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Abstract

The SNO+ experiment is the successor to the SNO neutrino detector,

which replaces its heavy water target with a liquid scintillator one. The

primary physics goal is the search for neutrinoless double beta decay

(0νββ) in 130Te, which will be loaded into the scintillator. Fitted with

>9300 photo-multiplier tubes, the SNO+ detector will have the highest

photo-cathode coverage of any large liquid scintillator detector. This

thesis shows that, at this light collection level, SNO+ is sensitive to differ-

ences in the scintillation pulses produced by electrons, positrons and gam-

mas, and that these differences may be used to classify single-site 0νββ

events and multi-site radioactive backgrounds which emit γ. This pulse

shape discrimination technique (PSD) is applied to background events

from radiation originating outside the detector, which limit the exper-

iment’s fiducial volume, and potential internal radioactive decays, like
60Co, which are otherwise difficult to distinguish from 0νββ. A new signal

extraction framework is described and used to perform 2D fits in energy

and event radius, which estimate an expected limit on the 0νββ half-life

of T 0ν
1/2 > 1.76 × 1026yr, at 90% confidence, assuming an exposure of 4.0

tonne·yr of 130Te. The corresponding limit on the effective Majorana mass

is mββ < 49.7meV, using the IBM-2 nuclear model. Further, it is shown

that adding PSD as an additional fit dimension can reduce the SNO+

3σ discovery level on mββ from 190meV to 91 meV, assuming the same

exposure. The final portion of this work discusses what more could be

achieved using a liquid scintillator experiment which can separate scin-

tillation and Cherenkov signals in time. A simulation of a SNO+ style

detector, filled with a slow scintillator and equipped with a high coverage

of fast, high quantum efficiency PMTs is used to demonstrate separation

of Cherenkov and scintillation signals and reconstruction algorithms for

electron and 0νββ events are described. Differences in Cherenkov signals

are used to distinguish 0νββ from the solar neutrino elastic scattering

background, and to demonstrate for the first time that, in principle, the
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0νββ mechanism may be determined in liquid scintillator by fitting the

angular separation and energy split of the two emitted electrons.
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Chapter 1

Theory

1.1 Neutrinos

The neutrino was first proposed to save energy conservation in nuclear β decay. By

1914, Chadwick had shown that the β energy spectrum was continuous [1], but β

decay was then thought to be a two body process, in which the energy of the β and

recoiling nucleus are exactly constrained by energy conservation. What followed was

many years of controversy, as people questioned the apparently impossible experi-

mental results [1] until, in 1927, Ellis and Wooster confirmed them [2]. The puzzle

deepened further when Meitner proved that the missing energy could not be accoun-

ted for by neutral γ rays [2]. These results famously led N.Bohr to suggest that

perhaps energy conservation applied only in a ‘statistical sense’ [3].

In 1930, in a letter beginning ‘Dear Radioactive Ladies and Gentlemen’, Pauli

proposed that perhaps a neutral, weakly interacting particle was created alongside

the β, carrying off the remaining energy without detection [4]. He concluded that the

mass of the particle should be ‘the same order as the electron mass, and in any event

not larger than 0.01 proton masses’, with spin 1/2 in order to resolve the apparent

non-conservation of angular momentum in these decays. He lamented that he had

proposed a particle that could not be detected, something ‘no theorist should ever

do’.

In 1934, E.Fermi developed his theory of weak interactions [5, 6], modelled by a

single 4-fermion vertex that included the neutrino. Its subsequent success in de-

scribing β spectra convinced most that neutrinos existed, but detection was thought

impossible after Bethe and Pierls estimated the cross-section for ν + p → e+ + n to

be < 10−44cm2 at 1MeV [2].

That was until, in 1956, Cowan and Reines achieved the first detection of νe using

positrons created in inverse beta decay interactions on 1400 litres of liquid scintillator

1
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[7]. Using a nuclear reactor as an intense ν source, they could overcome the tiny

neutrino cross-section to produce a measurable event rate. For this work, Reines was

awarded the 1995 Nobel prize in physics.

In 1962, Lederman, Schwartz and Steinberger demonstrated that more than one

type of neutrino exists by detecting the interactions of the muon neutrino [8]. The tau

neutrino was only proposed after the discovery of the τ lepton and was not observed

until 2000 by the DONUT collaboration [9].

Meanwhile, the Fermi theory of weak interactions had failed to explain several

phenomena, including β decays where the nuclear spin changed by 1 unit, provoking

considerable debate on the exact algebraic form of the weak interactions [10, 2]; it

would require an experimental breakthrough to make progress.

In 1956, Lee and Yang began to question what most had considered a self-evident

fact: that the laws of nature should be invariant under parity transformation [10].

