SNO detector operated between 1999 and 2006

in three distinct phases: the D2O phase, the salt phase, and the NCD phase[5]. The primary

difference between the phases was how the neutron from the neutral current reaction was
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Livetime (days)

D2O 196.2
Salt 485.4

Table 2.1: Livetime for the D2O and Salt phases.

measured. During the D2O phase, which took place between November 1999 and May 2001,

the acrylic vessel was filled with pure heavy water or D2O[5]. In this phase the neutrons

captured on the heavy water emitting a 6.25 MeV gamma ray. During the salt phase, which

took place between July 2001 and August 2003, sodium chloride was added to the heavy

water in the acrylic vessel[5]. Due to the higher capture cross section, the neutrons would

primarily capture on chlorine and emit multiple gamma rays with a combined energy of 8.6

MeV. Finally, in the NCD phase which took place between November 2004 and November

2006[5], an array of 2 m long 3He filled proportional counters called neutral current detectors

(NCD) was added to the acrylic vessel to detect the neutrons via the reaction

3He + n→3 H + p. (2.4)

In this analysis I will only be looking at the data from the D2O and salt phases since

the proportional counters added during the NCD phase make modeling the optics of the

detector difficult.
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CHAPTER 3

EVENT RECONSTRUCTION

In this chapter I will discuss the process of reconstructing the position, time, energy, direc-

tion, and particle ID of each event from the individual PMT hits. This process is necessary

for several reasons; first, the reconstructed energy will be the primary observable in the final

analysis. Second, the reconstructed position is used to cut events near the PSUP since the

vast majority of the instrumental backgrounds originate from there. Finally, the particle ID

is used to cut single lepton events, reducing the atmospheric neutrino background by more

than a factor of two.

Events are reconstructed using a maximum likelihood method. The likelihood function

calculates the probability of observing the data in an event given a proposed particle, vertex

position, energy, time, and track direction. In Section 3.1 I discuss the overall formulation of

the likelihood function. Then, in Sections 3.2 and 3.3 I discuss the two most important inputs

to the likelihood function: the expected charge and time distribution from direct Čerenkov

light expected at each PMT. In Section 3.4, I discuss how the photons from electromagnetic

showers and delta rays are added to the likelihood function. In Sections 3.5 and 3.6, I

discuss the implementation of the algorithms used to seed the position and directions of

the likelihood fit. In Section 3.7 I discuss the calculation of a number ψ which is used as

a goodness of fit parameter and is used to cut instrumental backgrounds. In Section 3.8

I discuss the process by which I select the total number of particles and particle type for

each ring. Finally, in Sections 3.9 and 3.10 I show several results used to benchmark the

performance of the fitter on single leptons and lepton pairs.

3.1 Likelihood

For a given position, energy, direction, and time, the likelihood of an event is equal to
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L (E, ~x,~v, t0) = P (~q,~t | E, ~x,~v, t0), (3.1)

where E, ~x, ~v represent the initial particle’s kinetic energy, position, and direction respec-

tively, t0 represents the initial time of the event, ~q is a vector representing the charge seen

by each PMT, and ~t is the time recorded by each PMT.

The right hand side of Equation (3.1) is not factorizable in general since for particle

tracks that scatter there will be correlations between the PMT hits. However, to make the

problem analytically tractable, we assume that the probability of each PMT being hit is

approximately independent of the others. With this assumption we can factor the right

hand side of the likelihood as:

L (E, ~x,~v, t0) =

(∏
i

P (not hit | E, ~x,~v, t0)

)∏
j

P (hit, qj , tj | E, ~x,~v, t0)

 (3.2)

where the first product is over all PMTs that weren’t hit and the second product is over all

of the hit PMTs.

If we introduce the variable n, which represents the number of photoelectrons detected,

we can write the likelihood as:

L (E, ~x,~v, t0) =

(∏
i

∞∑
n=0

P (not hit, n | E, ~x,~v, t0)

)∏
j

∞∑
n=1

P (n, qj , tj | E, ~x,~v, t0)

 .

(3.3)

We can then condition on n and write the likelihood as:
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L (E, ~x,~v, t0) =

(∏
i

∞∑
n=0

P (not hit | n,E, ~x,~v, t0)P (n | E, ~x,~v, t0)

)
∏

j

∞∑
n=1

P (qj , tj | n,E, ~x,~v, t0)P (n | E, ~x,~v, t0)

 . (3.4)

We now assume that the charge and time observed at a given PMT are independent and

write the likelihood as:

L (E, ~x,~v, t0) =

(∏
i

∞∑
n=0

P (not hit | n)P (n | E, ~x,~v, t0)

)
∏

j

∞∑
n=1

P (qj | n)P (tj | n,E, ~x,~v, t0)P (n | E, ~x,~v, t0)

 . (3.5)

Since there are many photons produced in each event each of which has a small probability

to hit a given PMT, we assume that the probability of detecting n photons at a given PMT

is Poisson distributed, i.e.

P (n | E, ~x,~v, t0) = e−µ
µn

n!
(3.6)

We can therefore write the likelihood as:

L (E, ~x,~v, t0) =

(∏
i

∞∑
n=0

P (not hit | n)e−µi
µni
n!

)
∏

j

∞∑
n=1

P (qj | n)P (tj | n,E, ~x,~v, t0)e−µj
µnj
n!

 (3.7)

where µi is the expected number of photoelectrons detected at the ith PMT (given an initial

particle’s energy, position, and direction).

Finally, we also add the probability that a channel is miscalibrated by calculating
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L (E, ~x,~v, t0) =

(∏
i

Pmiscal + (1− Pmiscal)
∞∑
n=0

P (not hit | n)e−µi
µni
n!

)
∏

j

Pmiscal

(
1

4096

)2

+ (1− Pmiscal)
∞∑
n=1

P (qj | n)P (tj | n,E, ~x,~v, t0)e−µj
µnj
n!

 (3.8)

3.2 Expected Charge

First, we’ll calculate the expected number of photoelectrons for a single non-showering track

that undergoes multiple scattering through small angles. In this case, we can calculate the

expected number of photoelectrons as

µi =

∫
x

dx

∫
λ

dλ
d2N

dxdλ
P (detected | E, x, v), (3.9)

where d2N
dxdλ is the number of photons produced per unit length and wavelength, x is the

position along the track and λ is the wavelength of the light.

If the particle undergoes many small angle Coulomb scatters, the net angular displace-

ment of the particle after a distance x will be a Gaussian distribution by the central limit

theorem[3]. The distribution of the net angular displacement at a distance x along the track

is then given by

f(θ, φ) =
θ

2πθ2
0

e
− θ2

2θ20 , (3.10)

where

θ0 =
13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

(
xz2

X0β2

)]
, (3.11)

and p, βc, and z are the momentum, velocity, and charge of the particle, and X0 is the

radiation length of the particle[3].
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Now, we integrate over the angular displacement of the track around the original velocity:

µi =

∫
x

dx

∫
λ

dλ
d2N

dxdλ

∫
θ

dθ

∫
φ

dφP (detected | θ, φ, E, x, v)f(θ, φ) (3.12)

The probability of being detected can be factored into several different components:

µi =

∫
x

dx

∫
λ

dλ
d2N

dxdλ
P (not scattered or absorbed | λ,E, x, v)ε(η)QE(λ)∫

θ
dθ

∫
φ

dφP (emitted towards PMT i | θ, φ, E, x, v)f(θ, φ) (3.13)

where η is the angle between the vector connecting the track position x to the PMT position

and the normal vector to the PMT, ε(η) is the collection efficiency, and QE(λ) is the quantum

efficiency of the PMT.

We now make the assumption that the probability is uniform across the face of the

PMT1 and write the probability that a photon is emitted directly towards a PMT as a delta

function:

P (emitted towards PMT i | θ, φ, E, x, v) =
1

2π
δ

(
1

n(λ)β
− cos θ′(θ, φ, x)

)
Ω(x) (3.14)

where θ′ is the angle between the track and the PMT and Ω(x) is the solid angle subtended by

the PMT. In a coordinate system with the z axis aligned along the original particle velocity

and with the PMT in the x-z plane, the angle θ′ is defined by:

cos θ′ = sin θ cosφ sin θ1 + cos θ cos θ1 (3.15)

where θ1 is the angle between the PMT and the original particle velocity. We can now solve

1. This approximation is valid as long as the track is far away from the PMT. This assumption can cause
problems later on when this is not valid by creating discontinuities in the likelihood based on exactly what
point along the track is sampled when numerically integrating along the track. To partially mitigate this
issue when computing the likelihood I calculate a minimum value for the RMS scattering angle θ0 based on
the angle subtended by the PMT concentrator.
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the integral on the right hand side of Equation (3.13) as:

P (emitted towards PMT i) =

Ω(x)

2π

1

2πθ2
0

∫
θ

dθ

∫
φ

dφδ

(
1

n(λ)β
− sin θ cosφ sin θ1 − cos θ cos θ1

)
θe
− θ2

2θ20 . (3.16)

We now assume θ is small (which should be valid for small angle scatters), so that we can

rewrite the delta function as:

P (emitted towards PMT i) =

Ω(x)

2π

1

2πθ2
0

∫
θ

dθ

∫
φ

dφδ

(
1

n(λ)β
− θ cosφ sin θ1 − cos θ1

)
θe
− θ2

2θ20 . (3.17)

We can rewrite the argument of the delta function

P (emitted towards PMT i) =

Ω(x)

2π

1

2πθ2
0

∫
θ

dθ

∫
φ

dφ
1

|cosφ sin θ1|
δ

θ − 1
n(λ)β

− cos θ1

cosφ sin θ1

 θe
− θ2

2θ20 , (3.18)

and solve the integral as

P (emitted towards PMT i) =
Ω(x)

2π

1√
2πθ0

1

|sin θ1|
e
− 1

2θ20

(
1

n(λ)β
−cos θ1

sin θ1

)2

. (3.19)

To simplify this expression, we can write

P (emitted towards PMT i) =
Ω(x)

2π

1√
2πθ0

1

|sin θ1|
e
−∆2(λ)

2θ20 , (3.20)

where
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∆(λ) =

1
n(λ)β

− cos θ1

sin θ1
. (3.21)

Plugging this back into Equation (3.13) we get

µi =
1√

2πθ0

∫
x

dx
Ω(x)

2π

1

|sin θ1|
ε(η)

∫
λ

dλ
d2N

dxdλ
P (not scattered or absorbed | λ,E, x, v)QE(λ)e

−∆2(λ)

2θ20 . (3.22)

Ideally we would just evaluate this double integral for each likelihood call, however the

double integral is too computationally expensive to perform for every likelihood call. We

therefore make some assumptions in order to make it more computationally tractable. First,

since the scattering and absorption lengths to do not change drastically over the wavelength

range that the PMTs are sensitive to we pull that factor out of the second integral:

µi =
1√

2πθ0

∫
x

dx
Ω(x)

2π

1

|sin θ1|
ε(η)Peff(not scattered or absorbed | E, x, v)

∫
λ

dλ
d2N

dxdλ
QE(λ)e

−∆2(λ)

2θ20 . (3.23)

The number of Čerenkov photons produced per unit length and per unit wavelength is

given by[3]

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
, (3.24)

where α is the fine-structure constant and z is the charge of the particle in units of the

electron charge. We can therefore write the second integral in Equation (3.22) as

N(β, cos θ) =

∫
λ

dλ
2παz2

λ2

(
1− 1

β2n2(λ)

)
QE(λ)e

−∆2(λ)

2θ20 . (3.25)

This integral can be parameterized in terms of only two parameters: β cos(θ) and β sin(θ)θ0.
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Therefore we simply pre-calculate this integral for values of β cos(θ) between -1 and 1 and

for values of β sin(θ)θ0 between 0 and 1.

The effective scattering and absorption probabilities in Equation (3.22) are calculated as:

Peff(scattered | x) =

∫
λ

1
λ2QE(λ)P (scatter | λ, x)∫

λ
1
λ2QE(λ)

. (3.26)

We can therefore write the expected charge as

µi =
1√

2πθ0

∫
x

dx
Ω(x)

2π

1

|sin θ1|
ε(η)Peff(not scattered or absorbed | E, x, v)N(β, cos θ).

(3.27)

This integral over the particle track is calculated numerically each time the likelihood is

evaluated.

3.3 Time Distribution

In this section I discuss the calculation of the probability of observing a given PMT hit

time. Since the majority of direct Čerenkov light will hit each PMT in a time window much

smaller than the transit time of each PMT, we assume the final time distribution is Gaussian.

Therefore, in order to calculate the probability of getting a hit at a certain time, we only

need to calculate the mean time of the photon arrival at the PMT and then take the nth first

order statistic2 of a Gaussian distribution with that mean and a standard deviation equal

to the PMT transit time.

The mean time of a photon arrival at a PMT is given by an integral along the particle

track of the time of flight from each point along the track to the PMT weighted by the

expected charge at each point.

2. The first order statistic of a distribution is the distribution of values obtained by sampling n random
variables from the distribution and selecting the smallest one.
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E(ti) =
1√

2πθ0

∫
x

dx
l(x)

c

Ω(x)

2π

1

|sin θ1|
ε(η)Peff(not scattered or absorbed | E, x, v)N(β, cos θ)

(3.28)

where l(x) is the effective path length from the track to the PMT:

l(x) = ld2o(x)nd2o + lh2o(x)nh2o. (3.29)

The time distribution for direct light is then given by:

pdirect(ti) =
1√

2πσTTS
e
− (ti−E(ti))

2

2σ2
TTS (3.30)

where σTTS is the single PE transit time spread of the PMTs.

Reflected and scattered light is treated in an approximate way since it is less important for

the fit and it is difficult to calculate analytically. We assume that all reflected and scattered

light has a flat time distribution starting at the mean time of direct light and ending 160 ns

later (two times the time it would take light to travel across the PSUP), i.e.

pindirect(t) =

{
1

2∆tPSUP
E(t) < t < E(t) + 2∆tPSUP

0 otherwise
, (3.31)

where ∆tPSUP is approximately the time it takes light to cross the PSUP (80 ns).

The total time distribution is given by a charge weighted sum of the two distributions

p(t) =
µi

µi + µindirect

1√
2πσTTS

e
− (ti−E(ti))

2

2σ2
TTS

+
µindirect

µi + µindirect

{
1

2∆tPSUP
E(t) < t < E(t) + 2∆tPSUP

0 otherwise
(3.32)

where µindirect is the expected number of PE from scattering and reflections. This quantity

is currently calculated by keeping track of the reflected and scattered light when integrating

Equation (3.27) for each PMT, adding up all these contributions, and then assuming that a
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certain fraction3 of it is equally distributed over all PMTs.

Finally, to evaluate the probability of observing a hit at a given time, t, given that n PE

were detected, we compute the first order statistic of Equation (3.32)

P (t | n,E, ~x,~v, t0) = np(t)(1− P (t))n−1, (3.33)

where P (t) is the cumulative distribution function of Equation (3.32)4.

3.4 Electromagnetic Showers and Delta Rays

In addition to the direct Čerenkov light from the primary particle, there is also a significant

amount of light created from electromagnetic showers for high energy electrons and muons

and from delta rays created by muons. Since both of these processes are very complex, we

model them in a very approximate way. For both processes we assume that the number of

photons emitted along the track is independent from the angular distribution of the light

along the track, i.e. that we can approximate

N(x, θ) ≈ N(x)f(θ)

where x is the distance along the track and θ is the angle between a PMT and the particle

track5. We describe both N(x) and f(θ) using simple functional forms.

3. This fraction is currently set to 40% which was determined by floating that parameter in several fits
of electrons and muons. This value is reasonable since the approximate coverage of the SNO detector is 50%
and we expect to lose slightly more than that due to absorption (when doing the initial sum of all reflected
and scattered light the quantum efficiency of the PMT is already taken into account).

4. When computing the likelihood function I use the pt1 variable in the SNO data structure for the PMT
hit times. I use this instead of the multi-photon PCA (PMT Calibration) time since that time was designed
to correct for the first order statistic effect. I also don’t use the regular pt time since that was only calibrated
to work with single photons.

5. It should be noted that the angular distribution of the light definitely changes as a function of the
longitudinal position along the particle track. By assuming the angular distribution is constant we are not
even self-consistent since we might use a particular form for f(θ) at 100 MeV, but a different form at 200
MeV even though at some distance along the latter’s track its kinetic energy will be 100 MeV. Nevertheless
we stick with a simple form because it makes the problem much more computationally tractable.
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Figure 3.1: Position distribution of photons from the electromagnetic shower of a 1 GeV
electron.

For electromagnetic showers, we model the longitudinal profile of the emitted photons

with a gamma distribution,

N(x) =
1

Γ(k)θk
xk−1e−

x
θ . (3.34)

This model comes from the “Passage of Particles Through Matter” review in the PDG[3],

which states that the energy distribution in an electromagnetic shower is well described by

a gamma distribution. An example fit is shown in Figure 3.1.

The angular distribution for electromagnetic showers is described by the function:

f(cos θ) ∝ e
− | cos θ−µ|α

β . (3.35)

This functional form does not have any theoretical motivation that I’m aware of but fits
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Figure 3.2: Angular distribution of photons from the electromagnetic shower of a 1 GeV
electron. The red line shows a fit to the functional form shown in Equation (3.35), where we
fit for α, β, and µ.

the angular distribution of Čerenkov light very accurately. Figure 3.2 shows the angular

distribution of light from the electromagnetic shower of a 1 GeV electron along with a fit to

Equation (3.35).

Therefore, to describe the light from an electromagnetic shower we need five parameters:

k, θ, µ, α, and β. Instead of creating lookup tables, we parameterize each of these variables

as a function of energy for electrons and muons. This approach has the advantage that the

results consist of only a handful of numbers instead of large tables and the parameterization

means that the parameters all change smoothly as a function of energy which prevents the

likelihood from having discontinuous derivatives. The parameterization of these values for

electrons is discussed in Section 3.4.1 and for muons in Section 3.4.2.
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3.4.1 Electrons

Electromagnetic Showers

To determine the longitudinal distribution of Čerenkov photons for electrons, I first simulated

electrons with energies between 10 MeV and 1 GeV using RAT-PAC (RAT, Plus Additional

Codes)6 in a volume composed of pure heavy water[6]. I then fit Equation (3.34) to the

starting vertices of all Čerenkov photons in the wavelength range 200 nm to 800 nm. The θ

parameter is almost constant above 100 MeV where electromagnetic showers start to become

important, and so I use a constant value of 43.51 for this parameter. The k parameter is

then calculated using Equation 33.36 in the PDG “Passage of Particles Through Matter”

review7

tmax = X0
k − 1

θ
= ln y + Ce, (3.36)

where tmax is the longitudinal peak of the shower distribution in units of the radiation length,

X0 is the radiation length in water, y is the energy of the electron in units of the critical

energy, Ce = -0.5, and k and θ are the parameters in Equation (3.34). Using the right hand

side of Equation (3.36) we are able to calculate tmax, and then we can use the fitted value

of k to determine θ. The bottom two plots in Figure (3.3) show the fitted values of k and θ

as a function of the kinetic energy of the electron.

For the angular distribution, µ is assumed to be equal to the Čerenkov angle. Based on

the simulations, this is a decent approximation at low energies and a very good approximation

at higher energies. We then fit the energy dependence of α and β to the following form:

6. RAT-PAC is an open source spin-off of the RAT package which is used to simulate events in the SNO+
experiment which uses an upgraded version of the SNO detector.

7. The actual equation in the PDG is given as tmax = a−1
b . The form given here is obtained by switching

into the units we use here where a→ k and b→ X0

b .
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Figure 3.3: Electromagnetic shower parameters as a function of kinetic energy for electrons.
The top two plots show α and β for the angular distribution of the electromagnetic shower
photons. The bottom two plots show k and θ which describe the longitudinal position of the
electromagnetic shower photons.
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Electrons Muons

Parameter α β α β

c0 3.14× 10−1 1.35× 10−1 8.24× 10−1 2.24× 10−1

c1 2.08× 10−1 2.22× 10−1 3.90× 10−3 5.38× 10−3

c2 6.33× 10−3 1.96× 10−2 1.58× 10−5 1.20× 10−5

c3 1.19 1.24 9.99× 10−1 1.00

Table 3.1: Parameters describing the angular distribution of Čerenkov light from electro-
magnetic showers for electrons and muons as a function of initial kinetic energy.