That same year, Garwin, Lederman and Weinrich [11] demonstrated that parity was

violated in µ decay and Wu [12] showed it was violated in the β decay of 60Co. Wu

and her collaborators cooled 60Co atoms to 0.001K and used a magnetic field to align

the spins of 60Co nuclei. They then measured the orientation of the β produced

in 60Co → 60Ni decay and found that electrons were preferentially emitted anti-

parallel to the parent spin. The spin is invariant under parity transformations, but

the electron momentum is not, so an asymmetric distribution proved parity violation.

Spin conservation also implied that the weak interaction preferentially produced left

handed electrons, a fact that led Lee and Yang to argue for a two component model

of the neutrino, in which neutrinos/anti-neutrinos are massless and always left/right

handed [10].

After Wu’s experiment, support for this model came from the V - A theory of the

weak interaction, developed by Feynman and Gell-Mann [13], Shudarshan and Mar-

shak [14] and Sakurai [15]. It predicted that the correct form of the weak interaction

produced maximal parity violation, a property that was naturally expressed in the

lepton sector using the two component neutrino model.

Supporting experimental evidence came from the Goldhaber experiment [16]. It

measured the helicity of neutrinos produced in electron capture on 152Eu:

e− +152 Eu→152 Sn∗ + νe (1.1)

By measuring the polarization of γ emitted by the relaxing Sn nucleus, they were able

to establish that the νe spin was always aligned opposite to its momentum, regardless

of its direction. In effect, they had found that the ν helicity was the same in all
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inertial frames, to within the error of their experiment. If this was always true, the

neutrino had to be massless.

As a result, the two component model of the neutrino was codified into the standard

model of particle physics (SM) which went on to to explain all experimental data on

strong and electro-weak interactions, until the discovery of the neutrino mass. To

date, this is the only terrestrial observation of physics beyond the standard model

(BSM); the rest of this chapter is devoted to this discovery and its implications.

1.2 The Neutrino Has Mass

The discovery that neutrinos have mass essentially came from two experimental

conundrums: an observed deficit in νe from the sun and, later, an observed defi-

cit in atmospheric νµ. The theory of neutrino flavour mixing could explain both

phenomena, but required that the neutrino had finite mass. The theory was exper-

imentally confirmed by the ground-breaking results of the SNO, Super-Kamiokande

and Kamland collaborations, leading to the 2015 Nobel prize for physics.

This section outlines the evidence for neutrino flavour oscillations, setting out what

is known and, as yet, unknown about the neutrino masses and the parameters that

determine oscillation probability.

1.2.1 Two Problems

The Solar Neutrino Problem

The standard solar model (SSM) is the modern theory of the sun’s energy generation.

Its development began between the late 1920’s [17] and culminated with the work of

Bethe [18] and others [19], who proposed that the sun’s intense energy generation is

powered by the fusion of hydrogen into helium, proceeding via a chain of intermediate

reactions in two cycles: the pp and pep chain (figure 1.1) and the CNO chain. By the

early 1960s, there was a consensus that thermonuclear fusion fuelled the sun and that

the pp chain was the dominant contributor [20], but there had been no experimental

proof.

In 1964, Ray Davis and John Bachall proposed that the model could be verified

by detection of νe, produced in the pp chain [22, 23]. Present day expected fluxes of

each of these neutrino types are shown in figure 1.2. The experiment they devised

was first suggested by Pontecorvo; it detected neutrinos created in the pp and pep

chain, using neutrino capture on chlorine (equation 1.2), stored deep underground in
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Figure 1.1: The pp and pep solar fusion cycles [21]. The percentages are branching ratios. Five of
the processes depicted emit neutrinos, named hep, pp, pep, 7Be and 8B (bold face).

the Homestake mine, South Dakota. The reaction’s 0.8MeV threshold [24] made it

sensitive to 8B, pep and CNO neutrinos.

νe +37 Cl→ e− +37 Ar (1.2)

In 1968 they published their initial results. By chemically separating out the 37Ar,

they measured a capture rate of solar neutrinos of 3 SNU1 [25, 26] . The impact of the

results was significant: they confirmed thermonuclear fusion in the sun and ruled out

the CNO cycle as the dominant mode, for which the contemporary flux estimation

was 35 SNU [26, 24]. Furthermore, they inferred the central temperature of the sun to

be 16×106K, again matching the SSM prediction [24]. For these successes Ray Davis

was awarded the 2002 Nobel Prize. However, it also provoked one serious tension:

the flux measurement did not agree with the SSM prediction of the pp cycle flux of

6 SNU [26]. This discrepancy became known as the solar neutrino problem.

Years later, the discrepancy gained even more attention when large water Cheren-

kov detectors were built to search for proton decay. These detectors had thresholds

of >5MeV so they also detected 8B neutrinos. The Kamiokande experiment meas-

ured the 8B neutrino flux over 8 years to be around 50% of the predicted SSM flux,

a 2σ discrepancy [28]. Their result agreed with the Homestake measurement us-

ing completely independent detector technology. Later confirmation came from the

Super-Kamiokande experiment. Their first results published a 8B flux of less than

half of the SSM prediction, again at 2σ [29]. The discrepancy only grew with more

11 SNU is equal to the flux that produces 10−36 captures per second per target atom
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Figure 1.2: Solar neutrino fluxes at the surface of the earth [27]. The flux units are cm−2s−1. The
annotations above the plot show the range neutrino energies that produce events above detector
threshold for a range of technologies.

data; by 1998, Super-Kamiokande had measured the ratio of the 8B flux to the SSM

prediction as 0.358+0.009
−0.008 (stat) +0.014

−0.010(syst), a result entirely inconsistent with the SSM.

Further hints were offered by gallium radio-chemical experiments. These used sim-

ilar detection technique to the original Homestake experiment, with the key exception

that the neutrino capture threshold for 37Ga is 0.233MeV [24]. At this threshold, the

experiments were also sensitive to pp neutrinos, which were expected to comprise of

over 99% of the neutrino flux. Moreover, the theoretical flux uncertainty for pp neut-

rinos was around 1%, rather than 10% for 8B neutrinos [30]. The GALLEX/GNO [31]

and SAGE [32] experiments each measured pp fluxes of ≈ 50% of the SSM prediction,

both 5σ discrepancies.

Figure 1.3 summarises the results from the chlorine, water Cherenkov and gallium

experiments [30] using the final rather than initial results from each. It indicates three

major inconsistencies. First, the left most plot shows that final 8B flux measured at

Homestake was around 1/3 of the SSM prediction. Second, although both the chlorine

and water Cherenkov experiments measured a deficit, they were inconsistent with each

other. The measured 8B flux in Super-Kamiokande exceeded the total 8B + pep +

CNO flux measured at Homestake. Finally, to be consistent, the gallium experiments

should have measured a greater flux than the water Cherenkov detectors, because

they were additionally sensitive to pp, pep and 7Be neutrinos, for which the SSM
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Figure 1.3: Solar neutrino problem summary plot [33]. The left-most bar for the Cl comparison
and the central bars for the H2O and Ga comparisons show the solar standard model predictions
without neutrino oscillations. The other bars show experimental measurements; the shaded regions
indicate errors.
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predicted large fluxes. The 7Be neutrinos appeared to be missing even though they

sit below the well measured 8B neutrinos in the pp and pep chain.

The Atmospheric ν Anomaly

Atmospheric neutrinos are created when high energy cosmic rays of energy 108−20eV

[34] hit the earth’s atmosphere and produce hadronic showers. Particles in these

showers decay, ultimately producing a large number of the lightest charged hadrons,

π±. These decay to µ± with 99.99% branching fraction and the emission of
(−)

νµ [35].

Below ∼ 1GeV, almost all of these muons decay before they hit earth’s surface

producing e± and two neutrinos, one νe and one νµ.

π± → µ± +
(−)

νµ → e± + 2
(−)

νµ +
(−)

νe (1.3)

At these energies, for each atmospheric νe there should be two accompanying νµ and

the ratio of the νe to νµ flux should be approximately :

Ratm =
φµ
φe
∼ 2 (1.4)

However, the IBM [36, 37], Kamiokande [38], and Super-Kamiokande [39, 40] ex-

periments measured much lower values of R, corresponding to a deficit of νµ events.

These detectors used kilotons of water, instrumented with photomultiplier tubes to

detect Cherenkov light produced in the detector. Neutrinos can produce high energy

charged leptons via elastic-scattering and charged current interactions on water:

νl → l− +W+∗ CC (1.5)

νe + e− → νe + e− ES (1.6)

The energy and direction of the charged leptons could be inferred from the quantity

and direction of the produced Cherenkov light. These, in turn, could be related to

the energy and direction of the incident neutrino [41].

Figure 1.4 shows these results, among others, in the form of a double ratio that

accounts for energy dependence, neutrino cross sections etc. by comparing the data

with Monte Carlo:
(Nµ/Ne)data

(Nµ/Ne)MC

(1.7)

Each of the water Cherenkov experiments and the iron calorimeter Soudan 2 measured

a significant deficit.
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Figure 1.4: Atmospheric νµ deficits from [42], squares represent iron tracker experiments, the circles
are water Cherenkov detectors. The y-axis shows the flavour double ratio (Nµ/Ne)data/(Nµ/Ne)MC,
where Nµ and Ne are the number of observed µ-like and e-like events, respectively.