α(T ) = c0 +
c1

log(c2T + c3)
(3.37)

β(T ) = c0 +
c1

log(c2T + c3)
(3.38)

where T is the initial kinetic energy of the electron.

Table 3.1 shows the fit results for α and β as a function of energy. The top two plots in

Figure 3.3 show α and β as a function of the kinetic energy of the electron along with the

fits.

The total number of shower photons as a function of energy is fit to the following form:

n(T ) = Trad

(
c0 +

c1
log(c2T + c3)

)
(3.39)

(3.40)

where Trad is the total energy loss to radiation. The energy lost to radiation is computed by

numerically integrating lookup tables downloaded from the ESTAR website run by NIST[7].

Table 3.2 shows the constants used in Equation (3.40).
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Parameter Value (n)
c0 406.75
c1 0.272

c2 5.31× 10−5

c3 1.00

Table 3.2: Parameters describing the number of electromagnetic shower photons for electrons
as a function of initial kinetic energy.

3.4.2 Muons

Electromagnetic Showers

To describe the light from electromagnetic showers and delta rays for muons, I simulated

muons with total energies between 300 MeV and 20 GeV using RAT-PAC in a volume

composed of pure heavy water[6]. I then fit Equation (3.34) to the starting vertices of all

Čerenkov photons in the wavelength range 200 nm to 800 nm. To describe the θ parameter

as a function of energy, I used a single degree polynomial fit,

θ(T ) = −7.8 + 0.118928T. (3.41)

The k parameter was fit to a constant value of 1.5. The values of θ and k as a function

of energy are shown in the middle two plots in Figure 3.4. The linear fit and constant

value we use here are not a very good fit to the data but since the number of photons

from electromagnetic showers is dwarfed by the number of photons from delta rays it is not

expected to affect the reconstruction very much.

The angular distribution is described using the same functional form as for electrons and,

similarly, µ is assumed to be equal to the Čerenkov angle. The constants used to describe

the variation of α and β with energy are shown in Table 3.1 and the data is shown in the

top two plots of Figure 3.4.

The total number of shower photons as a function of energy was fit to the following form:
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Figure 3.4: Electromagnetic shower and delta ray parameters as a function of kinetic energy
for muons. The top two plots show α and β for the angular distribution of the electromag-
netic shower photons. The middle two plots show k and θ which describe the longitudinal
distribution of the electromagnetic shower photons. The bottom two plots show α and β for
the angular distribution of the photons from delta rays.
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Parameter Value (n)

c0 9.289× 103

c1 8.40× 102

Table 3.3: Parameters describing the number of electromagnetic shower photons for muons
as a function of initial kinetic energy.

Parameter α β

c0 3.46× 10−1 2.30× 10−1

c1 1.11× 10−2 4.09× 10−3

c2 5.66× 10−6 8.22× 10−6

c3 1.01 1.01

Table 3.4: Parameters describing the angular distribution of Čerenkov light from delta rays
as a function of initial muon kinetic energy.

n(T ) = Trad

(
c0

(
1− e−

T0
c1

))
, (3.42)

where Trad is the total amount of energy loss to radiation. These values are calculated by

numerically integrating the muon energy loss to radiation from lookup tables downloaded

from the PDG website[8]. Table 3.3 shows the constants used in Equation (3.42).

Delta Rays

The angular distribution of the light from delta rays is described using the same functional

form as the shower photons. The parameters describing the angular distribution of the delta

ray light are shown in Table 3.4 and the data is shown in the bottom two plots of Figure 3.4.

The total number of Čerenkov photons in the wavelength range from 200 nm to 800 nm

from delta rays as a function of energy is parameterized as

n(T ) = max (0.0,−7532.39 + 39.4548T ) . (3.43)
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3.5 Vertex Seed

When running the log likelihood minimization, the minimization procedure is started at a

point called the “seed” of the fit. Starting the fit at a seed position close to the true position

is important for a couple of different reasons: first, many complex likelihood functions have

several local minima away from the true global minimum. Since the fitting procedure is not

guaranteed to find the global minimum and instead only looks for local minima, by starting

the fit further away from the global minimum we increase the probability that the fitter fails

to converge to the true global minimum. Second, the further the algorithm starts from a

minimum, the longer it will take to reach the minimum. It therefore pays to invest a small

amount of time up front to use approximate techniques to start off near the minimum since

it will result in a large net time savings.

The seed position for the fitter is determined using a slightly modified version of the

QUAD fitter developed for SNO[9]. The original QUAD fitter was implemented in SNOMAN

and works by sampling 4 PMT hits at a time and computing the unique position and time

consistent with producing those four PMT hits. This process of selecting 4 random hits and

computing a time and position is repeated over and over, producing a “cloud” of quad points.

The final best fit time and position was then computed by searching for a local maximum in

the density of the cloud points using the AMOEBA algorithm from Numerical Recipes[9].

In my version of the QUAD fitter there are two significant differences:

1. Instead of using the AMOEBA algorithm to find the maximum density in the cloud

points, I simply take the median of the cloud points8

2. Instead of randomly sampling 4 PMT hits at each iteration, points are sampled pro-

portionally to the probability that they are produced from more than one photon. For

the high energy events I’m interested in, PMT hits with single photon hits are more

8. This procedure is the same as the one used in the SNO+ version of QUAD.
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likely to be due to scattered light, which will produce a bad cloud point.

3. Since the particle tracks are often tens of centimeters or meters long for high energy

particles, we added the option to filter the final quad points taking only those with a

time less than the 10% quantile of all the times. The best fit point is then returned

from the median of the remaining points. By selecting the points less than the 10%

quantile we get a much more accurate starting position for muons that travel several

meters in the detector.

This second option is useful for particles like external muons but can make the initial

guess worse for smaller energy events. Therefore, we perform two fits for each event and

particle combination; one with no filtering of the quad points and one where we only select

the quad points with a time less than the 10% quantile of all the times9.

3.6 Direction Seed

In addition to seeding the position of the fit, it is also necessary to seed the initial direction

of the fit. For a single particle, this is simple and one can use a simple method like finding

the centroid of the hit PMTs, however for multi-track fits it is necessary to have a more

complicated ring finding algorithm. Therefore, I designed a ring finding algorithm based on

a custom Hough transform inspired by the one employed in a previous atmospheric SNO

analysis[10].

The algorithm starts by constructing a 2 dimensional array representing bins in a pro-

9. This is very inefficient since it effectively doubles the amount of time needed to fit an event. I started
looking into a smarter way to try and select the beginning of a track from a set of quad points, but didn’t
have enough time to test it sufficiently. The idea was to compute a Mahalanobis distance from the quad
points and then select a spot with the earliest time but within some specified Mahalanobis distance like 1
or 2. For particles without an extended track the requirement that the Mahalanobis distance be relatively
small means we shouldn’t bias ourselves too much. However, for particles like external muons with a large
track the hope was that the Mahalanobis distance would be small out to the edge of the cloud of quad points.
Another idea which I wasn’t able to test was to fit a linear regression to the quad cloud and then select the
earliest point along this line which still has a high density of nearby points.
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jection of the surface of the detector. The columns represent evenly spaced bins between 0

and π for the polar angle θ, and the rows represent evenly spaced bins between 0 and 2π for

the azimuthal angle φ. I then construct a weight, w for each PMT hit which represents the

probability that the PMT hit was caused by multiple photons:

w = P (multiple photons | q) = 1− P (1 PE | q) = 1− P (q | 1 PE)P (1 PE)

P (q)
, (3.44)

where P (1 PE) and P (q) are calculated assuming the number of photons striking each PMT

is Poisson distributed with a mean equal to the total charge in the event divided by the

number of PMTs hit10. This is intended to be a rough proxy for the probability that the

light is direct and not scattered or reflected. I then loop over every single PMT hit, discarding

hits whose time residual (based on the position found by QUAD) is greater than 10 ns. For

each PMT hit we add a value to each bin in the 2D array proportional to

we−(cos θ− 1
n )2/0.01, (3.45)

where cos θ is the angle between the PMT hit and the current bin and 1
n is the cosine of the

Čerenkov angle in heavy water11. Finally, the peak in the 2D array is then found and that

is the first ring.

The whole process is repeated a specified number of times with the only difference being

that on subsequent iterations PMTs are skipped which are within the Čerenkov cone of

previously found rings. A PMT hit is assumed to be a part of a previous ring if

10. This is a very rough approximation and we don’t expect all the PMTs to have the same mean num-
ber of photons, but the term which dominates the equation is P (q | 1 PE) and so this is a good enough
approximation for the other terms.

11. The form of the weighting function, a Gaussian like weight as a function of the angle between the
PMT hit and the bin, was chosen since it is the same form as the expected angular distribution from direct
Čerenkov light calculated in Chapter 3. The value of 0.01 in the denominator was chosen by trial and error
to give good results based on the atmospheric Monte Carlo.
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Figure 3.5: Plot showing the 5 peaks detected in an atmospheric neutrino event.

∣∣∣∣cos θ − 1

n

∣∣∣∣ < 0.1, (3.46)

where cos θ is the cosine of the angle between the previous direction and the current PMT.

Finally, we ignore rings if they are within 0.1 radians of any previously found ring. Figure 3.5

shows the results of the algorithm applied to an atmospheric neutrino event with multiple

rings.

This algorithm has the advantage that it works well and is very simple to implement.

The one disadvantage is that it is unable to actually predict the number of rings and instead

will always return a specified number of rings. Although it may be possible to add something

to determine when a new ring falls below some threshold, I chose to keep the algorithm as

is and instead let the likelihood fits determine the total number of particles.

When performing the likelihood minimization, before running the “full” minimization

we do several shorter quick minimizations (with a maximum of 1000 steps each) using every

possible combination of particle type and direction seed. The best of these minimizations is
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Electron Muon

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

Table 3.5: Example showing the 9 different possible “quick” fits performed when fitting for
an electron and muon with 3 seed directions. The numbers in each row represent which one
of the 3 possible directions is the seed direction for the electron or muon.

then selected and we continue the minimization process. For example, if we were fitting for

the particle combination of an electron and a muon and we have 3 direction seeds, labeled

1 to 3, then we would perform the fits shown in Table 3.5 during the quick minimization

phase.

3.7 Goodness of Fit Parameter ψ

The goodness of fit parameter ψ is designed to measure how well the event is reconstructed

(similar to a χ2 value for a least squares fit). The ψ parameter is defined as the log of the

likelihood ratio between the maximum likelihood of the fit and the likelihood of the best

hypothesis in a restricted class of models Ω, i.e.

ψ ≡ log Lfit − log LΩ, (3.47)

where Lfit represents the maximum likelihood of the fit and LΩ represents the likelihood of

the best hypothesis in Ω. In our case, Ω represents the class of all models where we specify

a mean number of expected PE and the mean time that we expect each PMT to be hit. In

other words, in Ω we still assume that the number of photons hitting each PMT is Poisson

distributed, that the charge distribution for single PEs is given by the measured distribution
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in SNO PMTs, and that the time resolution of the PMT is 1.6 ns. But in this class of models

we are free to vary the expected number of PE and the hit time for each PMT independently.

In some sense, this model is intended to capture the best possible likelihood value one could

hope for.

To actually calculate LΩ, we first determine the mean number of PE hitting each PMT,

µ, such that the probability of observing the known charge is maximized, i.e. we maximize

P (q | µ) =
∑
i

P (q | n)P (n | µ)

as a function of µ. We then choose the mean hit time t to be equal to the value such that

the first order statistic of µ samples is equal to the actual hit time. For PMTs which aren’t

hit we assume µ is equal to the noise rate of the PMTs. With µ and t calculated for each

PMT we then evaluate Equation (3.8) to calculate the likelihood.

As an example of the discriminatory power of ψ, the distributions of ψ/Nhit for atmo-

spheric neutrino events and tagged flashers are shown in Figure 3.6 .

3.8 Particle ID

To determine the particle ID and multiplicity of events, we fit a single event under multiple

hypotheses and then perform a likelihood ratio test. By default we fit each event with up

to two tracks and consider each track as being from an electron or muon. Therefore, each

event is fit under the single electron, single muon, double electron, electron plus muon, and

double muon hypotheses12.

To pick the most likely hypothesis, the best fit is selected according to the fit with the

highest likelihood multiplied by an “Ockham factor” and a correction term. The Ockham

12. Although we are actually looking at finding electron-positron pairs, electrons and positrons produce
a very similar signal in the detector. Therefore as far as the reconstruction is concerned, it is looking for
a signal of 2 electrons. The same argument applies for muons and antimuons. Therefore, when speaking
of doing particle ID I will refer to these events as 2 electrons or 2 muons even though we are really talking
about a particle anti-particle pair.
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Figure 3.6: Distribution of ψ/Nhit for atmospheric neutrinos and flashers.
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factor accounts for the fact that we require the likelihood to be significantly better before

accepting a significantly more complex hypothesis (more particles) and the correction term

is to account for the fact that the likelihood is not able to model muon scattering and

electromagnetic showers correctly. The Ockham factor in its most general form is given by:

W =

∫
L (~θ)

Lmax
P (~θ | I)d~θ, (3.48)

where ~θ represents all the variables being fitted for (position, energy, direction, etc.), Lmax

represents the maximum value of the likelihood, and P (~θ | I) represent priors on the variables

being fitted for[11].

Although it is possible to calculate this quantity approximately using something like a

Markov Chain Monte Carlo, instead we assume that the prior density is very broad (we will

use flat priors) and we can approximate the integral as:

W = V (Ω′)P (~θ | I), (3.49)

where V (Ω′) is the volume of some high-likelihood region Ω′. For example, this volume

could be computed as the volume of likelihood space where the negative log likelihood is

less than 0.5 from the minimum. Although calculating something like this is possible, we

instead make another very simple assumption that the width of the likelihood space is the

same as the average uncertainty on an ensemble of fits13. For example, we assume that the

width of the likelihood space in each of the position directions is approximately 10 cm since

that is the average position resolution. Furthermore we assume the various parameters are

uncorrelated and so we can calculate W as:

13. This assumption is not likely to be true in practice for a couple of reasons. First, some of the uncer-
tainties have a very strong radial dependence and so events near the edge of the detector may have a much
larger uncertainty on the position. Second, for multi-particle events the situation is a lot more complex and
depends on the exact direction and energy of the two particles. Ideally here we would numerically estimate
the Ockham factor by running a Markov Chain Monte Carlo at the final fit position.
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W = V (x)V (y)V (z)P (x, y, z | I)
∏
i

V (Ti)V (ωi)P (Ti, ωi | I) (3.50)

where i sums over the total number of particles and ω represents the volume of solid angle

for the direction. Since the position resolution is roughly 10 cm for both electrons and

muons we can approximate V (x)V (y)V (z) as (10 cm)3. Similarly the energy resolution is

approximately 5% for both electrons and muons so we can write:

V (T ) ≈ 0.05T.

Finally, we take the volume of the direction to be equal to the approximate solid angle of a

cone with opening angle equal to the direction resolution which is approximately 1 degree

for muons and goes from 4 degrees to 1 degree for electrons depending on the energy14.

For the priors we simply assume flat priors for all the variables. Therefore,

log(W ) ≈ log

(
(10 cm)3

3
4πR

3
PSUP

)
+
∑
i

log

(
0.05Ti
1 GeV

)
+ log

(
π∆θ2

i

4π

)
. (3.51)

In addition to the terms shown in Equation (3.51) we also add a correction factor which

is currently a constant of +100 to any events with two particles. The reason for this is

that there are several aspects of the likelihood function which aren’t modeled perfectly.

This includes Rayleigh scattered light, photons reflected from the concentrators, and hard

scattering from muons. Because of these factors, the fit often wants to “fix” some of this

mismodeling by adding a second particle. This factor can be thought of as a prior on the

likelihood actually containing two particles given the results of the fit. For example, this

factor could in principle look at the results of the two particle fit and if the two directions

are close enough and one of the particles has significantly less energy it may be trying to

“correct” for a hard shower. In practice, I’ve found that a constant value of +100 works well

14. In the final analysis I actually used a constant factor of 1×10−4

4π for the solid angle term. In practice,
the correction factor of +100 for each additional particle dominates the Ockham factor, and so the solid
angle term has little effect.
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enough for this analysis and so I have not attempted to optimize it further.

3.9 Single Track Performance

To benchmark the performance of the reconstruction algorithm, I simulated electrons and

muons isotropically in the acrylic vessel. The electrons were simulated with a total energy

from 100 MeV to 1 GeV in 100 MeV steps and the muons from 300 MeV to 1 GeV in 100

MeV steps.

3.9.1 Particle ID

In Figure 3.7 the log of the likelihood ratio for electrons over muons is shown as a function

of reconstructed electron kinetic energy. Combining all events, the fraction of electrons and

muons which are correctly identified in this energy range is 99%.

3.9.2 Energy Resolution and Bias

The energy resolution and bias are shown in Figures 3.8 and 3.9 respectively. The bias is

calculated as the median of the difference between the reconstructed and true kinetic energy.

The resolution is calculated as the interquartile range divided by 1.35 which gives a good

approximation to the standard deviation of the central part of the distribution. This metric

was chosen instead of directly computing the standard deviation of the residuals because a

small number of events occasionally misreconstruct in a local minimum far away from the

global minimum. A small number of these events can have an arbitrarily large impact on the

standard deviation causing it to not be representative of the underlying distribution. The

“tails” of these distributions are naturally taken into account in the final analysis since the

expected signal is derived solely from reconstructed Monte Carlo simulations.
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Figure 3.7: Log likelihood ratio vs reconstructed electron energy for single electrons and
muons with kinetic energy between approximately 100 MeV and 1 GeV. The dashed line
represents a log likelihood ratio value of 0 which is where we cut to decide whether an event
is an electron or muon.
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Figure 3.8: Energy resolution as a function of kinetic energy for single electrons and muons.
The resolution is plotted as a fraction of the kinetic energy. The energy resolution is defined
here as 1.35 times the interquartile range of the difference between the reconstructed and
true kinetic energy.
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Figure 3.9: Energy bias as a function of kinetic energy for single electrons and muons. The
bias is plotted as a fraction of the kinetic energy. The bias is calculated by finding the
median of the difference between the reconstructed and true kinetic energy.
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Figure 3.10: Position resolution in cm as a function of kinetic energy for single electrons and
muons. The position resolution is defined here as 1.35 times the interquartile range of the
difference between the reconstructed and true positions.

3.9.3 Position Resolution and Bias

Figures 3.10 and 3.11 show the position resolution and bias respectively. The bias and

resolutions are characterized in the same way as for energy by the median and interquartile

range divided by 1.35. The position resolution is approximately 10 cm across the entire

energy range for both electrons and muons and there is no significant bias for electrons or

muons.

3.9.4 Angular Resolution

The angular resolution is shown in Figure 3.12. The resolution here is defined as the standard

deviation of the angle between the true initial track direction and the reconstructed track
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Figure 3.11: Position bias in cm as a function of kinetic energy for single electrons and muons.
The bias is calculated by finding the median of the difference between the reconstructed and
true position.
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Figure 3.12: Angular resolution as a function of kinetic energy for single electrons and muons.
The angular resolution is defined here as the standard deviation of the angle between the
reconstructed and true directions.

direction. The angular resolution for muons is constant at approximately 1 degree while

the resolution for electrons varies between 4 degrees and 1 degree, getting better at higher

energies.

3.10 Multi-Track Performance

In this section I discuss the performance of the reconstruction algorithm when fitting for mul-

tiple tracks from the same position. A full characterization of the performance is difficult

since, when considering 2 particles, it is necessary to consider the probability of reconstruct-

ing various quantities as a function of the energy, particle id, opening angle, and position of

both particles. Therefore, in this section I will simply choose a few key quantities to look at
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Electrons Muons

T (MeV) e µ ee eµ µµ e µ ee eµ µµ

100 92 8 - - - - -
200 89 9 2 - - - - -
300 93 7 8 92
400 91 8 1 98 2
500 87 10 3 2 98
600 87 13 96 3 1
700 86 10 4 89 11
800 91 4 5 94 4 1
900 84 8 8 96 4
1000 84 1 6 8 94 6

Table 3.6: The probability of reconstructing a given particle combination from single elec-
trons and muons in the AV for various kinetic energies.

to give an overview of the performance of the fitter.