1.2.2 Flavour Mixing

The solution to these inconsistencies came from the realisation that neutrinos change

between between flavours as they propagate. This occurs because neutrinos have a

small but non-zero mass and their mass eigenstates are misaligned with the flavour

eigenstates that participate in weak interactions.

Neutrino oscillations were first considered by Pontecorvo in late 1950s in the context

of active - sterile oscillations, by analogy with kaon oscillations [43]. The principle was

later applied to the neutrino flavour states in 1962 by Maki, Nakagawa and Sakata

[44], leading Pontecorvo to predict the solar neutrino problem in 1967 (before its

discovery!) [45]. The standard oscillation probabilities used today were first calculated

in the mid 1970s by Eliezer and Swift [46], Fritzsch and Minkowski [47], Blineky and

Pontecorvo [2, 48]. Work on neutrino oscillations in matter followed in the 1970s-

1980s, principally developed by Wolfenstein [49], Mikheev and Smirnov [50, 51].

The theory of neutrino oscillations relies on the following arguments:

1. The neutrino states that couple in weak interactions |να=νe,µ,τ 〉 are not the same

as the mass eigenstates |νk=1,2,3〉.

2. As the eigenstates of a linear operator, the weak states form a complete basis

of the space describing the neutrino fields.

3. The weak eigenstates are therefore related to the mass eigenstates by a unitary

operator U , representable as a square matrix Ukj, known as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix.
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4. If the masses are not perfectly degenerate, the mass state components will

propagate differently.

5. So, even if a neutrino is produced in a state of definite flavour, its flavour will

evolve as it propagates.

In essence, a neutrino created in pure flavour state |να〉 will not remain in that

state because its three mass components will accumulate phase at different rates.

After time t, the neutrino state will have changed according to the time evolution

operator T̂ :

|ν(t)〉 = T̂ (t) |να〉 (1.8)

with a νβ component of:

〈νβ| T̂ (t) |να〉 (1.9)

The probability of observing the neutrino as a different flavour, νβ, after time t, is

equal to the squared modulus of its νβ component at that time:

Pα→β = | 〈νβ| T̂ (t) |να〉 |2 (1.10)

This probability is, in general, non-zero because T̂ is not diagonal in the flavour basis.

This must be the case because it is diagonal in the mass basis, and the two bases are

misaligned according to U :

Tflavour = UTmassU
† (1.11)

Tmass =



e−iE1t 0 0

0 e−iE2t 0
0 0 e−iE3t


 (1.12)

Here E1, E2, E3 are the energies of the neutrinos three mass components, written in

natural units.

In practice, many experiments are concerned with a beam of neutrinos created with

definite flavour which propagate over some baseline, L. If oscillation between only

two flavours is significant, as is often the case, it is sufficient to deal with a 2D mixing

matrix:

U2D =

(
cos θ sin θ
− sin θ cos θ

)
(1.13)

In this case, it can be shown that equation 1.10 leads to probability oscillations of

the form [52, 35]:

Pα→β = sin2(2θ) sin2

(
1.27

∆m2L

E

)
(1.14)
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for ∆m2 in eV2, L in km and E in GeV. So, provided the two neutrino mass states

are not degenerate, and that they remain coherent, the probability of observing a

neutrino that started in να as a νβ oscillates as a function of baseline L, with maxima

at L/E = (2n+ 1) π
1.27×2∆m2 , n = 0, 1, 2, 3... Critically, the position of the probability

maximum depends only on the difference of the magnitude of ∆m2 rather than its

sign.

The picture is complicated in matter by the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [53]. Elastic forward scattering interactions between propagating neutrinos and

the surrounding electron cloud create an effective potential, experienced by the neut-

rino. This alters the energy of its the mass eigenstates and the differences between

them that determine oscillation probability. Importantly, these matter effects in-

troduce probability corrections that are sensitive to the sign of ∆m2 as well as its

magnitude.

If the neutrinos traverse a high but gradually decreasing electron density, as they

would travelling through the sun, they can, instead, undergo adiabatic conversion

above a certain resonance energy [54, 53]. This non-oscillatory phenomenon leaves

initial νe in a pure ν2 state for which the νe survival probability is constant:

Pe→e = | 〈νe|ν2〉 |2 = sin2 θ (1.15)

Later results from Super-Kamiokande (SK), SNO and Kamland confirmed flavour

oscillations as the definitive explanation amongst many to the atmospheric neutrino

anomaly and solar neutrino problem, using solar, atmospheric and reactor neutrinos,

respectively.

In 1998, SK published a much more accurate measurement of the up-down asym-

metry of the νµ flux [55]:

Aup-down
µ =

Nup
µ −Ndown

µ

Nup
µ +Ndown

µ

= −0.296± 0.048(stat.) + 0.01(sys.) (1.16)

where Nup
µ is the number of upward-going νµ events, coming from below the surface

of the earth, and Ndown
µ is the number of downward-going νµ, coming from the at-

mosphere above the detector. This 6σ deviation from 0 was conclusive proof that

part of the νµ flux disappeared during paths through the centre of the earth. The

corresponding νe asymmetry was consistent with 0 [55].

The explanation for this deficit is that atmospheric νµ oscillate into ντ as they free

stream through the earth. Evidence for this came from a second SK result, measuring

the the flavour double ratio (equation 1.7) as a function of zenith angle. In doing



1.2. The Neutrino Has Mass 11

Figure 1.5: Ratio of observed to predicted flux vs. L/E for atmospheric νµ events at Super-
Kamiokande [42]. L is the inferred baseline and E is the neutrino energy. Red: the best fit to
neutrino oscillations. Dotted line: the best fit to neutrino decoherence. Dashed line: the best fit to
neutrino decay.

so, they were able to plot the νµ flux as a function of L/E for the neutrinos and

compare with simulation. Figure 1.5 shows these results with a best fit to neutrino

oscillations (solid line) and two competing explanations for the missing flux: neutrino

decay [56] (dashed line) and neutrino decoherence [57] (dotted line). The sharp dip

and upturn at around 500km/GeV strongly favoured an oscillation solution. The lack

of anomalies in the νe data suggested the νµ → ντ oscillation channel.

The SNO experiment [58] was, like SK, a deep underground water Cherenkov de-

tector. What made it unique however, was that its 1kT target volume was filled with

heavy water, D2O. This change, proposed by H. Chen, allowed SNO to detect neutral

current events via free neutrons produced in the break up of deuterium nuclei D:

νx +D → n+ p+ νx (1.17)

Free neutrons were detected via the γ emitted after the neutrons captured on H [59].

In the second phase of the experiment, the neutrons were captured on salt loaded into

the D2O [59] and in the final phase neutrons were detected with specially engineered
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neutral current detectors [60]. Crucially, this process is equally sensitive to all three

flavours of neutrinos. This should be contrasted with the CC and ES processes,

measured in SNO and light water detectors, which are only accessible to νe at solar

energies. By measuring all three signals in the same detector, the SNO experiment

was able to estimate both the total ν flux and the νe flux.

In 2002, the SNO collaboration published measured neutrino fluxes for νe and νµ,τ

in its first phase [61]:

φe = 1.76+0.05
−0.05(stat.)+0.09

−0.09(syst.)× 106cm−2s−1 (1.18)

φµ,τ = 3.41+0.45
−0.45(stat.)+0.48

−0.45(syst.)× 106cm−2s−1 (1.19)

The total neutrino flux was consistent with the SSM, and the νe flux was around

1/3 of the total flux, consistent with earlier experiments measuring a deficit. By

providing evidence of non-zero φµ,τ at 5σ, SNO had categorically proven that neutrino

flavour conversion occurred in the sun, resolving the solar neutrino problem. Further,

more accurate, results were published using data from the latter two phases. The

final results shown in figure 1.6 were consistent with adiabatic conversion of the 8B

neutrinos inside the sun, with sin2 θ ≈ 1/3. The measured result was inconsistent

with exactly 1/3, which ruled out very short baseline oscillations.

However, there were still several possible alternative explanations for the cause of

the flavour transitions, including non-standard interactions of massless neutrinos [62].

The KAMLAND detector comprised of 1kT of liquid scintillator, able to detect νe

via the same inverse beta decay interactions used by Cowan and Reines:

νe + p→ e+ + n (1.20)

When such an interaction occurred on nuclei in the target scintillator, the e+ produced

a prompt scintillation signal, followed 200µs later by neutrino capture on hydrogen

and the emission of a 2.2MeV γ. This delayed coincidence was used to tag signal

events to great effect.

Kamland measured the disappearance of νe produced by nuclear reactors at a flux

averaged baseline of 180km away [63, 64]. By measuring the disappearance probability

as a function of L/E they were able to demonstrate vacuum oscillations (figure 1.7)

with an implied ∆m2 and sin2(2θ) consistent with the SNO solution, confirming the

mixing hypothesis.

Furthermore, the results of SNO and Kamland also resolved the anomalies between

the gallium, chlorine and water Cherenkov detectors. The inconsistent fluxes are

produced by energy dependence of the νe survival probability, caused by the resonance
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Figure 1.6: Contraints on the electron neutrino flux, φe, and the combined muon/tau neutrino flux,
φµτ , from the SNO and Super Kamiokande experiments [61].