3.10.1 Particle ID

We first consider the probability of reconstructing a given particle combination (i.e. single

electron, single muon, electron + muon, etc.) from a known single particle type. Since

the majority of the atmospheric background events involve a single charged lepton and our

signal is expected to show up as two or more leptons, this gives us a handle on the extra

contamination from single lepton atmospheric events we can expect. A table showing these

probabilities based on fitting single electrons and muons with energies from 100 MeV to 1

GeV and 300 MeV to 1 GeV for electrons and muons respectively is shown in Table 3.6.

Second, we consider the probability of correctly tagging lepton pairs. Table 3.7 shows

the probability that an electron-positron and muon-antimuon pair reconstruct as various

particle combinations. For both the electron-positron and muon-antimuon pair, the fraction

correctly identified is close to 100% at lower energies and decreases to approximately 90% at

higher energies. At higher energies the pair is boosted and the two rings from each particle

have a higher chance of overlapping, making it more difficult to distinguish the pair from a
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ψ → e− + e+ ψ → µ− + µ+

T (MeV) e µ ee eµ µµ e µ ee eµ µµ

0 92 8 100
100 100 100
200 100 100
300 93 7 100
400 97 3 100
500 93 7 100
600 3 90 6 100
700 94 6 8 92
800 92 8 2 2 96
900 88 12 7 5 88
1000 91 9 7 93

Table 3.7: The probability of reconstructing a given particle combination from a 1 GeV dark
matter mediator with various energies decaying to a positron and electron or a muon and
antimuon for events which reconstruct inside the acrylic vessel. For each row, 100 events
were simulated. The probabilities shown represent the fraction of the events reconstructing
as each particle type after these cuts.

single higher energy particle. An example of a highly boosted event is shown in Figure 3.13.

3.11 Energy Resolution

To compute the energy resolution we take the best fit (i.e. we don’t assume we know the

particle ids), and add together the kinetic energies. This is identical to what will happen

in the final analysis. We use the sum of the kinetic energies as opposed to the total energy

because in this case a particle misidentification will have less of an impact.

The energy resolution and bias for a 1 GeV dark matter particle decaying to an electron-

positron and muon-antimuon pair are shown in Figures 3.14 and 3.16. The energy resolution

for both the electron-positron and muon-antimuon pair is approximately 10% for all values

of the kinetic energy. Figure 3.15 shows the energy resolution as a function of radius for

these same events.
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Figure 3.13: XSnoed event display showing a 100 MeV dark matter mediator with a total
energy of 1 GeV decaying into an electron positron pair. This particular event was correctly
reconstructed as an event with 2 electron like rings.
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Figure 3.14: Energy resolution as a function of total kinetic energy for a 1 GeV dark matter
particle decaying to an electron-positron and muon-antimuon pair. The total kinetic energy
here is calculated as the sum of the kinetic energy of the lepton pair. The resolution is
plotted as a fraction of the total kinetic energy. The energy resolution is defined here as 1.35
times the interquartile range of the difference between the reconstructed and true kinetic
energy. Above approximately 1.4 GeV, the resolution is not shown for the muon-antimuon
pair because it is off the scale. Above this energy a large fraction of the muons start to
escape the detector at which point it is not possible to accurately reconstruct the energy.
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Figure 3.15: Energy resolution as a function of reconstructed radius for a 1 GeV dark matter
particle decaying to an electron-positron and muon-antimuon pair. The total kinetic energy
here is calculated as the sum of the kinetic energy of the lepton pair. The resolution is
plotted as a fraction of the total kinetic energy. The energy resolution is defined here as 1.35
times the interquartile range of the difference between the reconstructed and true kinetic
energy.

48



1000 1200 1400 1600 1800 2000

Total Kinetic Energy (MeV)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

E
n

er
gy

b
ia

s
(%

)

e− + e+

µ− + µ+

Figure 3.16: Energy bias as a function of the total kinetic energy for a 1 GeV dark matter
particle decaying to an electron-positron and muon-antimuon pair. The total kinetic energy
here is calculated as the sum of the kinetic energy of the lepton pair. The bias is plotted
as a fraction of the total kinetic energy. The bias is calculated by finding the median of the
difference between the reconstructed and true kinetic energy. The error on the bias is off the
scale for the muon-antimuon pair starting at approximately 1.4 GeV. Above this energy a
large fraction of the muons start to escape the detector at which point it is not possible to
accurately reconstruct the energy.
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Figure 3.17: Position resolution in cm as a function of the total kinetic energy for a 1 GeV
dark matter particle decaying to an electron-positron and muon-antimuon pair. The position
resolution is defined here as 1.35 times the interquartile range of the difference between the
reconstructed and true positions.

3.12 Position Resolution

Figures 3.17 and 3.18 show the position resolution and bias for a 1 GeV dark matter particle

decaying to an electron-positron and muon-antimuon pair. The bias and resolutions are

characterized in the same way as for energy by the median and interquartile range divided

by 1.35. The position resolution is approximately 10 cm across the entire energy range for

both pairs which is similar to the results in the single particle case.
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Figure 3.18: Position bias in cm as a function of the total kinetic energy for a 1 GeV
dark matter particle decaying to an electron-positron and muon-antimuon pair.The bias
is calculated by finding the median of the difference between the reconstructed and true
position.
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CHAPTER 4

ATMOSPHERIC NEUTRINOS

Atmospheric neutrino interactions represent the primary irreducible background in this anal-

ysis. Atmospheric neutrinos are produced from high energy interactions between cosmic

particles and nuclei in the upper atmosphere. These interactions produce lots of pions that

subsequently decay to a muon neutrino and a muon. Many of these muons then decay to an

electron and a muon neutrino and an electron neutrino. The energy of these neutrinos can

be anywhere from 10 MeV to 100s of GeV, and so they cover the full energy range considered

in this analysis.

Atmospheric neutrinos interact with the water, heavy water, and acrylic in the SNO

detector in a variety of different ways. For energies less than approximately 2 GeV, the

primary mode of interaction is charged current quasi-elastic scattering[12]:

νe + p→ n+ e+ (4.1)

νµ + p→ n+ µ+ (4.2)

νe + n→ p+ e− (4.3)

νµ + n→ p+ µ−. (4.4)

In addition to these relatively simple processes, it is also possible to produce pions in

an interaction called resonant single pion production. With sufficient energy, the neutrino

interaction can leave the nucleon in an excited state which then decays back to a proton or

neutron plus a pion[12]. For example:

νµ + p→ µ− + p+ π+ + γ. (4.5)

Atmospheric neutrinos can also interact via a neutral current process:
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Fraction of Events (%) Interaction
5.0 νµ + n→ µ− + p
4.7 νe + n→ e− + p
3.3 νµ + n→ µ− + γ + p
3.1 νe + n→ e− + γ + p
1.9 νµ + p→ µ+ + n
1.7 νe + p→ e+ + n
1.3 ντ + p→ ντ + p
1.3 νµ + p→ νµ + p
1.3 νµ + p→ µ+ + γ + n
1.2 νµ + p→ µ− + p+ π+

Table 4.1: List of the 10 most common atmospheric neutrino interactions in the SNO D2O
and salt phases. Note that this is not a list of the 10 most common visible interactions, and
many of these will not produce a visible signal in the detector.

νx + p→ νx + p (4.6)

νx + n→ νx + n (4.7)

νx + p→ νx + p (4.8)

νx + n→ νx + n. (4.9)

Neutrinos can also interact coherently with the entire nucleus via either the charged current

or neutral current interaction to produce a final pion. These interactions produce pions

scattered in the forward direction with no nuclear recoil[12].

In addition to these interactions there are a handful of more exotic interactions producing

multiple pions and kaons. For more information see Reference [12]. Table 4.1 shows the 10

most common atmospheric neutrino interactions expected in the SNO D2O and salt phases

above 100 MeV as predicted by the simulation discussed in the following sections.

4.1 Simulating Atmospheric Neutrino Events

The atmospheric neutrino flux prediction comes from two different sources: from 10 MeV

to 100 MeV we use the fluxes provided by Battistoni et al., and from 100 MeV to 10 GeV

53



Name Value

sin2 θ23 0.512

sin2 θ13 0.0218

sin2 θ12 0.307

∆m2
21 7.53× 10−5 eV2

∆m2
32 2.444× 10−3 eV2

δCP 0

Table 4.2: Neutrino oscillation parameters used to oscillate the atmospheric neutrino flux.

we use the fluxes provided by Giles Barr on his website, which were created using a three

dimensional calculation using the TARGET2.1 generator[13, 14]. The Barr fluxes are given

as a function of both energy and cosine zenith angle whereas the Battistoni fluxes are only

given as a function of energy. Therefore, I assumed that the angular distribution of the flux

below 100 MeV was given by that of the lowest energy bin in the Barr fluxes.

The atmospheric fluxes are then oscillated using the output from the nuCraft package[15?

] with the oscillation parameters shown in Table 4.2. The oscillation probabilities for an

atmospheric muon neutrino to oscillate to an electron, muon, or tau neutrino are shown in

Figures 4.2, 4.3, and 4.4. Figures 4.1 and 4.5 show the initial and oscillated atmospheric

fluxes.

We then simulate the initial products of the atmospheric neutrino interaction by passing

these fluxes and a simplified SNO geometry created by Andy Mastbaum to the GENIE

generator package[17]. The expected event rate from the output of GENIE is shown in

Tables 4.3 and 4.4 for the D2O and salt phases respectively. The output from GENIE is

then converted to the MCPL file format and the interaction products are simulated using the

SNO detector simulation program SNOMAN. An example event is shown using the XSnoed

event display in Figure 4.6[18]. These events are then reconstructed on the Open Science

Grid using the reconstruction algorithm described in Chapter 3[1, 2].
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Figure 4.1: Unoscillated atmospheric neutrino fluxes for electron and muon neutrinos as a
function of energy. The discontinuity at 100 MeV comes from the fact that below 100 MeV
we use the FLUKA calculations and above 100 MeV we use 3D atmospheric neutrino flux
calculations done using the IRC01 primary flux. We currently take the fluxes for the solar
maximum since the majority of the data was taken between 1999 and 2003 which is close to
the solar maximum in 2001[16], and treat the difference as a systematic error.

AV PSUP

CC NC Total CC NC Total

νe 56.1 20.2 76.3 137.1 51.0 188.0
νe 13.9 8.1 22.0 39.6 20.1 59.6
νµ 65.1 24.7 89.9 159.8 65.8 225.5
νµ 19.7 10.9 30.6 53.6 29.0 82.6
ντ 0.2 13.7 13.9 0.6 35.5 36.1
ντ 0.1 5.8 5.9 0.3 15.2 15.5

Table 4.3: Expected event rates per year in the D2O phase.
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Figure 4.2: Probability for a νµ to oscillate into a νe as a function of energy and zenith
angle.

AV PSUP

CC NC Total CC NC Total

νe 54.5 19.8 74.3 136.3 50.2 186.6
νe 14.2 7.4 21.6 39.8 19.6 59.3
νµ 63.1 25.2 88.3 157.7 66.9 224.5
νµ 18.4 10.9 29.3 52.6 28.8 81.3
ντ 0.2 13.7 13.9 0.6 35.3 35.9
ντ 0.1 6.2 6.3 0.3 16.1 16.4

Table 4.4: Expected event rates per year in the salt phase.
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Figure 4.3: Probability for a νµ to stay as a νµ as a function of energy and zenith angle.
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Figure 4.4: Probability for a νµ to oscillate into a ντ as a function of energy and zenith
angle.
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Figure 4.5: Oscillated atmospheric neutrino fluxes as a function of energy. The discontinuity
at 100 MeV comes from the fact that below 100 MeV we use the FLUKA calculations and
above 100 MeV we use 3D atmospheric neutrino flux calculations done using the IRC01
primary flux.
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Figure 4.6: XSnoed event display showing an atmospheric neutrino event. This particular
interaction is νµ + n→ µ− + γ + p + p + n + π0. The ring on the left is the muon and the

ring on the right is the π0.
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4.2 Cuts to Reduce the Atmospheric Background

We have two main handles to reduce the atmospheric neutrino background: the number of

particles and neutron followers. In the dark matter candidate events of interest, all events

have at least 2 leptons, whereas a sizable fraction of the atmospheric events have either

a single outgoing particle or only a single charged particle above the Čerenkov threshold.

Therefore by cutting events that reconstruct as a single particle, we reduce the atmospheric

background by around 70%. The second handle is that many atmospheric neutrino interac-

tions result in a free neutron. These neutrons will eventually capture on either deuterium

or chlorine in the salt phase. The nucleus that captured the neutron will then emit gammas

as it de-excites to the ground state, thus producing a measurable signal in the detector. By

tagging events with following events that look like neutrons we can reduce the background

further by a factor of approximately 33% in the D2O phase and 47% in the salt phase. Events

tagged with a neutron follower also provide an important side channel to double check the

atmospheric neutrino Monte Carlo. For example, if the null hypothesis test shows that the

data are not consistent with the expected atmospheric neutrino background one may natu-

rally suspect that the atmospheric neutrino Monte Carlo is wrong in some way. With this

sideband we are able to test this hypothesis and if the events tagged with a neutron follower

match the Monte Carlo, then this suggests that the Monte Carlo is correct. Figure 4.7 shows

the expected number of atmospheric background events per year both before and after these

cuts.

4.3 Systematic Uncertainties

The systematic uncertainties associated with the initial neutrino cross section, hadronization

and resonance decay, and final state interactions in GENIE are handled using an event

reweighting framework within GENIE. To use the reweighting framework, we use a script
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Figure 4.7: Expected number of atmospheric events in the AV per year as a function of the
total reconstructed kinetic energy based on the GENIE Monte Carlo. The blue line shows
the total number of atmospheric events before any cuts, the orange line after the neutron
follower cut, and the green line after the cut requiring at least two particles.

62



which samples values for the GENIE parameters shown in Table 4.5 according to the known

uncertainties on each parameter. With these parameters selected, the GENIE framework

then returns a weight associated with each event which is used to weight that event when

constructing histograms. The procedure for incorporating these weights into the final analysis

is discussed in Section 9.1.3.

Table 4.5 contains nearly all the available GENIE parameters except for the following:

1. The CCQE vector form factor and AGKY xF and pT for performance reasons.

2. The reweighting of the CCQE p distribution to a spectral function model since it is

not implemented for our target nuclei.
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GENIE Parameter 1σ Uncertainty Description

MaNCEL 25% NC Elastic axial mass
EtaNCEL 30% NC Elastic strange FF eta
MaCCQE +25% -15% QE axial mass
MaCCRES 20% CC resonance axial mass
MvCCRES 10% CC resonance vector mass
MaNCRES 20% NC resonance axial mass
MvNCRES 10% NC resonance vector mass
MaCOHpi 40% Coherent pion prod. axial mass
R0COHpi 10% Coherent pion prod. nuclear size
NonRESBGvpCC1pi 50% Non-resonance background in νp CC1π reactions
NonRESBGvpCC2pi 50% Non-resonance background in νp CC2π reactions
NonRESBGvpNC1pi 50% Non-resonance background in νp NC1π reactions
NonRESBGvpNC2pi 50% Non-resonance background in νp NC2π reactions
NonRESBGvnCC1pi 50% Non-resonance background in νn CC1π reactions
NonRESBGvnCC2pi 50% Non-resonance background in νn CC2π reactions
NonRESBGvnNC1pi 50% Non-resonance background in νn NC1π reactions
NonRESBGvnNC2pi 50% Non-resonance background in νn NC2π reactions
NonRESBGvbarpCC1pi 50% Non-resonance background in νp CC1π reactions
NonRESBGvbarpCC2pi 50% Non-resonance background in νp CC2π reactions
NonRESBGvbarpNC1pi 50% Non-resonance background in νp NC1π reactions
NonRESBGvbarpNC2pi 50% Non-resonance background in νp NC2π reactions
NonRESBGvbarnCC1pi 50% Non-resonance background in νn CC1π reactions
NonRESBGvbarnCC2pi 50% Non-resonance background in νn CC2π reactions
NonRESBGvbarnNC1pi 50% Non-resonance background in νn NC1π reactions
NonRESBGvbarnNC2pi 50% Non-resonance background in νn NC2π reactions
BR1gamma 50% Resonance decays, radiative decay BR
BR1eta 50% Resonance decays, single η BR
Theta Delta2Npi - Resonance decays, angular distribution
AhtBY 25% DIS form factor, high-twist BY scaling
BhtBY 25% DIS form factor, high-twist BY scaling
CV1uBY 30% DIS form factor, GRV98 PDF correction
CV2uBY 40% DIS form factor, GRV98 PDF correction
DISNuclMod 100% DIS nuclear model modification
FormZone 50% Hadron formation zone
CCQEPauliSupViaKF 30% Fermi Gas Model, Pauli suppression kF
MFP N 20% Intranuke FSI model, nucleon mean free path
FrCEx N 50% Intranuke FSI model, nucleon charge exchange probability
FrElas N 30% Intranuke FSI model, nucleon elastic reaction probability
FrInel N 40% Intranuke FSI model, nucleon inelastic reaction probability
FrAbs N 20% Intranuke FSI model, nucleon absorption probability
MFP pi 20% Intranuke FSI model, π mean free path
FrCEx pi 50% Intranuke FSI model, π charge exchange probability
FrElas pi 10% Intranuke FSI model, π elastic reaction probability
FrInel pi 40% Intranuke FSI model, π inelastic reaction probability
FrAbs pi 30% Intranuke FSI model, π absorption probability
CCQEMomDistroFGtoSF - Reweights incoming nucleon momentum distribution from Fermi

Gas (Bodek-Ritchie) to a spectral function[19]

Table 4.5: Parameters in the GENIE cross section model which varied to account for sys-
tematic uncertainties in the model[20]. The Theta Delta2Npi and CCQEMomDistroFGtoSF
parameters don’t have a fractional uncertainty and are instead varied uniformly between 0
and 1.
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CHAPTER 5

INSTRUMENTAL AND EXTERNAL BACKGROUNDS

Besides atmospheric neutrinos, instrumental backgrounds and external muons represent the

only other source of backgrounds for this analysis. The instrumental backgrounds represent a

serious problem since the rate of these events is orders of magnitude larger than events coming

from atmospheric neutrinos or a potential dark matter signal. Luckily, these backgrounds

were studied extensively during SNO and many data cleaning cuts were designed to reject

these events. Based on these cuts, I have developed several data cleaning cuts more suitable

for the high energy range used in this analysis.

In the following sections we describe the instrumental and external muon backgrounds

and the data cleaning cuts designed to reject them.

5.1 External Muons

Both cosmic ray muons and muons created from atmospheric neutrinos interacting in the

surrounding rock present a background for this analysis. In both cases, it is necessary to

cut events that start outside the PSUP and enter the detector. A typical muon is shown in

Figure 5.1.

During SNO, these events were cut using the MUON cut which tagged events with at

least 150 hits, 5 or more outward-looking (OWL) PMT hits, and with a time RMS of less

than 90 nanoseconds. This cut would have a negligible loss (referred to as sacrifice) for any

contained atmospheric or dark matter candidate events, but could potentially cut events

which produce an energetic muon which then exits the detector. Therefore, I have slightly

modified this cut to also require that at least 1 OWL tube is both early and has a high

charge relative to the nearby normal PMTs. We define an early and high charge tube by

65



2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

T
a
c
 (

ra
w

)

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

Q
h
s
 (

ra
w

)

F
ig

u
re

5.
1:

X
S
n
o
ed

ev
en

t
d
is

p
la

y
sh

ow
in

g
a

ty
p
ic

al
m

u
on

.
T

h
e

le
ft

im
ag

e
sh

ow
s

th
e

P
M

T
h
it

s
co

lo
re

d
ac

co
rd

in
g

to
th

e
T

A
C

va
lu

e
an

d
th

e
ri

gh
t

im
ag

e
ac

co
rd

in
g

to
th

e
Q

H
S

va
lu

e.