Figure 1.7: Oscillations in the survival probability of reactor ν̄e as a function of L/E measured at
KAMLAND. L is the baseline to the source reactor and E is the anti-neutrino energy [64]
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behaviour of the MSW effect. pp, pep and 7Be neutrinos sit below 2MeV, where

there is no resonant matter enhancement of the oscillations [2]. These neutrinos

are produced over a region which is much larger than the oscillation length, so their

survival probability is fixed at the average for vacuum oscillations 1−1/2 sin2(2θ). On

the other hand, some 8B neutrinos have E >> 2MeV, so they can undergo resonant

conversion, with a survival probability of sin2 θ.

1.2.3 Oscillation Measurements

The flavour oscillation model set out in section 1.2.2 contains many free parameters:

the value of the components Ukl and the neutrino masses are not predicted by the

theory and must be constrained by experiment. By convention, experimental results

are quoted in terms of the independent degrees of freedom of U and the mass squared

differences ∆mi which are measurable in oscillations.

The unitarity of the PMNS matrix means that, for Dirac neutrinos, it may be

written in terms of three rotation angles θ and a single complex phase δCP :

U =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13






c12 s12 0
−s12 c12 0

0 0 1


 (1.21)

where cij = cos(θij), sij = sin(θij). The more complicated picture for Majorana

neutrinos is discussed in section 1.6.

By convention, ∆m2
12 and θ12 are the parameters that control solar oscillations and

∆m2
23, θ23 cause atmospheric oscillations. The third pair ∆m2

13, θ13, are associated

with reactor neutrino oscillations. By measuring the L/E and magnitude of oscil-

lation extrema, oscillation experiments measure each of the ∆m2 and θ pairs and

evidence from many neutrino oscillation experiments is combined into global fits of

the neutrino data. A recent 2017 study by de Salas et al. [65] combines results from

solar, atmospheric and reactor neutrino experiments as well as measurements from

terrestrial neutrino accelerator experiments, summarised in table 1.1. Their fit has

|∆m2
31| and ∆m2

12 constrained to within 1-2% and the mixing angles each determined

to 2-3% 2.

There are still major unknowns in this picture. The first is the sign of ‖∆m2
23‖.

Existing measurements of ∆m2
23 are dominated by vacuum oscillations from which

we can only infer its magnitude. The unknown sign of ‖∆m2
23‖ leads to two possible

2though the octant of θ23 is still poorly constrained
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Source Experiments Measurement PMNS Parameters Reference

Nuclear Reactors
RENO, Daya Bay, Double CHOOZ

KAMLAND
νe appearance

sin2 θ13,‖∆m2
ee‖

sin2 θ12,‖∆m2
12‖

[66, 67] [68]
[63, 64]

Terrestrial Accelerators
MINOS

T2K, NOvA
νµ dissapearance

νµ dissapearance, νe appearence

sin2 θ12,‖∆m2
12‖

sin2 θ13,‖∆m2
13‖

sin2 θ12,‖∆m2
12‖

[69]
[70] [71]

Atmopheric Neutrinos Super-Kamiokande, IceCube DeepCore, Antares νµ dissapearence, νe appearence sin2 θ23, ‖∆m2
23‖ [72, 73] [74, 75] [76]

Solar Neutrinos

SNO
SK

Gallex, SAGE
Homestake
Borexino

8B νe flux, 8B νx flux
8B νe flux

pp + pep + 7Be, 8B + CNO flux
8B + pep + CNO νe flux

pp, pep, 7Be, 8B νe flux νe

sin2 θ12, ‖∆m2
12‖

[77]
[77, 78]
[31, 32]
[25, 26]
[79–82]

Table 1.1: Summary of neutrino oscillation experiments which have contributed to the 3-flavour
oscillation picture, at the time of writing.

Figure 1.8: The normal and inverted neutrino mass hierarchies. Uncertainty on the sign of ∆m2
13

leads to two neutrino mass orderings which are compatible with current measurements.

‘mass hierarchies’ for the neutrino, depicted in figure 1.8. The de Salas fit prefers the

normal hierarchy over the inverted hierarchy, but only with ∆χ2 = 2.7.

There is hope for resolution of this question in the next two decades [83]. The

accelerator neutrino experiment DUNE [84, 85] will conclusively measure the mass

hierarchy, using matter effects induced over a baseline of 1300km. The RENO-50 [86]

and JUNO [87] reactor experiments will directly measure the hierarchy, using the

interference between m2
13 and m2

32 oscillations in reactor νe over intermediate baselines

[88–90]. In addition, atmospheric neutrino experiments like Hyper-Kamiokande [91],

IceCube PINGU [92, 93] and KM3Net-ORCA [94] can measure the hierarchy by

inferring matter effects from the path dependent disappearance of atmospheric νµ.