66



creating an array of the ECA1 calibrated hit times (we can’t use PCA calibrated times since

the OWL tubes were never calibrated via PCA) and of the best uncalibrated charge (see

Appendix J) for all normal PMTs within 3 meters of each hit OWL PMT. We then compute

the median charge and time for these normal PMTs. We then compute how many OWL

PMT hits are both earlier than the median normal PMT time and have a higher charge than

the surrounding PMTs. If at least 1 OWL PMT hit satisfies this criteria and all the other

criteria from the SNO MUON cut are satisfied (except the time RMS part) then it’s tagged

as a muon.

5.2 Noise Events

Noise events refer to events triggered by sources that do not actually create light in the

detector. The two most common sources are “ringing” after large events and electrical

pickup on deck. An example of a typical electrical pickup event is shown in Figure 5.2.

These events are tagged by the QvNHIT and ITC2 cuts which are identical to their SNO

counterparts aside from minor updates3.

1. ECA stands for Electronic Calibration Analysis. The ECA calibrations generate pedestal values for
the charge and time slope calibrations. These constants are then used to subtract off the baseline values for
the charge and convert the raw time values into a time in nanoseconds.

2. ITC stands for In Time Channel and cuts on the number of PMT hits in a 93 ns sliding window.

3. The original ITC cut used during SNO used the fully calibrated hit time for each PMT. In this analysis,
the ITC cut uses the pt1 time which is the time without the charge walk calibration. We use this time since
otherwise the cut may fail to tag an event which consists of mostly electronics noise which has charge too
low to apply PCA (Javi, personal communication, June 12, 2019). Similarly, the original SNO QvNHIT cut
only looked at channels which had good calibrations (i.e. the calibration processor was able to apply the
charge walk calibration) whereas the QvNHIT cut used in this analysis does not require good calibrations.
The reason is the same as for the ITC cut; the cut may fail to tag electronic pickup events in which all
the channels have a charge too low to apply PCA. In addition, the SNO version of the QvNHIT cut tagged
events in which the charge to Nhit ratio was less than 0.25 whereas I use 0.5 in my cut. The reason for this
is that after investigating the SNOMAN code, I discovered that all the charges were accidentally divided by
2.
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Figure 5.2: XSnoed event display showing a typical noise event. The plot shows a histogram
of the QHS values which are a measure of the charge in each PMT before calibrations. This
event was likely caused by pickup near crate 0.
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5.3 Neck Events

Neck events are caused by light produced in or leaking through the glove box on top of the

detector[21]. An example neck event is shown in Figure 5.3. The original SNO neck event

cut is defined as:

This cuts events containing neck tubes. It requires that either both tubes in

the neck fire, or that one of those tubes fires and it has a high charge and is early.

High charge is defined by a neck tube having a pedestal subtracted charge greater

than 70 or less than -110. Early is defined by the neck tube having an ECA time

70 ns or more before the average ECA time of the PSUP PMTS with z less than

0. After the cable changes to the neck tubes this time difference changes to 15

ns.

Similarly to the MUON cut, I’ve used the SNO criteria but added an additional require-

ment to avoid tagging high energy upwards going events. The neck cut I use also has a

requirement that 50% of the hit PMTs must have a z coordinate of less than 4.25 meters or

50% of the ECA calibrated QHS charge must be below 4.25 meters.

5.4 Flashers

Flashers are probably the most difficult and common source of instrumental background for

this analysis. They occur at a rate of approximately 100 events per hour which is orders

of magnitude greater than events from atmospheric neutrinos. A flasher event occurs when

there is an electrical short in the PMT base or dynode stack which causes light to be emitted

from the PMT and hit the opposite side of the detector[citation needed]. Because this event is

caused by actual light in the detector, it is particularly hard to cut while also maintaining a

small signal sacrifice. A typical flasher event is shown in Figure 5.4.
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The algorithm used to cut flashers is similar to two different cuts used during SNO:

the flasher geometry cut and the QvT4 cut, however it adds additional criteria in order to

make the cut more robust against tagging high energy physics events. The full algorithm is

described in pseudocode in Algorithm 1.

5.5 Breakdowns

Wet end breakdowns (WEBs for short) are believed to be caused by an arc somewhere in

the PMT base circuitry which causes repeated large flashes of light in the detector. These

calamitous events occasionally stop on their own, in which case they are referred to as

“friendly WEBs”; otherwise it is the shift operator who is responsible for ending the run and

powering down the PMT which is causing the breakdown. Breakdowns are very similar to

flashers except that they produce much more light5.

Since breakdowns often cause many of the electronics to saturate, it is very difficult to

find a single common characteristic on which to cut. However, the one thing that does

seem to be common among almost all breakdowns is that the channels in the same crate as

the breakdown trigger on electronic pickup from the channel which is breaking down. The

channels which trigger on the electronic pickup come much earlier in the event than the rest

of the PMT hits.

Therefore, the breakdown cut tags any event which has at least 1000 PMT hits and in

which the crate with the highest median TAC has at least 256 hits and is 500 TAC counts

away from the next highest crate (with at least 20 hits).

Occasionally a breakdown is so big that it causes issues with the TAC measurement and

many of them end up reading outside of the linear TAC region. Therefore we also tag any

4. The QvT cut, or charge vs time cut, cuts events in which a very high charge PMT hit occurs much
earlier than the rest of the PMT hits.

5. In fact, I think there is a continuous spectrum between flashers and breakdowns, but the distinction is
still helpful since the ways to tag the two are very different.
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Algorithm 1 Flasher Cut Algorithm
if nhit < 31 then

return 0
end if
# This condition is similar to the SNO QvT cut except we require that 70% of the normal hit PMTs be
12 meters from the high charge channel and that 70% of the normal hit PMTs be at least 50 ns after the
high charge channel.
if highest QLX > second highest QLX +80 then

Collect all hit times from the same slot as the high charge channel and compute the median hit time
if At least 4 hits in the slot and 70% of the normal hit PMTs with good calibration are more than 12
meters from the high charge channel and 70% of the normal hit PMTs with good calibration are more
than 50 ns after the median hit time in the slot then

return 1
end if

end if
for All PC with at least 4 hits do

Collect the QHS, QHL, and QLX charges and the ECA calibrated hit times (EPT) for each PMT in
the PC sending charge values below 300 to 4095
t← median(EPT)
QHS1 ← max(QHS)
QHL1 ← max(QHL)
QLX1 ← max(QLX)
QHS2 ← second highest(QHS)
QHL2 ← second highest(QHL)
QLX2 ← second highest(QLX)
if QHS1 > QHS2 + 1000 then

if 70% of the normal hit PMTs with good calibration are more than 12 meters from the high charge
channel and 70% of the normal hit PMTs with good calibration are more than 50 ns after t then

return 1
end if

else if QHL1 > QHL2 + 1000 then
if 70% of the normal hit PMTs with good calibration are more than 12 meters from the high charge
channel and 70% of the normal hit PMTs with good calibration are more than 50 ns after t then

return 1
end if

else if QLX1 > QLX2 + 80 then
if 70% of the normal hit PMTs with good calibration are more than 12 meters from the high charge
channel and 70% of the normal hit PMTs with good calibration are more than 50 ns after t then

return 1
end if

else
for All normal PMT channels not hit in PC do

if more hits in slot than surrounding 4 meters or median hit time in slot is 10 ns earlier than
PMTs within 4 meters then

if 70% of the normal hit PMTs with good calibration are more than 12 meters from the high
charge channel and 70% of the normal hit PMTs with good calibration are more than 50 ns
after t then

return 1
end if

end if
end for

end if
end for
return 0 73



event in which more than 70% of the PMT hits have a TAC value below 400.

5.6 Additional Data Cleaning Cuts

In addition to the data cleaning cuts previously discussed, I also designed two additional

data cleaning cuts that target all of the instrumental events more generally.

5.6.1 Calibrated Nhit Fraction

The first cut is called the “Calibrated Nhit Fraction” cut and cuts any event in which less

than 80% of the PMT hits are properly calibrated. The value of 80% was chosen by plotting

this fraction for external muons which represent a worst case scenario and placing the cut

such that virtually none of them were tagged. Figure 5.5 shows the calibrated Nhit fraction

for muons, flashers, and neck events.

5.6.2 Burst Cut

The second cut is called the “Burst Cut” and is intended to cut any burst of high Nhit

events. These bursts often come from a burst of neck events or from a breakdown. To define

a burst, we first label “Prompt 50” events, which are defined as:

1. Any event with at least 100 PMT hits

2. Where the last PMT event with at least 100 PMT hits was at least 50 ms ago

The idea here is to tag the “prompt” high nhit events without tagging any events which

might retrigger based on ringing or late pulsing in the PMTs.

Next, we cut any events in a 1 second sliding window in which there are 3 or more

“Prompt 50” events. The sliding window is allowed to be longer than 1 second as long as

there is no gap between events with at least 100 PMT hits longer than 1 second.
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Figure 5.5: Calibrated Nhit fraction for muons, flashers, and neck events.
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CHAPTER 6

CUT EFFICIENCIES

There are two important quantities necessary to characterize the performance of the data

cleaning cuts described in Chapter 5 and the high-level cuts discussed in Chapter 7: the

signal sacrifice and the background contamination. The signal sacrifice refers to the events

of interest which are “accidentally” cut, while the background contamination refers to back-

ground events which are not cut. Since all of the data cleaning and high level cuts are

primarily designed to cut instrumentals and not atmospheric events, for the rest of this

chapter I will consider atmospheric neutrino events to be “signal” events even though they

ultimately represent a background for the dark matter search.

Section 6.1 describes the sacrifice for the instrumental and muon cuts described in Chap-

ter 5. Finally, in Section 6.2 I describe the new method used to estimate the overall rates

and contamination for the backgrounds.

6.1 Sacrifice

We can group the data cleaning cuts into two distinct groups. For the first group, the data

that the cut uses can be accurately simulated and so the sacrifice can easily be estimated from

Monte Carlo. The second group contains cuts which rely on data which is not simulated,

and so we have to try and estimate the sacrifice independent of the Monte Carlo.

The majority of the cuts fall into the first group and we can estimate the sacrifice from

Monte Carlo1. For these cuts, the sacrifice will automatically be taken into account in the

1. The Monte Carlo does not capture many low level hardware issues that we do expect to appear in real
data like cross talk and shark fins (a shark fin is a type of event pathology characterized by a single channel
with a high charge where the trigger signal looks like a shark fin). In all SNO analyses therefore the sacrifice
was always measured using real data from calibration sources. Unfortunately there are no calibration sources
that mimic the events we are interested in for this analysis. We do use Michel electrons and stopping muons
to estimate systematic uncertainties on the energy reconstruction, but these events do not represent the
broad range of types of events we expect to see from atmospheric neutrino or dark matter events. Therefore,
I believe the best estimate of the sacrifice is to be obtained by looking at Monte Carlo.
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Cut # of Events Fraction (%) ∆ (%)

Total 103892 100.00 100.00
Junk 103892 100.00 100.00

Crate Isotropy 103892 100.00 100.00
QvNHIT 103892 100.00 100.00
Flasher 103861 99.97 99.97

ITC 103561 99.68 99.71
Breakdown 103561 99.68 100.00
Radius cut 37505 36.10 36.22
ψ cut 35753 34.41 95.33

Table 6.1: Atmospheric neutrino sacrifice for the data cleaning and high-level cuts used in
the final analysis. The first column shows the cut that is applied while the second and third
columns show the number of events and fraction remaining after each cut is successively
applied. The fourth column shows the fraction of events cut by each cut individually.

final analysis since the final analysis uses Monte Carlo and applies the same cuts. To get

a rough idea for the size of the sacrifice, Table 6.1 shows the number of events remaining

after each of the data cleaning and high-level cuts for the atmospheric neutrino Monte

Carlo sample. The combined fraction of atmospheric events cut by the data cleaning cuts

alone is only 0.8%. The radial cut has the largest sacrifice and cuts approximately 64% of

the atmospheric events, which is expected for events uniformly distributed throughout the

PSUP. The sacrifice from the goodness-of-fit ψ cut is only 5%, although it would be larger

had we extended the fiducial volume outside the AV. This is primarily because outside the

AV some of the assumptions made in the likelihood function do not hold. This can be seen

in the second row and first column of Figure 6.1.

The cuts which fall into the second group which can’t be estimated from Monte Carlo

are the muon, neck, calibrated nhit, and burst cut. The muon and neck cut sacrifice cannot

be estimated from Monte Carlo because SNOMAN does not simulate either the OWL or

neck PMTs (which are the primary input for these cuts). The calibrated nhit cannot be

estimated from Monte Carlo since the Monte Carlo does not include all the electronic effects

which lead to channels being miscalibrated like cross talk. The burst cut sacrifice cannot

be estimated from Monte Carlo because the most likely reason for a physics event to be cut
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likelihood ratio test to show if the two variables are correlated and is discussed in Appendix F.
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by this is due to another instrumental event, like a flasher, preceding it. Since we do not

simulate instrumental events, we cannot estimate it from Monte Carlo.

6.1.1 Muon Cut

For the Muon cut, we can try to estimate the sacrifice by writing the sacrifice as:

P (M | signal) = P (M | fully contained, signal)P (fully contained | signal)

+ P (M | not contained, signal)P (not contained | signal) (6.1)

which, if we assume the probability of tagging a fully contained event is negligible since the

Muon tag requires 5 OWL hits, becomes

P (M | signal) ' P (M | not contained, signal)P (not contained | signal).

It may be possible to estimate the first term from through-going muons and ignoring the

OWL PMTs near the entry point and the second term from Monte Carlo. However, in the

end we chose to apply the fiducial volume and energy cuts such that we do not expect any

signal events in the range of interest to exit the PSUP. Therefore, the second term is zero

and this cut should have a negligible sacrifice.

6.1.2 Neck Cut

We can estimate an upper bound for the neck event cut sacrifice by using a slightly modified

version of the cut. Instead of requiring that at least 2 neck PMTs get hit or 1 neck PMT gets

hit with a high charge and early, we can instead require the same using the three highest

normal PMTs instead of the neck PMTs.

The most likely type of physics event we are interested in which might accidentally get

tagged by the neck PMT cut would be an event where two charged particles come off back to
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back near the top of the detector. The light from the particle going upwards could cross the

water air interface and cause the neck PMTs to fire. Since a lot of light is required to make it

past the water air interface and reflect up the acrylic neck, we would also expect that many

of the PMTs in the upper hemisphere would also get hit by light from the particle traveling

upward. Therefore, instead of looking at the neck PMT hits (which we can’t simulate), we

can instead look for hits in the three highest normal PMTs. The number of events which

fail the neck cut using these PMTs instead of the neck PMTs should give us an upper bound

on the sacrifice (since it is easier to hit the normal PMTs than for light to travel up the

neck to hit the neck PMTs). The one other assumption we have to make is that these

PMTs act similarly to the neck PMTs. I performed an analysis on the atmospheric neutrino

Monte Carlo using this technique, and found that 309 events out of 42390 simulated prompt

events failed the cut, or 0.7% of events. This amount is negligible compared to the other

uncertainties in the atmospheric analysis and because it is an upper bound it will be ignored

for the rest of this analysis.

6.1.3 Burst Cut

For the burst cut, I looked at all events tagged as an external muon by the burst cut as a proxy

for signal events. Looking over all the runs in the D2O phase, I found that approximately 30

events were cut. I hand scanned all 30 of these events and found that only 16 were plausible

muons (the rest were neck events or breakdown events which accidentally got tagged as

a muon). The most likely reason for the muon events to get tagged was that they were

preceded or followed by neck or flasher events. The total number of muon events was 19674

which gives a sacrifice of 0.08% which is negligible compared to the other uncertainties in

this analysis.
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6.1.4 Calibrated Nhit Fraction

I estimated the sacrifice for the Calibrated Nhit Fraction cut by looking at tagged muons

which pass the ψ cut. Since these events have a very high density of charge, they represent

an extreme case of what we expect for atmospheric neutrino events in the energy range of

interest. Looking over a large fraction of the final data, I found that 6 out of 3,560 events

tagged as a muon also failed the calibrated nhit fraction cut, or a 0.17% sacrifice. This

sacrifice is negligible compared to other uncertainties in this analysis.

6.2 Contamination

The contamination of the instrumental and muon cuts is much more difficult to measure

since we don’t have any way of accurately simulating the instrumental backgrounds. We

can’t measure the contamination of the muon data cleaning cut either because although we

can simulate external muons in SNOMAN, SNOMAN does not simulate the OWL PMTs.

To properly estimate the contamination from instrumentals and external muons I have

developed a new method inspired by the bifurcated analysis used in SNO (the bifurcated

analysis method used in SNO and its problems are discussed in Appendix K). This method

works by first assuming that we can tag the instrumental events with the low-level cuts to

obtain pure samples of each background, i.e. we have some way of tagging noise, neck, flasher,

breakdown, and muon events to obtain pure samples of each2. Using the pure samples, we

can determine what the distribution of reconstructed variables like radius and goodness of

fit look like for these backgrounds, which will allow us to infer how many of them are in the

untagged sample. To measure the number of events in the untagged sample, we construct a

likelihood function which looks at the distribution of these high-level variables in the events

2. This step isn’t strictly necessary for the method to work, however, if you do not assume something
like this the number of terms in the likelihood function quickly becomes unmanageable since you have to
consider every single possible combination of data cleaning cut and background.
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that were not tagged by a low-level cut and is able to measure the residual contamination.

6.2.1 Partitioning the Backgrounds

The first step in implementing this analysis method is to define a new set of tags which

hopefully captures only a single type of background for each tag. Although the existing data

cleaning cuts are already mostly geared towards a single background, they are not written

to be mutually exclusive and there is some mixing. Therefore, I will define a new set of

low-level tags3 tailored to each of the different sources of background and define them such

that they are mutually exclusive, i.e.

Noise Tag Any event which fails the Junk, Crate Isotropy, QvNhit, ESUM, or ITC cuts

Neck Event Tag Any event which fails the Neck cut and is not already tagged as a noise

event

Flasher Tag Any event which fails the Flasher cut and is not already tagged as a noise or

neck event and has < 1000 nhit

Breakdown Tag Any event which fails the Flasher or Breakdown cut and is not already

tagged as a noise or neck event and has >= 1000 nhit

Muon Tag Any event which fails the Muon cut and is not already tagged as a noise, neck,

flasher, or breakdown event

6.2.2 Setting up the Observables

For the high-level cuts we use four different variables: reconstructed radius, reconstructed z

position, ~u · ~r, and the goodness-of-fit parameter ψ.

3. We will refer to these as tags instead of cuts to distinguish them from the data cleaning cuts.
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~θj Radius cut (cm) Z cut (cm)
~θ1 r > 800 z > 0
~θ2 r > 800 z < 0
~θ3 r < 800 z > 0
~θ4 r < 800 z < 0

Table 6.2: An example showing how you might bin the high-level variables if only looking
at reconstructed radius and z position.

The observables in our likelihood function are the number of events which get tagged

with each low-level cut (or no cut) and all possible combinations of the high-level cuts.

We can calculate the expected number of each of these by taking the product between a

matrix representing the probability of tagging an event with a given low-level cut and all

possibilities of the high-level cuts for each of the different background sources multiplied by

a vector representing the expected number of background and signal events:


µi,θ1

µi,θ2
...

µi,θn

 =


P (i, ~θ1 | signal) P (i, θ1 | noise) · · · P (i, θ1 | muon)

P (i, ~θ2 | signal) P (i, θ2 | noise) · · · P (i, θ2 | muon)
...

. . .

P (i, θn | signal) P (i, θn | muon)

 ~µ (6.2)

where

~µ =


µsignal
µnoise
µneck
µflasher

µbreakdown
µmuon


represents the number of signal and background events, i stands for one of the low-level tags

(and one for no low-level tag), and θj represents some binning of the high-level variables.

Table 6.2 shows an example binning of θj if we were only considering high-level cuts on

radius and z position. Note that there is a separate Equation (6.2) for each of the low-level

tags, i.
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To simplify Equation (6.2) we condition on the low-level cuts, i.e.

P (i, θ | background) = P (θ | i, background)P (i | background)

which then becomes


µi,θ1

µi,θ2
...