The second unknown is δCP , which gives rise to CP violation in flavour oscillations
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of the form:

P (νµ → νe) 6= P (νµ → νe) (1.22)

asymmetries of this type can be measured directly at accelerator experiments which

are able to produce both νµ and νµ, like T2K and NOVA. Contemporary experiments

are not currently sensitive to δ at the discovery level; in the de Salas fit none of the

region δCP ∈ [0, 2π] is excluded at 3σ. However, the planned large scale long baseline

experiments HyperK [95] and DUNE [84, 85] can conclusively measure CP violation

in the neutrino sector for a wide range of values of δCP .

1.2.4 Mass Scale Measurements

A further unknown is the absolute magnitude of the neutrino masses. The combined

measured mass squared differences imply that Σ3
i=0mi > 0.05± 0.1eV [2], but, other

than that, oscillation experiments are not sensitive to the neutrino mass scale.

No positive measurement by other means has yet been made, but there are ever

more stringent upper bounds being published using cosmological and kinematic con-

straints.

Kinematic measurements infer the neutrino mass from the energetics of nuclear

decay. In β− decay, a nucleus emits an νe and an electron. The total kinetic energy

released in the decay is:

Qβ = QN −me −mν (1.23)

where QN is the energy released in the nuclear transition and mν is the neutrino

mass. The maximum electron energy is therefore limited by the value of mν [54, 53].

More generally it can be shown that, close to the end point, a non-zero neutrino mass

alters the electron energy spectrum by a constant offset equal to [96]:

−m2
e = −

3∑

i=0

|U2
ei|m2

i (1.24)

which can be directly measured from the β decay spectrum.

There are three main approaches to this measurement [97]: KATRIN is measuring

the energy spectrum of tritium using an electromagnetic spectrometer [98], the Pro-

ject8 experiment [99] will do the same by measuring the Larmour frequencies of the

emitted electrons in a magnetic field, and the ECHO experiment [100] will measure

the 63Holmium spectrum using low-temperature calorimetry. All three experiments

target O(100meV) sensitivities on me.
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Indirect cosmological constraints are derived from the effects of a finite neutrino

mass on the well verified cosmological standard model. In the ΛCDM cosmological

model, neutrinos are created in the big bang. They are in equilibrium with the other

particles until cooling causes them to freeze out, just before recombination. The

mass of the neutrino adds additional matter density to the universe and the exact

value of mν determines how long neutrinos remain relativistic as the universe cools.

Both have observable consequences for large scale structure formation and the power

spectrum of the cosmic microwave background. A recent analysis combining many

results places an upper limit on the sum of the masses [101]:

3∑

i=0

mi < 0.17eV (1.25)

at 95% confidence.

1.3 What is the Neutrino?

The next section asks how the recently discovered mass may be incorporated into the

theoretical description of the neutrino.

The neutrino spin is known experimentally to be 1/2, this restricts the quantum

field theory description of the neutrino to fields built from left and right handed Weyl

spinors, the (0, 1/2) and (1/2, 0) representations of the Lorentz group.

This leads to three possible descriptions of the neutrino: the Weyl spinor, used to

describe the massless neutrino in the SM; the Dirac spinor, used to describe all massive

fermions of the SM; and the Majorana spinor, appropriate only for the neutrino. Only

the latter two give rise to a neutrino mass.

Particle fields represented by Majorana and Dirac spinors will be referred to as

Majorana and Dirac particles respectively.

Weyl Neutrinos

The simplest solution is to use one of the two Weyl representations. The Weyl spinors

are 2 component complex spinors denoted χL,R; the subscript is dependent on the

choice of (1/2, 0) or (0, 1/2) [102].

The Weyl action is:

SR =

∫
d4x iχ†Rσ

µ∂µχR (1.26)

SL =

∫
d4x iχ†Lσ

µ∂µχL (1.27)
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where σµ = (1, ~σ) and σµ = (1,−~σ), for Pauli spin matrices ~σ [102]. This gives rise

to the Weyl equations of motion:

σµ∂µχR = 0 (1.28)

σµ∂µχL = 0 (1.29)

(1.30)

Multiplying both of these equations by ∂0 ± ~σ · ∇ reveals the dispersion relation for

a Weyl particle: it gives the Klein-Gordon equation with m = 0:

∂µ∂
µχL,R = 0 (1.31)

this shows that the Weyl spinor represents a massless particle with E2 = p2c2. One

can also show [102] that plane wave solutions to the equation of motion have helicity

1/2 for χR and helicity -1/2 for χL. But there must be another degree of freedom, be-

cause χ has two complex components and equation 1.30 imposes only two constraints.