µi,θn

 =


P (θ1 | i, signal) P (θ1 | i, noise) · · · P (θ1 | i,muon)
P (θ2 | i, signal) P (θ2 | i, noise) · · · P (θ2 | i,muon)

...
. . .

P (θn | i, signal) P (θn | i,muon)

 ~εi � ~µ (6.3)

where

~εi =


P (i | signal)
P (i | noise)
P (i | neck)
P (i | flasher)

P (i | breakdown)
P (i | muon)


and � represents component-wise multiplication.

Next, we assume no mixing between the backgrounds, i.e.

P (i | µj) = 0 when i 6= j ∀ i, j ∈ {muon, noise, neck, flasher, breakdown}

except for the neck tag and muons.

In the following subsections I will describe Equation (6.3) for each of the background tags

separately. First, I will discuss which high-level variables we will assume are independent of

each other for each source. For example, if we assume that all four of the high-level variables

are independent for a given tag we can write:

P (θi) = P (r)P (ψ)P (z)P (~u · ~r)

This assumption is not strictly necessary for the method to work, however, it greatly reduces
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the final number of variables we need to fit for and so is practically necessary to avoid fitting

for hundreds of variables.

Second and more importantly I will discuss the independence between the low and high-

level cuts. In order to make any measurement of the sacrifice it is necessary to assume

independence between at least some of the high-level cuts and the low-level tags (otherwise

there would be no way to ever measure the contamination). Therefore, I will discuss in each

subsection what assumptions about the independence are made and the reasoning for them.

To determine if two high-level variables are independent, I calculate a likelihood ratio

test with an Ockham factor. The calculation of this ratio is discussed in Appendix F. If the

likelihood ratio is greater than zero, the ratio favors the independent hypothesis and if it’s

less than zero it favors the hypothesis that they are correlated. However, since assuming

they are correlated makes this analysis more difficult we will require that the likelihood ratio

be less than -1 to assume that the variables are correlated, i.e. that the correlated hypothesis

is more than 2.7 times more likely to require it.

Throughout the rest of the chapter I will use the shorthand

M = Muon Tag

N = Noise Tag

Ne = Neck Event Tag

F = Flasher Tag

B = Breakdown Tag

S = No Tag (Signal-like event).

to refer to the background tags defined at the beginning of the section.

6.2.3 Muon Tag

For the muon tag, we assume a priori that the reconstructed quantities are independent of

the low-level cut. The reason for this is that the low-level cut almost exclusively relies on
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detecting OWL PMT hits which aren’t even used in the reconstruction. Therefore, we will

assume that

P (θi | M,muon) = P (θi | muon)

and we can rewrite Equation (6.3) for the muon tag as:


µM,θ1

µM,θ2
...

µM,θn

 =


P (θ1 | M, signal) P (θ1 | M, noise) · · · P (θ1 | muon)
P (θ2 | M, signal) P (θ2 | M, noise) · · · P (θ2 | muon)

...
. . .

P (θn | M, signal) P (θn | muon)



P (M | signal)

0
0
0
0

P (M | muon)

� ~µ

For the high-level variables, we will assume that none of them are independent based on

the plots and Ψ values in Figure B.1.

Therefore,

P (θ | muon) = P (r, ψ, z, ~u · ~r | muon)

6.2.4 Noise Tag

Since the noise tag encompasses a wide variety of low-level cuts (Junk, Crate Isotropy,

QvNhit, ESUM, or ITC cuts), it is difficult to reason about the independence between the

low-level tag and the reconstructed quantities. In addition, it is difficult to imagine how a

noise event could make it past the cuts. The vast majority of the noise events in the data

are pickup on one or more crates. These events typically fail both the QvNhit cut and the

calibrated nhit cut. In addition, the ψ cut should reject the vast majority of any pickup

events since they are clustered in crate space.

To proceed, I will assume that the high-level cuts are independent of the tag for these

events, being careful to hand scan events which get tagged but pass the ψ cut in order to
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guess at possible ways in which an event can sneak past the cuts.

Based on the plots shown in Figure B.2 we will assume that r and ~u · ~r are the only two

dependent variables4 and we can write

P (θ | noise) = P (r, ~u · ~r | noise)P (ψ | noise)P (z | noise).

6.2.5 Neck Event Tag

For neck events, we will assume that the most likely reason for a neck event to be missed is

that the neck PMTs failed to fire. In this case, we expect the reconstructed quantities to be

independent of the low-level cuts because the neck PMTs are not used in the reconstruction.

In this case,

P (θi | Ne, neck) = P (θi | neck),

and we can rewrite Equation (6.3) for the neck tag as:


µNe,θ1

µNe,θ2
...

µNe,θn

 =


P (θ1 | Ne, signal) · · · P (θ1 | neck) · · · P (θ1 | Ne,muon)
P (θ2 | Ne, signal) · · · P (θ2 | neck) · · · P (θ2 | Ne,muon)

...
. . .

P (θn | Ne, signal) P (θn | neck) P (θn | Ne,muon)



P (Ne | signal)

0
0

P (Ne | neck)
0

P (Ne | muon)

� ~µ.

Note that we assume there is a nonzero probability of accidentally tagging an external muon

as a neck event. This is because a muon traveling directly through the neck region of the

detector is expected to cause PMT hits in the neck region and get tagged by the neck event

cut.

Based on the plots and Ψ values in Figure B.3, we will assume that ψ is independent of

r, ~u · ~r and z, but that the latter three are all dependent, i.e.

4. Actually we should include all of z, r, and ~u · ~r, but the r and ~u · ~r correlation is the strongest.
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P (θj | Ne, neck) = P (r, z, ~u · ~r | neck)P (ψ | neck).

Finally, we will assume that any muon that gets tagged as a neck event has the same r

distribution as muons tagged with the muon tag and has z > 0, ψ < 6, and ~u · ~r < −0.5:

P (θj | Ne,muon) =

{
P (r | muon) if z > 0, ψ < 6 and ~u · ~r < −0.5

0 otherwise
.

6.2.6 Flasher Tag

The flasher tag is probably the most complicated cut and looks for a high charge channel

in a paddle card with multiple hits and with the majority of the other PMT hits later and

on the opposite side of the detector. Thus, it’s not obvious whether the high-level variables

depend on the low-level cuts. However, we will assume here that the most likely way for a

flasher event to not get tagged is by being a “blind flasher”. A blind flasher refers to an

event that looks like a typical flasher event except the hits from the flashing PMT and the

surrounding channels aren’t recorded in the event5. Therefore, to test whether the high-level

and data cleaning cuts are independent, I took events tagged as a flasher and removed all the

hits from the crate with the flasher. The reconstructed quantities from these events looked

identical to the tagged flashers and so we will therefore assume that they are independent,

i.e.

P (θi | F, flasher) = P (θi | flasher)

and we can rewrite Equation (6.3) for the flasher tag as:

5. This can happen for any number of reasons. Typically when someone refers to a blind flasher they are
referring to the case where the sequencers are disabled or the readout is broken but the channel is still at
high voltage. However, when testing out the flasher cut, I found several examples where only the flashing
PMT hit was gone from the event (i.e. was not due to a whole paddle card’s sequencers shut off) or where
the flasher appeared in the previous event as what looked like a sharkfin.
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
µF,θ1

µF,θ2
...

µF,θn

 =


P (θ1 | F, signal) · · · P (θ1 | flasher) P (θ1 | F,muon)
P (θ2 | F, signal) · · · P (θ2 | flasher) P (θ2 | F,muon)

...
...

...
P (θn | F, signal) P (θn | flasher) P (θn | F,muon)



P (F | signal)

0
0
0

P (F | flasher)
0

� ~µ

Based on the plots shown in Figure B.4 we will assume that z and ~u · ~r are correlated

and that the other two high level variables are uncorrelated with the rest, i.e.

P (θ | flasher) = P (r | flasher)P (ψ | flasher)P (z, ~u · ~r | flasher).

6.2.7 Breakdown Tag

For breakdowns we will assume that, similar to flashers, the low-level tags are independent

of the high-level quantities, i.e.

P (θi | B, breakdown) = P (θi | breakdown)

and we can rewrite Equation (6.3) for the breakdown tag as:


µB,θ1

µB,θ2
...

µB,θn

 =


P (θ1 | F, signal) · · · P (θ1 | breakdown) P (θ1 | F,muon)
P (θ2 | F, signal) · · · P (θ2 | breakdown) P (θ2 | F,muon)

...
...

...
P (θn | F, signal) P (θn | breakdown) P (θn | F,muon)




P (M | signal)
0
0
0

P (B | breakdown)
0

� ~µ

Since breakdowns are so rare in the data, it’s not possible to have confidence about the

independence of the high-level variables for breakdowns based on the data. Although all of

the high-level variables appear to be independent based on the Ψ test in Figure B.5, we will

assume that r and ~u · ~r are possibly dependent since that is the case for flashers:
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P (θ | breakdown) = P (r, ~u · ~r | breakdown)P (ψ | breakdown)P (z | breakdown).

6.2.8 No Tag

Now we consider Equation (6.3) for signal-like events, i.e. events with no tag:


µS,θ1

µS,θ2
...

µS,θn

 =


P (θ1 | S, signal) P (θ1 | S, noise) · · · P (θ1 | S,muon)
P (θ2 | S, signal) P (θ2 | S, noise) · · · P (θ2 | S,muon)

...
. . .

P (θn | S, signal) P (θn | S,muon)

 ~εS � ~µ.
Since a given event must either have one of the low-level tags or no tag, we can write:

~εS = 1−
∑
i

~εi

where the sum goes over the low-level tags for muon, noise, neck, flasher, and breakdown.

Therefore, we can rewrite the equation as:


µS,θ1

µS,θ2
...

µS,θn

 =


P (θ1 | S, signal) P (θ1 | S, noise) · · · P (θ1 | S,muon)
P (θ2 | S, signal) P (θ2 | S, noise) · · · P (θ2 | S,muon)

...
. . .

P (θn | S, signal) P (θn | S,muon)


(

1−
∑
i

~εi

)
� ~µ.

(6.4)

Now, I will show for muons that the high-level variables are independent of the fact that

they were not tagged by a data cleaning cut (we ignore here the very small probability that

a muon gets tagged by the neck tag). First, we expand the probability of the high-level

variables conditioned on each of the low level tags including no tag:
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P (θi | muon) =
∑
i

P (θi | i,muon)P (i | muon)

= P (θi |M,muon)P (M | muon) + P (θi | S,muon)P (S | muon).

Therefore,

P (θi | S,muon) =
P (θi | muon)− P (θi | M,muon)P (M | muon)

P (S | muon)

We assume that the high-level cuts and the low-level cuts are independent for muons tagged

with the muon tag. Therefore,

P (θi | S,muon) =
P (θi | muon)− P (θi | muon)P (M | muon)

P (S | muon)

= P (θi | muon)
1− P (M | muon)

P (S | muon)

= P (θi | muon)

Since this same argument applies equally well to the other background sources, Equa-

tion (6.4) becomes


µS,θ1

µS,θ2
...

µS,θn

 =


P (θ1 | S, signal) P (θ1 | noise) · · · P (θ1 | muon)
P (θ2 | S, signal) P (θ2 | noise) · · · P (θ2 | muon)

...
. . .

P (θn | S, signal) P (θn | muon)


(

1−
∑
i

~εi

)
� ~µ

Finally, we fit for all the unknown probabilities using a likelihood:

L (~µ, ~p | data) =
∏
i

∏
j

e
−µi,θj

µ
ni,j
i,θj

ni,j !
, (6.5)

where ~p stands for all the unknown probabilities (for example, P (M | muon)), θj stands for
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the jth high-level observable, and ni,j stands for the number of events observed with tag i

and high-level quantities j.

Because we are fitting for so many variables (50 free parameters!) and most of them have

constraints (probabilities must be between 0 and 1), we use a Markov Chain Monte Carlo

combined with a traditional minimizer to estimate all the posteriors.

6.3 Results

The likelihood function shown in Equation (6.5) is first minimized using the SBPLX routine

from the nlopt python package to find the global minimum[22, 23]. Starting from this min-

imum, I then perform the Markov Chain Monte Carlo using the emcee python package[24].

The proposal function is a custom function written to deal with the fact that the vast ma-

jority of the unknown free parameters are probabilities and must therefore be between 0 and

1. Therefore the proposal function is based on the truncated normal distribution from 0

to 1 with the standard deviations given by 10% of the error for each parameter found by

scanning the log likelihood from the minimum along each parameter direction and looking

for it to change by 0.5 from the value at the minimum.

The Markov Monte Carlo Chain is run for 100,000 iterations. The mean acceptance

fraction is 10%, and the autocorrelation time for each of the parameters is shown in Table 6.3.

One of the main concerns when running a Markov Chain Monte Carlo is whether it has

sufficiently sampled the space. Although I’m not aware of any definitive methods to prove

this, there are a few rules of thumb. First, the marginalized probabilities all look “smooth”

and the walker positions appear to have fully sampled the space (see Figures 6.3 and 6.4).

Second, the autocorrelation times are all verified to be approximately 10 times less than the

full length of the chain.

We use the final chain to determine the marginalized distribution for the expected number

of background events in our signal sample. These distributions are shown in Figure 6.2. From
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Parameter Step Size Autocorrelation Time (samples)
Signal events 21 624
Muon events 330 171
Noise events 21 228
Neck events 99 454

Flasher events 720 184
Breakdown events 9.9 1258
P (M | muon) 0.00093 706
P (N | noise) 0.019 341
P (Ne | neck) 0.0023 996
P (F | flasher) 0.00029 310

P (B | breakdown) 0.093 1135
P (r < rAV, ψ < 6, z < 0, ~u · ~r < −0.5 | muon) 0.00027 2075
P (r < rAV, ψ < 6, z < 0, ~u · ~r > −0.5 | muon) 0.00049 3094
P (r < rAV, ψ < 6, z > 0, ~u · ~r < −0.5 | muon) 0.00056 6150
P (r < rAV, ψ < 6, z > 0, ~u · ~r > −0.5 | muon) 0.00049 3452
P (r < rAV, ψ > 6, z < 0, ~u · ~r < −0.5 | muon) 0.00041 2236
P (r < rAV, ψ > 6, z < 0, ~u · ~r > −0.5 | muon) 0.00017 1880
P (r < rAV, ψ > 6, z > 0, ~u · ~r < −0.5 | muon) 0.00038 1956
P (r < rAV, ψ > 6, z > 0, ~u · ~r > −0.5 | muon) 0.00018 3921
P (r > rAV, ψ < 6, z < 0, ~u · ~r < −0.5 | muon) 0.00056 5213
P (r > rAV, ψ < 6, z < 0, ~u · ~r > −0.5 | muon) 0.00058 8717
P (r > rAV, ψ < 6, z > 0, ~u · ~r < −0.5 | muon) 0.00059 10099
P (r > rAV, ψ < 6, z > 0, ~u · ~r > −0.5 | muon) 0.00058 7476
P (r > rAV, ψ > 6, z < 0, ~u · ~r < −0.5 | muon) 0.00053 4027
P (r > rAV, ψ > 6, z < 0, ~u · ~r > −0.5 | muon) 0.00045 3244
P (r > rAV, ψ > 6, z > 0, ~u · ~r < −0.5 | muon) 0.00054 4845

P (z < 0 | noise) 0.022 179
P (ψ < 6 | noise) 0.015 178

P (r < rAV, ~u · ~r < −0.5 | noise) 0.015 173
P (r < rAV, ~u · ~r > −0.5 | noise) 0.022 173
P (r > rAV, ~u · ~r < −0.5 | noise) 0.012 176

P (r < rAV, z < 0, ~u · ~r < −0.5 | neck) 0.0033 956
P (r < rAV, z < 0, ~u · ~r > −0.5 | neck) 0.0081 344
P (r < rAV, z > 0, ~u · ~r < −0.5 | neck) 0.0099 311
P (r < rAV, z > 0, ~u · ~r > −0.5 | neck) 0.0033 796
P (r > rAV, z < 0, ~u · ~r < −0.5 | neck) 0.0081 366
P (r > rAV, z < 0, ~u · ~r > −0.5 | neck) 0.016 479
P (r > rAV, z > 0, ~u · ~r < −0.5 | neck) 0.022 633

P (ψ < 6 | neck) 0.031 1411
P (z < 0, ~u · ~r < −0.5 | flasher) 0.0026 1861
P (z < 0, ~u · ~r > −0.5 | flasher) 0.0018 384
P (z > 0, ~u · ~r < −0.5 | flasher) 0.0026 1817

P (r < rAV | flasher) 0.0019 178
P (ψ < 6 | flasher) 9.6× 10−5 905

P (r < rAV, ~u · ~r < −0.5 | breakdown) 0.04 284
P (r < rAV, ~u · ~r > −0.5 | breakdown) 0.01 1035
P (r > rAV, ~u · ~r < −0.5 | breakdown) 0.057 601

P (ψ < 6 | breakdown) 0.069 166
P (z < 0 | breakdown) 0.051 174

P (Ne | muon) 0.0012 1777

Table 6.3: Step sizes and autocorrelation times for parameters in the Markov Chain Monte
Carlo fit. One important check to make when trying to decide if a Markov chain has properly
sampled the space is to check that the autocorrelation time is much smaller than the length
of the chain. In our case, the chain is 100,000 steps and the autocorrelation time for all but
one of the parameters is less than 10% of the number of steps.
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Figure 6.2: Marginalized distributions for the background contamination. The x axis of each
plot represents the number of events. The distribution is shown in blue, orange, and green
for the distribution after the data cleaning cuts, the data cleaning plus the radius cut, and
the data cleaning cuts plus the radius and goodness of fit cut respectively.

this figure you can see that all of the instrumental backgrounds are reduced to negligible

levels after the combination of the data cleaning cuts, radius cut, and goodness of fit cut.

6.4 Monte Carlo Closure Test

To double check that the analysis works as intended, I performed a Monte Carlo closure

test. To perform the test, I take the untagged data samples from Monte Carlo and then I

sample 100 events from each of the tagged background samples in data and add them to the

untagged data sample. The tagged samples come from data. I then run the fit and extract

the mean and standard deviation of the posteriors and create a pull plot.
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Figure 6.3: Walker positions for the data cleaning tag efficiencies. The walker positions show
the value of the Markov chain at each step during the fit. Ideally the walker positions should
be “fuzzy”, indicating that the chain is sampling the high likelihood area and not going on
a random walk.
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Figure 6.4: Walker positions for the total number of events. The walker positions show the
value of the Markov chain at each step during the fit. Ideally the walker positions should
be “fuzzy”, indicating that the chain is sampling the high likelihood area and not going on
a random walk.
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Figure 6.5: Pull plots for the different backgrounds. The x axis on each plot represents the
fit result minus the true value divided by the fit uncertainty. For a properly calibrated fit,
each distribution should be equivalent to a standard normal distribution.
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Figure 6.5 shows the pull plots for each of the backgrounds. Although the pull plots

are not completely consistent with a standard normal distribution, none show a significant

bias or underestimation of the error. The fact that some of the distributions appear to be

narrower than a standard normal suggests the fit is overestimating the error and may be

because the likelihood is not perfectly Gaussian.
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CHAPTER 7

EVENT SELECTION

7.1 Run Selection

The data taken by the SNO detector is grouped into runs lasting anywhere from an hour

to several days. These runs provide a convenient way to organize the data and each run is

assigned a run type which marks the run as physics, calibration, etc.

The first step in producing high quality data for analysis is the run selection group which

decides which runs meet the requirement to be included in a physics analysis. For the initial

SNO analyses a number of “golden” run lists were produced. Later atmospheric neutrino

analyses used a set of run lists called the “muon neutrino” run lists, which were produced by

adding runs to the previous golden run lists runs which hadn’t been included only because

they had a high amount of radon in the external water[25]. Although radon is a problem for

the low energy solar neutrino analyses, it is not a problem for analyses at higher energies.

For this analysis, I started with the “muon neutrino” run lists and then applied a run level

cut on the number of orphans (orphans refer to any PMT hit data which is never associated

with a detector event, and occur frequently during PMT breakdowns). This extra cut is

discussed in Appendix C. The final run lists for the D2O and salt phases can be found in

Appendices D and E respectively.

7.2 Event Selection

The next step in determining the final set of events in the analysis is to apply a series of event

level cuts. Section 7.2.1 lists the criteria for the prompt event selection which is the primary

cut used for every single event selection in this analysis. This cut is designed to select the first

event in a time window with potentially multiple follower events like Michel electrons, neutron

capture, or detector ringing. This cut also applies the data cleaning cuts and so reduces the
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data down to a sample of mostly physics events. Section 7.2.2 describes the atmospheric event

selection criteria used to select physics events with a neutron follower; these events are used

as a sideband to check the atmospheric Monte Carlo in the final analysis. Section 7.2.3 lists

the event selection criteria for the final events in our signal sample. Finally, Sections 7.2.4

and 7.2.5 discuss the event selection criteria for stopping muons and Michel electrons which

are used to constrain the reconstruction systematic uncertainties in Chapter 8.

7.2.1 Prompt Event Selection

Prompt events are defined as any event satisfying the following criteria:

• Nhit > 100

• Last > 100 nhit event was more than 250 ms ago

In addition, we then apply the following set of basic data cleaning cuts1:

• retrigger cut - skip all events which came less than 500 ns from the last event

• Junk Cut

• Crate Isotropy Cut

• QvNHIT cut

• Flasher cut

• Neck Cut

• ITC Cut

• Breakdown Cut

1. The order here is important since if we were to apply the data cleaning cuts first we might end up
selecting a prompt event caused by the “ringing” of an event cut by the data cleaning cuts.
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• 00-orphan Cut

• Calibrated nhit > 100

• At least 1 NHIT trigger

• Calibrated Nhit Fraction > 0.8

• Burst Cut

7.2.2 Atmospheric Event Selection

Atmospheric events are defined as prompt events which pass the external muon cut and

have a neutron follower. A neutron follower is defined as any event which passes all of the

previous data cleaning cuts plus:

• ESUM

• OWL

• OWL Trigger

• FTS Cut

• has a valid FTP and RSP energy,

• FTP radius satisfies r < rAV

• RSP energy is greater than 4 MeV

• event time is > 20 µs and < 250 ms after prompt event

Finally, atmospheric events must also satisfy the following cuts:

• r < rAV

• ψ <= 6
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7.2.3 Signal Selection

Signal events are selected by looking at prompt events, filtering atmospheric events, and

then applying the following cuts:

• r < rAV

• ψ <= 6

7.2.4 Stopping Muon Event Selection

Stopping muons are selected by looking for prompt events which pass all the data cleaning

cuts but fail the muon cut with a Michel follower. In addition we also apply the following

cuts:

• ψ <= 6

• Reconstructed kinetic energy < 10 GeV

• cos θ < −0.5

The kinetic energy cut is designed to get rid of events which have a Michel but are

through-going (like double muons or external atmospheric events). The cos θ cut is designed

to select only cosmic muons and reduce the contamination from muons produced from at-

mospheric neutrinos (which could produce extra particles like pions).

7.2.5 Michel Event Selection

Michel events are then selected by looking at all non-prompt events (not just external muons)

which satisfy the basic data cleaning cuts given in Section 7.2.1 and also satisfy the following

criteria:

• ESUM Trigger Cut
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• OWL Cut

• OWL Trigger Cut

• FTS Cut

• event comes more than 800 ns but less than 20 µs after a prompt event

• The associated stopping muon has Calibrated Nhit < 2500

The last nhit requirement is designed to reduce the effect of ringing and after-pulsing in

the detector which is not properly modeled in the Monte Carlo.
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

In this chapter I will discuss the systematic uncertainties associated with the two primary

observables in this analysis: the energy reconstruction and particle ID1. The other major

source of systematic uncertainty is the atmospheric neutrino interaction cross section which

is discussed in Section 9.1.3. The source of these uncertainties is differences between the

SNOMAN simulation and the real data. The physics and detector properties of the SNO-

MAN simulation were all validated during SNO using deployed sources at energies below 20

MeV, so differences at higher energies are to be expected.

One example that is expected to make a big difference is the model of the single photoelec-

tron charge distribution. This distribution is modeled as a double Polya in both SNOMAN

and my reconstruction algorithm. The parameters for the distribution were fit to single pho-

toelectron data during SNO and capture the distribution above the discriminator threshold

very well. For analyses below 20 MeV this was all that was necessary since the vast ma-

jority of PMT hits were single photons. For multi-photon PMT hits however, even if we

assume the distribution is Gaussian by the central limit theorem, we need to know the mean

and standard deviation of the single PE charge distribution, including charges below the

discriminator threshold. Any discrepancy in the way the distribution is modeled below the

discriminator threshold will show up as an energy bias at higher energies.

For this analysis, I will attempt to get a handle on any significant differences between

Monte Carlo and data by looking at two natural calibration sources: Michel electrons and

stopping muons. Stopping muons result from lower energy cosmic muons which enter the

detector and decay within the PSUP. These muons will decay via the process

1. There may also be some difference between the other reconstructed quantities like position and direction
between data and MC. However, the position will only have an effect insofar as it moves events in and outside
of the fiducial volume which will only have the effect of scaling the expected number of atmospheric events.
Since we are already floating the total atmospheric flux and the uncertainty is 20%, this effect will be
negligible.
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µ→ e+ νe + νµ. (8.1)

The resulting electron is called a Michel electron. The muons have kinetic energies ranging

from 200 MeV to a few GeV thus providing a good cross check at higher energies. The Michel

electrons on the other hand provide a good calibration source closer to the lower limit of our

analysis with a distribution spanning the energy range of 20 MeV - 60 MeV.

Stopping muons are first identified by looking for a Michel event following an event tagged

as a muon. The event selection criteria are described in Sections 7.2.4 and 7.2.5.

8.1 Energy Scale and Resolution

8.1.1 Michel Electrons

Figure 8.1 shows the energy distribution of Michel electrons from data and Monte Carlo. The

p-value for obtaining a result at least as extreme as the data is 65% which is consistent with

the data being accurately modeled by the Monte Carlo. I also fit the two distributions while

floating an energy bias parameter applied to the data and an additional energy resolution

parameter applied to the Monte Carlo. The results of the fit were an energy bias of 1.5±3.4%

and an additional energy resolution of 0± 5%.

8.1.2 Stopping Muons

Since the stopping muons do not have a well defined energy distribution, we instead look at

the difference between the reconstructed energy and the energy as determined by the track

length. To determine the energy of stopping muons from the track length, I first take the

reconstructed initial position of the muon and project it back to the PSUP2. I then take the

difference in position between the entry point at the PSUP and the reconstructed position

2. Since the event was tagged as an external muon, it definitely came from outside the PSUP. This step
corrects for the fact that events near the PSUP are not always properly reconstructed at the PSUP.
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Figure 8.1: Energy distribution of Michel electrons.
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Figure 8.2: Energy bias for stopping muons. The top plot shows the energy bias for stopping
muons as a fraction of the kinetic energy for both data and Monte Carlo. In the bottom plot,
the data bias minus the Monte Carlo bias is shown along with a dashed red line representing
the best fit to a constant difference. The bias is consistent with a constant energy bias of
approximately 5%.

of the Michel electron. This distance is then used to determine the muon’s initial kinetic

energy by interpolating the CSDA range table for muons produced by the PDG[8].

The Monte Carlo for the stopping muons was a simulation of cosmic muons propagated

by MUSIC[26], a 3D muon propagation code, and then simulated in the SNO detector.

The bias and resolution for stopping muons is shown in Figures 8.2 and 8.3 respectively.

The energy resolution is consistent with no difference between data and Monte Carlo. Fitting

a straight line to the difference between data and Monte Carlo gives a result of 1± 1%. The

bias shows a consistently higher energy bias in data relative to Monte Carlo. Fitting a

straight line to the difference in the bias gives a result of 5.4± 1%.
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Figure 8.3: Energy resolution for stopping muons. The top plot shows the energy resolution
for stopping muons as a fraction of the kinetic energy for both data and Monte Carlo. In
the bottom plot, the data resolution minus the Monte Carlo resolution is shown along with
a dashed red line representing the best fit to a constant difference. The data is consistent
with no difference in resolution between data and Monte Carlo.
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Particle ID Monte Carlo (%) Data (%)
e 99.2 ± 0.1 100± 2
µ 0.05± 0.03 0± 1
ee 0.75± 0.10 0± 1
eµ 0.02± 0.02 0± 1
µµ 0.0 ± 0.1 0± 1

Table 8.1: Probability of reconstructing a given particle ID for Michel electrons.

Particle ID Monte Carlo (%) Data (%)
e 3.2± 0.6 5 ± 2
µ 50 ± 2 44 ± 4
ee 0.1± 0.2 1.5± 1.2
eµ 45 ± 2 48 ± 4
µµ 1.4± 0.4 0.8± 1.0

Table 8.2: Probability of reconstructing a given particle ID for stopping muons.

8.2 Particle ID

8.2.1 Michel Electrons

Table 8.1 shows the probability of reconstructing various particle IDs for Michel electrons.

The particle ID probabilities are all consistent with the values from the Monte Carlo.

8.2.2 Stopping Muons

Table 8.2 shows the probability of reconstructing various particle IDs for stopping muons.

The particle ID probabilities are all consistent with the values from the Monte Carlo.
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CHAPTER 9

RESULTS

9.1 Null Hypothesis Test

9.1.1 The Likelihood Function

To perform the null hypothesis test, I apply the event selection criteria described in Chapter 7

to select the signal events. I then perform a Bayesian fit with the following parameters:

1. The atmospheric neutrino flux scale

2. The energy bias for electrons

3. Additional energy resolution for electrons

4. The energy bias for muons

5. Additional energy resolution for muons

6. The number of external muons

The likelihood function is computed by first applying the energy bias and resolution

terms to the Monte Carlo. To do this, all Monte Carlo events are grouped based on the

reconstructed particle ID, i.e. we separately histogram events which reconstruct as a single

electron, single muon, double electron, electron + muon, and double muon. For each group,

I apply the energy bias and resolution parameters to the Monte Carlo and histogram the

results by computing

hMC,i =
∑
j

Φ

(
Tj − bi+1

σj

)
− Φ

(
Tj − bi
σj

)
(9.1)

where i represents the ith bin, j represents an index running over every single MC event,

Φ(x) represents the normal cumulative distribution function, Tj represents the scaled Monte
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Carlo energy, σj represents the additional energy resolution, and bi represents the lower edge

of the ith bin. The scaled energy is calculated by multiplying the reconstructed energy for

each particle in the fit by:

Tj =
∑
k

T ′k(1 + δe/µ,k) (9.2)

where k loops over the particles in the fit, T ′ is the original reconstructed kinetic energy,

and δe/µ is the bias parameter associated with either electrons or muons depending on the

particle ID. The additional energy resolution is similarly calculated as

σj =

√∑
k

(
T ′k × σe/µ,k

)2
. (9.3)

This process is also done for the external muon Monte Carlo separately. The total number

of expected events is then calculated by multiplying the atmospheric neutrino Monte Carlo

histogram by the flux term A, the external muon histogram by the normalization term M ,

and adding the two together.

Next, the real data is also grouped based on the reconstructed particle ID, and for

each group the total kinetic energy is histogrammed. The likelihood is then calculated by

computing the product of the Poisson probability of observing n events and the multinomial

probability of observing the data given the atmospheric neutrino Monte Carlo for all five

distributions:

L =
∏
ID

P (n|N)P (~h|A× ~hMC,atmo +M × ~hMC,muon) (9.4)

=
∏
ID

e−N
Nn

n!

n!∏
i hi!

∏
i

(
pMC,i

)hi (9.5)

where the outer product is over the six different possible particle IDs (single electron, single

muon, double electron, etc.), the pMC,i represent the fraction of the atmospheric neutrino

Monte Carlo and external muons in bin i, N represents the total expected number of expected
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Parameter Symbol Central Value 1σ Uncertainty

Atmospheric Flux A 1.0 0.2
Energy Bias (e) δe 0.015 0.034

Energy Resolution (e) σe 0.0 0.049
Energy Bias (µ) δµ 0.054 0.01

Energy Resolution (µ) σµ 0.01 0.01
External Muon Scale M 0 10

Table 9.1: Table showing the fit parameters along with the central value and uncertainty for
any priors. Parameters with a dash have a flat prior with no constraint.

Monte Carlo events, n is the number of data events, and hi represents the number of data

events.

9.1.2 Priors

The priors for the parameters in the fit are shown in Table 9.1. We use a conservative

20% error on the total atmospheric neutrino flux scale. This uncertainty comes from the

uncertainty in the computed total flux which is expected to be approximately 15%[27], as

well as additional uncertainty from the livetime, fiducial volume, and the fact that the MC

was generated at the solar maximum1. The energy bias and resolution terms correct for the

difference in the energy reconstruction between Monte Carlo and data (see Chapter 8). The

priors for the energy bias and resolution parameters for muons come from the fits shown

in Figures 8.2 and 8.3. For electrons, these priors come from a fit to the Michel energy

distribution where we allow the energy bias and resolution to float, which is discussed in

Section 8.1.1. Finally, the constraint on the external muon scale comes from the data cleaning

analysis discussed in Section 6.2.

1. The solar cycle also has an effect on the energy distribution of the atmospheric neutrino flux. However,
the solar cycle abruptly jumped to a maximum right at the start of the SNO data and so the data from both
the D2O and salt phases is almost perfectly aligned with the solar maximum.
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9.1.3 GENIE Systematics

In order to account for systematic uncertainties in neutrino cross sections, the GENIE soft-

ware package includes a library for reweighting events based on changes in input parameters

to the models GENIE uses to calculate neutrino cross sections. Because there are so many

parameters and the GENIE reweighting procedure is fairly computationally expensive, it is

not feasible to float these terms in the fit. One standard procedure for dealing with system-

atics which are not floated in the final fit is to vary each one individually to assess the impact

on the final result. However, this method ignores correlated effects between the parameters.

Therefore, I use a slightly different method.

In order to incorporate these uncertainties into the fit, I use a script, created by Andy

Mastbaum, which creates 1000 different “universes”. For each “universe” a value for each of

the systematics listed in Table 4.5 is randomly selected according to the uncertainty listed

in the table. Then, given these values, we use the reweighting package in GENIE to assign

a weight to every single event in the atmospheric Monte Carlo.

Finally, in order to incorporate these results into our analysis, we do the following:

1. run a Markov Chain Monte Carlo on our likelihood and priors, and select the set of

parameters with the highest likelihood

2. Loop over every single “universe”, apply the weights to the atmospheric Monte Carlo,

and then choose the universe with the highest likelihood

3. run the Markov Chain Monte Carlo again with the most likely universe to produce the

fit posteriors

9.1.4 P-Value

After calculating the final fit posteriors, I calculate a p-value for each particle ID. The p-value

represents the probability of obtaining a test statistic −2 log(λ) value at least as extreme as
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the data. The test statistic I use for the p-value is

−2 log(λ) = 2

(
N − n+

∑
i

Oi log

(
Oi
Ei

))
(9.6)

where N is the total number of expected atmospheric events, n is the total number of observed

events, and Oi and Ei are the number of observed and expected atmospheric events in bin

i. This statistic is based on a likelihood ratio and is discussed in Appendix G.

The p-value is computed by randomly sampling parameters from the posterior of the fit

using a Markov Chain Monte Carlo. This procedure is repeated 1000 times to produce a

distribution of possible p-values. The 50th percentile of these p-values is the final p-value

presented for each distribution.

9.1.5 Monte Carlo Closure Test

A Monte Carlo closure test was run in order to verify that the likelihood fit was unbiased and

reported the correct errors. To perform this test, I used simulation-based calibration (SBC)

tests, which are described in Appendix H. To produce the SBC histograms, I randomly

sample the parameters in the fit from their prior distributions and then run the fit. This

process is repeated over and over, and then the rank statistic for the truth values in the

distribution of the posterior is computed. Figure 9.1 shows the SBC plots for 1000 different

runs. These plots show that the fit is well calibrated and there are no significant biases or

problems with the posterior.

9.1.6 P-Value Coverage

Although it is not possible to obtain uniform coverage perfectly for a model with unknown

parameters, it is still useful to be able to visualize the coverage for a typical set of parameters.

Since I calculate the p-value using the posterior results, the coverage is expected to be

conservative.
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Figure 9.1: Simulation-based calibration (SBC) histograms for parameters in the final fit.
The x axes represents the percentile of the simulated quantity in the Markov chain. The
grey dashed line shows a uniform distribution and the grey band shows the range in which
we expect 99% of the bins to fall assuming the underlying distribution is uniform.
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Figure 9.2: This plot shows the p-value coverage for 100 different randomly sampled data
from a typical set of parameters. To generate the data, we chose a single set of the GENIE
systematic parameters and a single set of the fit parameters and then randomly generated
the data 100 times and fit it. The distributions are “conservative” in the sense that they
tend to produce distributions which are weighted towards a p-value of 1.0, which is what is
expected when calculating a posterior predictive p-value.

To generate a coverage plot for a typical set of parameters, I first draw random values for

the fit parameters according to their prior distributions. I then select the first “universe” for

the GENIE systematics. Using the randomly drawn values and the GENIE weights, I then

sample the Monte Carlo data to produce a data set drawn from the null hypothesis and run

the fit to produce a p-value for each particle ID. This process is repeated (using the same

values for the parameters as the first time) 100 times to produce a distribution of p-values.

The distribution of p-values is shown in Figure 9.2.
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Figure 9.3: Energy distribution of signal events. The p-value shown represents the proba-
bility of obtaining a χ2 value at least as extreme as the data.

9.1.7 Results

For the analysis presented here, we analyzed approximately 50% of the total data with a

livetime of 234 days. The energy distribution of the signal events along with the p-value for

each particle ID is shown in Figure 9.3 and the posteriors for the fit parameters are shown in

Figure 9.4. All the distributions are consistent with the events being caused by atmospheric

neutrinos.

The atmospheric event sideband is shown in Figure 9.5.
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Figure 9.4: Posteriors for the fit parameters.
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Figure 9.5: Energy distribution of events tagged with a neutron follower. The p-value shown
represents the probability of obtaining a χ2 value at least as extreme as the data.
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9.2 Direct Dark Matter Search

To perform the direct search for self-destructing dark matter, we perform a fit almost identical

to that described in the previous section, except we float an additional term for the dark

matter. In this analysis, we assume the mediator is moving slowly enough that the daughter

particles come out approximately back to back2. The 90% confidence limit is then obtained

by taking the 90th percentile of the dark matter parameter samples from the MCMC.

To determine a “discovery threshold” we look at the best fit value of the dark matter

term and compare it with a threshold designed to have a false positive rate of 5%. The

calculation of the discovery threshold is discussed in Appendix I.

9.2.1 Results

Figure 9.8 shows the best fit for the number of dark matter events as a function of the

dark matter mass along with an approximate 2σ discovery threshold. The results show no

significant excess of events which can be attributed to a self-destructing dark matter signal.

Figure 9.9 shows the 90% confidence limits for the event rate of self-destructing dark matter

as a function of the dark matter mass.

Figures 9.6 and 9.7 show two signal events in the final sample which reconstructed as

two muon-like and two-electron like rings respectively.

2. For a faster moving mediator the only difference is that a larger fraction of the events may be misre-
constructed as a single particle and thus the limits would be slightly worse. In a future analysis of this data,
it would be a good idea to perform this analysis by also looking at the opening angle of the particle pair to
get a much better limit.
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Figure 9.6: XSnoed event display showing a signal event that reconstructed with two muon-
like rings. This event is from run 14190 and had the GTID number 4043274.
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Figure 9.7: XSnoed event display showing a signal event that reconstructed with two
electron-like rings. This event is from run 10536 and had the GTID number 734712.
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Figure 9.8: Best fit event rate for self-destructing dark matter as a function of the dark
matter mass for a slow mediator. The two bumps come from the two bins which had a single
event each.

123



102 103

Energy (MeV)

0.004

0.005

0.006

0.007

0.008

0.009

E
ve

n
t

R
at

e
L

im
it

(e
ve

n
ts

/m
3
/y

ea
r)

ee

µµ

Figure 9.9: Event rate limit (90% CL) for self-destructing dark matter as a function of the
dark matter mass for a slow mediator. The high frequency noise is due to sampling error
from the MCMC. The five spikes in the electron positron limit on the right are an artifact
of the binning that we chose, and will be corrected in a later publication.
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CHAPTER 10

CONCLUSION

I performed the first search for a new class of dark matter models called self-destructing

dark matter using data from the Sudbury Neutrino Observatory. To perform this search, I

developed a new reconstruction algorithm which is able to fit for multi-track events from 20

MeV to 10 GeV and determine both the multiplicity and particle ID of events using Bayes

factors.

The primary background for this search consisted of atmospheric neutrino events and

detector instrumentals. To predict the events from atmospheric neutrinos, I simulated the

oscillated atmospheric neutrino flux using GENIE and SNOMAN. The instrumentals were

tagged by a new set of data cleaning cuts and the residual instrumental contamination was

verified to be negligible.

To calibrate the reconstruction algorithm, I used two natural calibration sources: stop-

ping muons and Michel electrons. No significant difference between data and Monte Carlo

was seen for the particle ID probabilities and energy resolution. A small energy bias was de-

tected in the stopping muons likely due to a mismodeling of the single photoelectron charge

in the PMTs.

The final null hypothesis test was performed by doing a Bayesian analysis on the energy

distribution of all the events between 20 MeV and 10 GeV (2 GeV for muons) for each

reconstructed particle ID. No significant excess of multi-particle events consistent with the

self-destructing dark matter model was found and I placed the first such limits on these

events. In addition, I performed what I believe is the first broad band null hypothesis test

in a large Water Čerenkov detector to search for any deviation from known physics. No new

physics was found; all events were consistent with the atmospheric neutrino prediction. I

hope that this analysis will motivate other experiments like Super Kamiokande to perform

similar tests.
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This analysis could be significantly extended by performing the same search as a function

of both the dark mediator mass and energy instead of focusing on back to back events. To

do this, more simulation would be required to parameterize the probability of correctly

identifying a multi-particle pair as a function of how boosted the dark mediator is. It may

also be possible to set better limits by performing a 2D analysis in both energy and opening

angle for multi-particle events.
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APPENDIX A

POISSON BINOMIAL

Suppose we have a Poisson process whose output is then subject to a binomial process. For

example, we expect µ background events on average and we can detect them with probability

p. What is the probability of detecting n background events?

p(n) =
∞∑
N=n

P (n|N)P (N)

=
∞∑
N=n

N !

n!(N − n)!
pn(1− p)N−ne−µµ

N

N !

=
∞∑
N=n

1

n!(N − n)!
pn(1− p)N−ne−µµN

= e−µ
pn

n!

∞∑
N=n

1

(N − n)!
(1− p)N−nµN

= e−µ
(µp)n

n!

∞∑
N=n

(µ(1− p))N−n
(N − n)!

= e−µp
(µp)n

n!

Therefore the end result is a Poisson distribution with mean µp.
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APPENDIX B

CORNER PLOTS

Corner plots for events tagged as a muon, noise, neck, flasher, breakdown, or signal event

are shown in Figures B.1-B.6.
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Figure B.1: High Level Variables for Events tagged with the Muon cut
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Figure B.2: High Level Variables for Events tagged with the Noise cut
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Figure B.3: High Level Variables for Events tagged with the Neck cut
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Figure B.4: High Level Variables for Events tagged with the Flasher cut
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Figure B.5: High Level Variables for Events tagged with the Breakdown cut
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Figure B.6: High Level Variables for Events with No Tags
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APPENDIX C

ORPHANS

After initially unblinding 33 runs and running the analysis, I found that there was a large

group of instrumental events in run 10141 that were not getting cut by the data cleaning

cuts (although they were cut by the ψ cut). I was able to track down the shift report which

said:

Mon Nov 15 15:56:12 1999 Walter went on deck to reflood the bubblers: we’ve got

a lot of activity, and a large number of orphans afterward, things settled down

after a couple of minutes. Walter gave us the levels of the bubblers estimated

after having refloodeed them: so during a 5 day period

So, this run shouldn’t have made it to the run list since the bubblers were active. I

therefore decided to do a “poor man’s” run selection by cutting runs with a high number

of high nhit orphans. Figure C.1 shows the distribution of the number of orphans in a run

with greater than 10 PMT hits. I decided to place the cut at 100 orphans since that appears

to cover most of the main distribution (although not the tail). Run 10141 had 1199 orphans

with at least 10 PMT hits.

Table C.1 shows the number of runs in the “muon neutrino” run lists before and after

the orphan cut for the D2O and salt phases. For the D2O phase, this cuts almost 30% of

the runs, while for the salt phase it only cuts 2%. In the future, it would be a good idea to

study the instrumentals which cause these orphans so that we can expand the run list again.

Phase Initial # of Runs # of Runs After Orphan Cut

D2O 603 434
Salt 1628 1590

Table C.1: Number of runs in the run list before and after the orphan cut.
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Figure C.1: Distribution of the Number of Orphans with Nhit > 10. The dashed line shows
the cut value above which we discard runs from the run list.
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APPENDIX D

D2O RUN LIST

10000 10002 10003 10005 10008 10015 10020 10023 10025 10030 10035 10036

10040 10124 10125 10129 10130 10133 10142 10149 10151 10161 10162 10163

10169 10170 10171 10172 10189 10197 10219 10221 10224 10236 10237 10534

10536 10549 10555 10650 10651 10675 10678 10680 10704 10708 10710 10736

10737 10740 10741 10742 10743 10744 10747 10748 10756 10762 10770 10773

10776 10782 10783 10784 10803 10804 10806 10811 10813 10815 10821 10841

10843 10869 10873 10878 10879 10881 10882 10883 10886 10891 10894 10923

10924 10925 10927 10935 10936 10942 10943 10949 10950 10951 10953 10954

10956 10962 10963 10975 11271 11272 11281 11289 11303 11310 11313 11347

11368 11377 11383 11390 11402 11406 11407 11415 11417 11443 11444 11446

11462 11481 11489 11502 11504 11506 11508 11512 11528 11532 11533 11537

11539 11541 11543 11544 11550 11553 11558 11561 11568 11570 11575 11591

11621 11650 11655 11657 11670 11676 11679 11681 11682 11703 11706 11783

11802 11804 11805 11816 11819 11820 11828 11829 11831 11859 11864 11867

11875 11890 11899 11901 11903 11924 11925 11928 11977 11981 11985 11988

11991 12038 12054 12059 12082 12125 12131 12150 12159 12165 12168 12178

12183 12190 12192 12197 12201 12224 12226 12227 12234 12237 12238 12289

12290 12329 12330 12506 12571 12575 12576 12577 12582 12588 12590 12598

12614 12615 12618 13121 13292 13294 13302 13331 13335 13341 13351 13389

13396 13401 13405 13408 13415 13418 13423 13426 13428 13431 13432 13434

13444 13446 13451 13729 13774 13886 13895 14006 14008 14031 14033 14077

14078 14080 14083 14177 14185 14186 14190 14196 14252 14255 14287 14289

14291 14293 14301 14304 14308 14386 14388 14394 14398 14402 14409 14410

14425 14429 14431 14451 14466 14493 14496 14652 14677 14680 14684 14685

14750 14757 14764 14768 14770 14775 14777 14781 14787 14814 14878 14883

14915 14958 14961 14969 14970 15005 15011 15012 15014 15018 15020 15021

15025 15028 15034 15058 15065 15067 15083 15111 15112 15117 15119 15120

15129 15132 15147 15153 15165 15180 15214 15228 15268 15269 15270 15271

15272 15276 15279 15309 15340 15352 15370 15538 15563 15567 15595 15598

15600 15601 15604 15610 15611 15612 15615 15617 15618 15620 15624 15625

15640 15641 15643 15647 15651 15652 15653 15654 15655 15656 15657 15662

15669 15670 15671 15672 15673 15679 15684 15696 15698 15724 15733 15745

15746 15748 15750 15752 15755 15762 15767 15768 15789 15791 15792 15794

15799 15802 15806 15808 15810 15819 15820 15821 15826 15828 15829 15830

15842 15843 15844 15862 15865 15869 15870 15871 15872 15874 15877 15884

15905 15907 15941 15943 15947 15948 15949 15958 15978 15997 15998 16002

16003 16013
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APPENDIX E

SALT RUN LIST

20684 20691 20694 20697 20699 20700 20704 20705 20706 20739 20741 20742

20744 20747 20750 20751 20752 20754 20757 20759 20773 20776 20777 20779

20781 20785 20786 20787 20789 20796 20800 20807 20808 20809 20814 20841

20846 20852 20854 20865 20866 20870 20873 20874 20877 20900 20906 20911

20930 20934 20936 20937 20947 20964 20965 20967 20968 20969 20978 20979

20980 20993 20994 20998 21002 21005 21263 21501 21541 21562 21566 21594

21598 21604 21609 21610 21611 21612 21615 21616 21617 21620 21621 21622

21624 21628 21629 21643 21647 21651 21652 21654 21659 21660 21663 21667

21668 21672 21674 21681 21682 21693 21697 21705 21706 21707 21708 21711

21713 21715 21717 21730 21736 21740 21758 21777 21781 21784 21785 21786

21793 21794 21795 21796 21797 21798 21807 21808 21809 21810 21828 21835

21838 21846 21854 21863 21864 21865 21870 21871 21873 21884 21898 21901

21903 21911 21912 21913 21922 22001 22006 22009 22011 22013 22023 22027

22029 22030 22031 22063 22065 22066 22078 22086 22088 22090 22092 22126

22329 22331 22361 22366 22369 22375 22378 22381 22382 22383 22397 22399

22400 22401 22402 22405 22406 22410 22414 22417 22418 22419 22420 22422

22423 22426 22430 22434 22435 22440 22441 22444 22452 22453 22469 22475

22482 22490 22491 22498 22500 22502 22509 22511 22515 22519 22520 22526

22527 22531 22532 22538 22555 22557 22558 22561 22563 22606 22607 22609

22622 22624 22626 22630 22631 22634 22645 22655 22658 22661 22676 22678

22706 22708 22710 22711 22712 22729 22731 22732 22733 22734 22735 22736

22737 22738 22742 22745 22751 22759 22761 22762 22769 22770 22771 22776

22777 22779 22780 22781 22782 22783 22801 22809 22817 22819 22820 22853

22858 22860 22863 22866 22878 22880 22881 22882 22886 22890 22893 22896

22900 22901 22903 22904 22907 22912 22933 22936 22949 22952 22981 22997

23007 23015 23017 23021 23031 23036 23080 23097 23098 23135 23137 23163

23164 23165 23169 23178 23179 23180 23181 23182 23192 23193 23194 23198

23200 23201 23202 23205 23208 23212 23213 23214 23215 23219 23221 23226

23230 23232 23237 23249 23263 23265 23293 23294 23316 23318 23324 23581

23582 23634 23645 23651 23653 23654 23655 23657 23663 23664 23689 23693

23695 23701 23710 23714 23715 23717 23718 23726 23727 23728 23730 23731

23734 23745 23748 23749 23750 23751 23780 23807 23826 23827 23828 23853

23870 23874 23877 23887 23893 23897 23899 23900 23901 23902 23903 23904

23917 23920 23925 23928 23930 23932 23933 23948 23949 23950 23961 23963

23965 23966 23970 23972 23974 23978 23988 23992 24005 24006 24007 24011

24016 24017 24018 24019 24049 24053 24054 24298 24299 24302 24305 24307

24311 24318 24319 24321 24322 24323 24324 24325 24326 24329 24333 24347
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24349 24366 24367 24372 24374 24378 24379 24381 24384 24387 24388 24389

24396 24399 24407 24411 24414 24460 24465 24507 24516 24520 24525 24526

24527 24528 24530 24531 24535 24538 24539 24551 24552 24567 24572 24573

24574 24576 24580 24581 24583 24584 24590 24591 24593 24604 24768 24776

24777 24778 24781 24782 24783 24787 24788 24795 24799 24811 24812 24827

24836 24857 24861 24862 24877 24879 24885 24887 24888 24890 24896 24897

24898 25460 25463 25465 25468 25470 25488 25490 25492 25494 25497 25502

25506 25508 25509 25510 25511 25520 25527 25528 25551 25555 25557 25558

25559 25560 25561 25569 25583 25585 25609 25610 25611 25612 25617 25618

25622 25624 25630 25631 25638 25639 25644 25646 25650 25651 25680 25684

25685 25686 25687 25692 25698 25700 25701 25703 25873 25878 25897 25902

25905 25907 25914 25940 25950 25952 25953 25954 25955 25956 25958 25960

25965 25966 25974 25976 25979 25983 25987 25988 25990 25994 25996 25997

26012 26022 26023 26026 26032 26040 26041 26043 26057 26066 26067 26068

26069 26071 26077 26079 26080 26082 26083 26086 26098 26099 26101 26104

26108 26110 26122 26123 26124 26126 26128 26129 26130 26131 26135 26147

26149 26153 26155 26158 26159 26160 26163 26188 26192 26197 26200 26201

26207 26224 26225 26226 26227 26229 26230 26234 26236 26241 26242 26244

26245 26246 26248 26253 26254 26255 26259 26260 26267 26269 26270 26280

26281 26282 26286 26288 26289 26291 26296 26301 26302 26303 26304 26314

26321 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333

26334 26335 26336 26341 26343 26344 26346 26349 26351 26356 26374 26377

26379 26383 26384 26385 26387 26389 26390 26391 26392 26393 26394 26395

26401 26416 26510 26512 26514 26516 26517 26518 26519 26521 26522 26524

26530 26533 26534 26551 26553 26554 26558 26583 26586 26587 26591 26593

26597 26598 26608 26609 26610 26616 26618 26622 26623 26626 26628 26631

26632 26636 26640 26641 26647 26648 26649 26650 26654 26665 26669 26671

26674 26675 26696 26706 26722 26724 26726 26750 26753 26755 26756 26758

26762 26765 26772 26778 26779 26782 26784 26785 26786 26788 26789 26792

26797 26810 26813 26814 26816 26818 26819 26826 26831 26833 26836 26844

26857 26860 26861 26863 26864 26866 26881 26882 26883 26889 26892 26927

26929 26931 26933 26935 26937 26938 26946 26947 26948 26951 26957 26959

26962 26963 26977 26985 26987 26991 26992 26994 26997 27008 27013 27018

27022 27038 27040 27045 27050 27056 27057 27065 27073 27075 27076 27078

27081 27086 27089 27117 27119 27124 27126 27133 27134 27141 27142 27156

27158 27175 27180 27182 27187 27188 27189 27190 27194 27196 27201 27202

27227 27504 27505 27507 27508 27510 27516 27519 27522 27524 27526 27532

27533 27537 27539 27541 27544 27545 27549 27596 27606 27644 27656 27657

27659 27660 27661 27662 27663 27664 27677 27678 27683 27686 27695 27702

27705 27709 27711 27714 27715 27717 27718 27719 27720 27722 27723 27735
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27736 27737 27738 27750 27752 27753 27755 27758 27759 27765 27771 27773

27774 27776 27782 27809 27814 27816 27818 27819 27822 27825 27829 27836

27837 27993 27995 28006 28008 28019 28025 28050 28059 28071 28073 28075

28078 28082 28084 28087 28088 28091 28092 28096 28098 28099 28100 28101

28104 28115 28116 28117 28123 28129 28131 28137 28145 28150 28152 28154

28155 28160 28163 28165 28171 28178 28184 28186 28188 28191 28193 28202

28204 28207 28209 28210 28212 28224 28225 28849 29789 29798 29800 29801

29836 29840 29841 29846 29847 29848 29849 29850 29871 29876 29877 29878

29879 29880 29881 29882 29883 29886 29887 29893 29894 29895 29896 29897

29898 29899 29900 29901 29906 29909 29910 29911 29913 29917 29918 29919

29933 29934 29938 29942 29948 29951 29952 29957 29987 29988 29989 29996

29998 30001 30002 30006 30013 30015 30021 30025 30029 30032 30091 30094

30095 30097 30098 30103 30111 30112 30117 30118 30120 30121 30122 30123

30124 30126 30127 30135 30138 30140 30148 30149 30150 30153 30172 30178

30179 30182 30185 30191 30235 30237 30404 30405 30408 30419 30424 30425

30426 30431 30432 30442 30444 30448 30477 30485 30486 30498 30499 30501

30502 30519 30535 30537 30546 30563 30565 30567 30600 30601 30615 30619

30620 30622 30629 30632 30633 30635 30636 30637 30639 30643 30644 30646

30648 30649 30650 30658 30699 30701 30702 30723 30727 30738 30748 30749

30751 30754 30755 30757 30758 30759 30762 30763 30764 30765 30768 30769

30770 30771 30772 30777 30779 30784 30789 30790 30791 30794 30797 30815

30816 30817 30818 31685 31686 31687 31688 31689 31691 31694 31695 31699

31700 31702 31705 31761 31762 31763 31772 31773 31776 31777 31778 31780

31781 31782 31783 31786 31787 31788 31789 31790 31791 31792 31793 31795

31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31812

31813 31814 31816 31817 31819 31821 31822 31824 31825 31826 31827 31829

31830 31832 31833 31837 31838 31839 31840 31841 31844 31845 31851 31852

31853 31854 31859 31865 31866 31867 31868 31873 31874 31890 31896 31897

31898 31903 31904 31905 31906 31907 31932 31933 32155 32167 32168 32177

32178 32179 32180 32184 32185 32196 32202 32203 32204 32205 32209 32210

32211 32212 32213 32214 32215 32224 32227 32229 32230 32236 32237 32238

32239 32240 32241 32242 32248 32249 32258 32259 32260 32261 32262 32263

32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32278

32279 32282 32283 32285 32286 32287 32288 32289 32292 32293 32294 32295

32299 32300 32301 32302 32390 32393 32394 32395 32396 32399 32400 32401

32402 32457 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468

32477 32478 32479 32480 32481 32482 32483 32485 32486 32487 32488 32489

32490 32491 32492 32493 32494 32495 32496 32511 32512 32515 32528 32529

32530 32531 32532 32533 32539 32541 32542 32543 32548 32551 32553 32554

32557 32611 32612 32613 32614 32615 32616 32617 32618 32619 32623 32624
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32631 32632 32633 32634 32635 32636 32638 32639 32640 32641 32643 32644

32645 32646 32647 32650 32656 32661 32662 32663 32664 32666 32667 32671

32672 32673 32674 32675 32676 32677 32682 32683 32684 32685 32689 32691

32692 32693 32694 32695 32696 32697 32698 32703 32706 32707 32710 32711

32712 32713 32714 32715 32716 32717 32718 32723 32727 32728 32729 32730

32741 32744 32745 32746 32747 32748 32749 32750 32751 32752 32763 32764

32767 32769 32773 32774 32775 32776 32777 32778 32781 32782 32783 32784

32785 32786 32788 32791 32792 32793 32794 32795 32797 32800 32801 32802

32803 32804 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818

32819 32820 32821 32822 32823 32825 32826 32836 32837 32838 32849 32850

32855 32859 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882

32883 32884 32885 32886 32888 32889 32894 32895 32896 32897 32898 32899

32900 32903 32904 32909 32910 32911 32912 32913 32914 32919 32920 32921

32922 32925 32926 32927 32930 32958 32961 32962 32963 32970 32971 32975

32977 33338 33340 33344 33347 33348 33349 33495 33501 33502 33504 33515

33516 33517 33520 33528 33529 33534
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APPENDIX F

MODEL COMPARISON

In this chapter, I will discuss how I perform a likelihood ratio test to determine whether two

high-level variables are independent or not with respect to two cut values on either variable.

If the two variables are independent, then we can model them with only two variables:

P (pass 1) and P (pass 2). If, however, the two variables are not independent, then we need

to use three variables: P (pass 1, pass 2), P (pass 1, fail 2), and P (fail 1, pass 2), where the

final probability P (fail 1, fail2) is determined from the other three. For discussion I will refer

to the independent hypothesis as MI and the not independent hypothesis as MC (the C is

for correlated). To compare these two models I use the likelihood ratio test:

λ =
P (MI | DI)

P (MC | DI)
=

P (D |MI , I)P (MI | I)

P (D |MC , I)P (MC | I)
(F.1)

where D stands for data and I for any prior information. This is the same as a traditional

likelihood ratio test with the addition of an “Ockham Factor”, i.e. we can write the same

ratio as

λ =
P (MI | I)

P (MC | I)

(LI)max

(LC)max

WI

WC
, (F.2)

where L is the likelihood function, and W for the Ockham factor. The Ockham factor in

its most general form is

W =

∫
L (~θ)

Lmax
P (~θ | I)d~θ, (F.3)

where ~θ represents all the variables being fitted for (position, energy, direction, etc.), Lmax

represents the maximum value of the likelihood, and P (~θ | I) represent priors on the variables

being fitted for[11].
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F.1 Correlated Hypothesis

For the correlated hypothesis, our model has four parameters representing: P (pass 1, pass 2),

P (pass 1, fail 2), P (fail 1, pass 2), and P (fail 1, fail 2). In addition, there is the constraint

that the sum of these probabilities must be equal to one. If we assume no knowledge of these

parameters beforehand, a flat prior is given by the Dirichlet distribution

P (~p | I) =
1

B(~α)

4∏
i=1

pαi−1
i (F.4)

with ~α = (1, 1, 1, 1) and where B(~α) is the multivariate beta function given by

B(~α) =

∏
i Γ(αi)

Γ(
∑
i αi)

. (F.5)

The likelihood is given by the multinomial probability distribution function,

L (~p) =
N !

n1! · · ·nk!
pn1

1 · · · p
nk
k (F.6)

Since the Dirichlet distribution is the conjugate prior of the multinomial distribution,

the posterior will also be a Dirichlet distribution. The posterior in this case is given by the

Dirichlet distribution with ~α equal to the previous vector plus the observed counts in each

box, i.e.

P (~p | D, I) =
1

B(~α)

4∏
i=1

pαi−1
i (F.7)

with ~α = (n1 + 1, n2 + 1, n3 + 1, n4 + 1).

F.2 Independent Hypothesis

For the independent hypothesis we have only two parameters: P (pass 1) and P (pass 2) which

we will denote by π1 and π2. The prior in this case is simply two flat distributions between

0 and 1. The likelihood is the same as in the previous section except we set p1 = π1π2,
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p2 = π1(1− π2), p3 = (1− π1)π2, and p4 = (1− π1)(1− π2). Plugging these in, we get

L (π1, π2) =
N !

n1!n2!n3!n4!
(π1π2)n1(π1(1− π2))n2((1− π1)π2)n3((1− π1)(1− π2))n4 . (F.8)

Rearranging the terms we get

L (π1, π2) =
N !

n1!n2!n3!n4!
πn1+n2

1 (1− π1)n3+n4πn1+n3
2 (1− π2)n2+n4 . (F.9)

Since the prior is flat, the likelihood is proportional to the posterior distribution. In this

case, since the likelihood is proportional to the product of two beta distributions, we can

immediately determine that

P (π1, π2 |MI , D, I) = f(π1;n1 +n2 + 1, n3 +n4 + 1)f(π2;n1 +n3 + 1, n2 +n4 + 1), (F.10)

where f(x;α, β) is the beta distribution,

f(x;α, β) ∝ xα−1(1− x)β−1. (F.11)

F.3 Likelihood Ratio

In order to compute the likelihood ratio λ between the two models we need to compute

P (M | D, I) for each of the models. One way to compute this quantity is to expand it over

the model parameters ~θ

P (M | DI) =

∫
L (~θ)P (~θ|I)d~θ. (F.12)

We can then approximate this integral by sampling values of ~θ from the prior and computing

P (M | DI) ≈ 1

n

∑
L (~θ) (F.13)

where n is the total number of samples and the samples are drawn from the prior distribution,
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P (~θ|I). However, this is an extremely inefficient means of computing the quantity and,

for more than a few parameters, becomes computationally infeasible. If, however you can

approximate the posterior with a function f(~θ), i.e.

P (~θ | D, I) ≈ f(~θ), (F.14)

then we can avoid sampling very unlikely regions by computing

P (M | DI) ≈ 1

n

∑ L (~θ)P (~θ | I)

f(~θ)
(F.15)

where the sum is over samples drawn from f(~θ)[28].

In our case, however, since we already know the analytic form for the posterior, likelihood,

and prior we can directly calculate

P (D |M, I) =
P (D | ~θ,M, I)P (~θ |M, I)

P (~θ | D,M, I)
. (F.16)

For the correlated hypothesis:

P (D |M, I) =
P (D | ~θ,M, I)P (~θ |M, I)

P (~θ | D,M, I)

=
6

(N + 3)(N + 2)(N + 1)
.

For the independent hypothesis:

P (D |M, I) =
P (D | ~θ,M, I)P (~θ |M, I)

P (~θ | D,M, I)

=
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

(N + 1)(N + 1)!n1!n2!n3!n4!
.

The likelihood ratio is then given by
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Λ =
P (MI | D, I)

P (MC | D, I)

=
P (D |MI , I)P (MI | I)

P (D |MC , I)P (MC | I)

=
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

(N + 1)!n1!n2!n3!n4!

(N + 3)(N + 2)

6

P (MI | I)

P (MC | I)
.

And, assuming both models are equally likely:

Λ =
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

(N + 1)!n1!n2!n3!n4!

(N + 3)(N + 2)

6
. (F.17)

Finally, we will use the log of the likelihood ratio to characterize the test:

λ = log

(
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

(N + 1)!n1!n2!n3!n4!

(N + 3)(N + 2)

6

)
. (F.18)

For values of the log likelihood ratio that are greater than zero, the ratio favors the hypothesis

that the two models are independent and for values less than zero it favors the hypothesis

that they are not independent.
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APPENDIX G

TEST STATISTIC

The test statistic used when calculating p-values is based on calculating a likelihood ratio

which is recommended in [29]. The likelihood of observing a histogram Oi from an expected

histogram Ei is given by:

L(Oi | Ei) = e−N
Nn

n!

n!∏
iOi!

∏
i

(
Ei
N

)Oi
(G.1)

where N is the total number of expected events, and n is the total number of observed events.

The likelihood is just the product of the probabilities of observing n events given you expected

N events and the probability of observing Oi events from a multinomial distribution with

probabilities given by the expected distribution.

First, it is useful to calculate the log of the likelihood:

log (L(Oi | Ei)) = −N −
∑
i

log(Oi!) +
∑
i

Oi log(Ei) (G.2)

The test statistic is created by taking the negative log of a likelihood ratio λ. The

likelihood in the numerator is equal to the likelihood of observing the data given the expected

distribution, while the likelihood in the denominator is equal to the likelihood of observing

the data assuming the expected distribution is equal to the data.

log λ = log

(L(Oi | Ei)
L(Oi | Oi)

)
= −N +

∑
i

Oi log

(
Ei
Oi

)
+ n (G.3)

Finally, to facilitate interpretation, it’s convenient to return -2 times the log likelihood

ratio since that asymptotically approaches the χ2 of the two distributions:

−2 log λ = 2

(
n−N +

∑
i

Oi log

(
Ei
Oi

))
(G.4)
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APPENDIX H

SIMULATION-BASED CALIBRATION

When doing a complex fit, it is useful to be able to verify that the likelihood function or

posterior distribution is self-consistent and free of any logical or coding errors. When doing

an analysis where all of the priors are flat and the errors on the parameters are assumed to be

Gaussian, it is common in high energy physics to make a “pull plot”. This plot is produced

by simulating the data with known true values, running the fit, and calculating the difference

between the fit value and the true value divided by the error on the value returned by the

fit. Assuming the likelihood has Gaussian errors, the resulting value should be distributed

as a Gaussian with mean zero and variance one. By repeating this process over and over and

histogramming the results you get what is called a “pull plot” which allows you to easily

spot biases or problems with the error returned by the fit.

However, if the likelihood function or posterior does not have Gaussian errors or the

posterior includes non-flat priors, the pull plots may appear biased or skewed simply because

the errors are not Gaussian or because of the prior terms. In this case, we can still check

the consistency of the likelihood by making an “SBC plot”. The procedure for making these

plots is as follows[30]:

1. Draw truth values for all parameters in the fit from the priors

2. Simulate data based on these truth values

3. Run an MCMC to sample values from the posterior

4. Compute the percentile of the truth value in the MCMC samples for each of the

parameters

Other considerations, like thinning the MCMC samples are discussed in Reference [30].

Then, you can plot a histogram of the percentiles for each parameter. Assuming the fit is
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Figure H.1: Example of a properly calibrated SBC plot. The dashed line shows the expected
flat distribution and the grey band shows where we expect 99% of the bin contents to fall
within assuming a flat distribution.

unbiased, the resulting histograms should all be a flat distribution between 0% and 100%.

This works because the data averaged posterior is equal to the prior distribution[30], i.e.

π(θ) =

∫
dỹ dθ̃ π(θ | ỹ)π(ỹ | θ)π(θ̃). (H.1)

Cook, Gelman, and Rubin then showed that the quantiles for each parameter will be

uniformly distributed provided that the posteriors are absolutely continuous[31].

A properly calibrated SBC plot is shown in Figure H.1, while a poorly calibrated plot is

shown in Figure H.2.
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Figure H.2: Example of a poorly calibrated SBC plot. In this case, the posterior was
modified to return the χ2 instead of the negative log of the posterior. The dashed line shows
the expected flat distribution and the grey band shows where we expect 99% of the bin
contents to fall within assuming a flat distribution.
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APPENDIX I

DISCOVERY THRESHOLD

When doing the direct dark matter search, I would like to come up with a “discovery thresh-

old” prior to doing the fit. What we would like is to specify a probability of discovering dark

matter under the null hypothesis, p, and then determine what that means in terms of our

fit results. Ideally, for each dark matter mass, I would simulate the null hypothesis many

times, look at the distribution of the best fit event rate for the dark matter, and then choose

the value such that only p percent of the best fit values constitute a discovery. However,

this would be very computationally expensive, and so I have come up with an alternative

approach which is approximately correct in the limit that the energy resolution is smaller

than the bin size.

The basic idea is that if the energy resolution is much smaller than the bin size, then we

expect most of the dark matter events to fall within a single bin. In that case, under the

null hypothesis, we expect the number of events in the bin to be distributed according to a

Poisson distribution:

P (n) = e−µ
µn

n!
(I.1)

where µ is the expected number of MC events in the bin.

The likelihood for this bin including the dark matter term, λ will look like:

P (n) = e−(µ+λ) (µ+ λ)n

n!
. (I.2)

Given n events, the best fit value for λ will be:

λ =

{
n− µ if n > µ

0 if n ≤ µ
(I.3)

Since we expect n to be distributed according to a Poisson as shown in Equation (I.1), then

we immediately know the distribution for λ since µ is a constant.
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Therefore, the event rate limit for a false positive rate of p is

λ > Q(p, µ)− µ (I.4)

where Q(p, µ) is the percent-point function of the Poisson distribution with mean µ.

There are two extra small caveats. First, to account for the look elsewhere effect, we

divide p by the number of bins in the analysis, since each bin is approximately a different

potential test. Second, since it is possible to have a dark matter mass at the boundary of

two bins, we calculate µ as

µ =

∑
i
~hMC,i · ~hDM,i∑

i
~hDM,i

(I.5)

where ~hMC,i is the expected number of atmospheric MC events in bin i, and ~hDM,i is the

expected distribution for a single dark matter event. This has the nice property of smoothly

interpolating between two bins.

Lastly, when testing this out in a toy Monte Carlo program, I realized that I also have

to divide the discovery threshold by the fraction of the normalized dark matter histogram

which is in the range of the histogram. This corrects for the fact that near the edge of the

histogram we expect to get a higher best fit event rate since only a fraction of the expected

dark matter events are in the first or last bin.

So, in the end we calculate our discovery limit as

λ >
Q(p/N, µ)− µ∑

i
~hDM,i

. (I.6)

where N is the number of bins.
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APPENDIX J

BEST UNCALIBRATED CHARGE

When doing data cleaning cuts it is often necessary to use uncalibrated charges to make

the cuts more robust. For example, in many instrumental events the TAC may be too low

or high causing the PCA calibration to fail. It would be nice to have a single uncalibrated

charge to use however so that it’s not necessary to deal with QHS and QLX separately.

Therefore, I defined a routine which returns the “best” uncalibrated charge which is used in

my data cleaning cuts.

This routine does two main things. First, it checks if QHS is railed, in which case it

uses QLX, and secondly it renormalizes the uncalibrated QLX into “QHS units”. This

renormalization is necessary since we are working in ECA calibrated counts above pedestal

and the QHS and QLX paths have different gains.

The full algorithm is shown in Algorithm 2.

Algorithm 2 Best Uncalibrated Charge Algorithm

1 /* Average gain between QLX and QHS.

2 *

3 * Note: This is not an accurate number it's just something I got from the SNO

4 * document "SNO Electronic Calibration Constants" and confirmed by looking at

5 * a plot of QHS vs QLX. */

6 static double QLX_TO_QHS = 12.0;

7

8 /* Returns the "best" ECA calibrated charge (in units of EHS).

9 *

10 * This is sort of modelled after the SNOMAN routine cal_best_q() but here we

11 * do it for uncalibrated charges (in counts above pedestal). One issue here is

12 * that QHS and QLX have different gains, so to deal with that we just assume a

13 * constant gain and multiply any QLX values by QLX_TO_QHS.

14 *

15 * This best uncalibrated charge is mainly useful for data cleaning cuts. */

16 double cal_best_q(float pihs, float pilx, float ehs, float elx)

17 {

18 if (pilx < 300|| pilx > 4000|| pihs < 300|| pihs > 4000) {

19 /* QHS or QLX is railed, so use QLX. */

20 if (pilx < 300)

21 return 4095.0*QLX_TO_QHS;

22 return elx*QLX_TO_QHS;

23 }

24

25 return ehs;

26 }
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APPENDIX K

BIFURCATED ANALYSIS

In SNO the instrumental contaminations were measured using a technique called the “bifur-

cated analysis”[32]. The LETA unidoc describes the general problem as:

We have two independent cuts. Given that d events do not pass either cut, c

events pass only the first cut and b events only pass the second cut, how can

we determine the number of background events a that pass both cuts in a blind

fashion?

A derivation of the results can be found in the LETA unidoc, but is also reproduced here.

We can write the expected number of events as1:


Ns + a
b
c
d

 =


P (pass 1 pass 2 | signal) P (pass 1 pass 2 | background)
P (pass 1 fail 2 | signal) P (pass 1 fail 2 | background)
P ( fail 1 pass 2 | signal) P ( fail 1 pass 2 | background)
P ( fail 1 fail 2 | signal) P ( fail 1 fail 2 | background)

(NsNb
)

(K.1)

where Ns and Nb are the true number of signal and background events respectively.

The first step is to assume that the two cuts are independent for both the signal and

background events:


Ns + a
b
c
d

 =


P (pass 1 | signal)P (pass 2 | signal) ε1ε2
P (pass 1 | signal)P ( fail 2 | signal) ε1(1− ε2)
P ( fail 1 | signal)P (pass 2 | signal) (1− ε1)ε2
P ( fail 1 | signal)P ( fail 2 | signal) (1− ε1)(1− ε2)

(NsNb
)
.

where

1. Here we’ve already assumed that there is a negligible sacrifice since we set the number of events passing
both to Ns + a. This assumption is made explicit later.
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ε1 = P (pass 1 | background)

ε2 = P (pass 2 | background)

Now, we assume that the sacrifice for each cut is negligible, i.e.

P (pass 1 | signal) ' 1

P (pass 2 | signal) ' 1

P ( fail 1 | signal) ' 0

P ( fail 2 | signal) ' 0

and the equation therefore becomes:


Ns + a
b
c
d

 =


1 ε1ε2
0 ε1(1− ε2)
0 (1− ε1)ε2
0 (1− ε1)(1− ε2)

(NsNb
)
. (K.2)

From this we can derive the main result2 which is that the number of background events

passing both cuts a, is

a =
bc

d
. (K.3)

The most important assumption which enables this analysis to work is the assumption

of independence between the low and high-level cuts. Although it’s not specified directly,

an important point to consider is whether the low and high-level cuts are assumed to be

independent for a given background source or globally. The first case of having the low and

high-level cuts be independent for a given background source is certainly not obvious3, but

2. Technically one should treat the left hand side of Equation (K.2) as expected values for a Poisson
distribution and do a likelihood fit in order to properly estimate the contamination and the associated
uncertainty.

3. Flasher events are cut by looking for a cluster of PMT hits and looking for the majority of the other
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can be argued for certain cuts and can also be explicitly demonstrated if you make some

assumptions about how the cut might fail. For example, to check if the low-level cuts are

independent of the high-level cuts for flasher events, one can take known flashers and remove

the PMT hits in the flashing channel to simulate a blind flasher4. Then the independence

between the high and low level cuts can be demonstrated by showing that the high-level

variables do not change when removing the hits near the flashing channel (assuming that

this is the most likely reason for a flasher to not get tagged). However even if we do assume

the independence of the low and high-level cuts for a given class of backgrounds, I will show

that the overall probability for the backgrounds combined is not independent.

For a simple example, consider flasher events and pickup events and assume the following:

Nflasher = 1000

Npickup = 10

P (pass 1 | flasher) = 0.2

P (pass 2 | flasher) = 0.99

P (pass 1 | pickup) = 0.001

P (pass 2 | pickup) = 0.1

In this case, the expected number of background events that pass both cuts, a, is:

a = NflasherP (pass 1 | flasher)P (pass 2 | flasher) +NpickupP (pass 1 | pickup)P (pass 2 | pickup)

= 1000× 0.2× 0.99 + 10× 0.001× 0.1

' 198

PMT hits in the event to be farther away. The events which sneak past the cut occur because, for whatever
reason, the flashing channel and the nearby channels don’t show up in the event. This is called a “blind
flasher”. One reason why the low and high-level cuts might be correlated is that the high charge channel
significantly affects the reconstruction.

4. A blind flasher is a flasher event where the channel producing the flasher is not read out for some
reason and thus there is no high charge channel on the opposite side of the majority of the light to tag.
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However, following the bifurcated analysis technique we would calculate:

b = NBP (pass 1 fail 2 | background)

= NflasherP (pass 1 | flasher)P ( fail 2 | flasher) +NpickupP (pass 1 | pickup)P ( fail 2 | pickup)

= 1000× 0.2× 0.01 + 10× 0.001× 0.9

' 2

c = NBP ( fail 1 pass 2 | background)

= NflasherP ( fail 1 | flasher)P (pass 2 | flasher) +NpickupP ( fail 1 | pickup)P (pass 2 | pickup)

= 1000× 0.8× 0.99 + 10× 0.999× 0.1

' 792

d = NBP ( fail 1 fail 2 | background)

= NflasherP ( fail 1 | flasher)P ( fail 2 | flasher) +NpickupP ( fail 1 | pickup)P ( fail 2 | pickup)

= 1000× 0.8× 0.01 + 10× 0.999× 0.9

' 16

and therefore estimate a as

a =
bc

d
' 2× 792

16
' 93

Thus we would have underestimated the background by a factor of 2!

The reason the bifurcated analysis does not work is because even if you assume inde-

pendence between the low-level and high-level cuts for each background source

independently, the low and high-level cuts will not in general be independent for

all background sources together. This is a very general result which can be seen directly

if we consider the case of two example backgrounds: flasher events and pickup events. The

probability to pass cuts A and B for both backgrounds is
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P (AB | background) = P (flasher)P (AB | flasher) + P (pickup)P (AB | pickup). (K.4)

Now, suppose that the low and high-level cuts are independent for each background, i.e.

P (AB | flasher) = P (A | flasher)P (B | flasher)

P (AB | pickup) = P (A | pickup)P (B | pickup).

Then, Equation (K.4) becomes:

P (AB | background) = P (flasher)P (A | flasher)P (B | flasher)

+ P (pickup)P (A | pickup)P (B | pickup) (K.5)

which is not equal to the product of the probabilities

P (A | background)P (B | background) =

(P (flasher)P (A | flasher) + P (pickup)P (A | pickup))

(P (flasher)P (B | flasher) + P (pickup)P (B | pickup)) . (K.6)

Therefore,

P (AB | background) 6= P (A | background)P (B | background).
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