After quantisation, χL gives rise to right-handed anti-particles and χR describes left

handed anti-particles.

χL describes a massless spin 1/2 particle which always has helicity -1/2 and an anti-

particle which always has helicity 1/2. This is precisely the two component model

of the neutrino, but equation 1.31 means it cannot be used to describe the massive

neutrino.

Dirac Neutrinos

Massive fermions in the SM sit in the more complicated (0, 1
2
) ⊕ (1

2
, 0) representation.

This combination gives rise to a complex, four component Dirac spinor denoted

ψ0,1,2,3. The Dirac action is [102]:

∫
d4x ψ̄(iγµ∂µ −m)ψ (1.32)

where ψ = ψ†γ0 and γµ are the four dimensional gamma matrices, defined by the

Clifford algebra. The resulting equation of motion is the Dirac equation:

(i∂µγ
µ −m)ψ = 0 (1.33)

Multiplying both sides of the equation by i∂µγ
µ + m we again recover the Klein

Gordon equation:

∂µ∂
µψ +m2 = 0 (1.34)
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but this time, with a non-zero mass m.

This Dirac equation imposes 4 constraints on the spinor’s 4 complex components,

leaving 4 degrees of freedom. To investigate these degrees of freedom, its useful to

expand the Dirac equation in the chiral representation of γµ

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
(1.35)

and write the Dirac spinor in terms of two 2D spinors u+, u−:

ψ =

(
u+

u−

)
(1.36)

The Dirac equation then reads:

(
−m i∂µσ

µ

i∂µσ
µ −m

)(
u+

u−

)
=

(
u+

u−

)
(1.37)

=⇒ ∂µσ
µu+ = mu− (1.38)

∂µσ
µu+ = mu+ (1.39)

If m = 0, these are exactly the Weyl equations in equation 1.30 and the Dirac spinor

can be interpreted as two Weyl spinors of opposite handedness, coupled by a mutual

mass term. Therefore, the four degrees of freedom are therefore a left handed particle

and a right handed anti-particle from χL as well as a right handed particle and a left

handed anti-particle from χR.

Written in terms its orthogonal left and right handed components, the Dirac mass

term is:

LD = −mD(ψLψR + ψRψL) (1.40)

which again shows that both left and right handed components are required to gen-

erate a mass.

The simplest way to introduce a neutrino mass to the SM is to treat it in the

same way as the charged leptons, by promoting the neutrino to a Dirac fermion and

introducing a right handed field νR for each neutrino. This implies the existence

of two new, as yet unobserved, degrees of freedom in the neutrino field: the right

handed neutrino, and the left handed anti-neutrino. These right handed fields are

often called ‘sterile’ as they carry no SM charges. However, no neutrino is completely

sterile, because the helicity states of massive particles are mixtures of left and right

handed chiral components. The left handed Dirac neutrino is mostly active and the

right handed Dirac neutrino is mostly sterile.
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Majorana Neutrinos

In 1937, Ettore Majorana asked if a mass term could be generated using only the left

handed neutrino and right handed anti-neutrino [2]. He found that two degrees of

freedom could be removed from the Dirac field by imposing the Majorana condition:

ψ(c) = ψ (1.41)

where the charge conjugate field ψ(c) is defined by:

ψ(c) = −γ0Cψ∗ (1.42)

where C is the charge conjugation matrix. Charge conservation demands that the

Majorana condition can only hold for neutral particles, because if ψ has charge q, ψ∗

has charge −q. The only known neutral fermion is the neutrino.

It can be shown that equation 1.41 is compatible with the Dirac equation and

that it remains invariant under Lorentz transformations [2, 103], so the condition is

physically meaningful, and the spinor it applies to represents a massive particle.

A Dirac spinor that satisfies equation 1.41 is called a Majorana spinor. Writing

equation 1.41 in the chiral basis3 reveals the degrees of freedom the Majorana spinor

represents:

−iγ0Cψ∗ = iγ2ψ∗ =

(
0 iσ2

−iσ2 0

)(
χ∗L
χ∗R

)
=

(
χL
χR

)
(1.43)

=⇒
(
χL
χR

)
=

(
iσ2χ∗R
−iσ2χ∗L

)
(1.44)

So, the two Weyl components are not independent and the Majorana is simply:

ψ =

(
χL

−iσ2χ∗L

)
(1.45)

and this massive spinor has the same degrees of freedom as the massless Weyl spinor.

Written in terms of the left handed χL, the Majorana spinor leads to a left handed

particle and a right handed anti-particle.

Written only in terms of the left handed parts of the field ψL, ψ
(c)
L , the Dirac mass

term becomes the Majorana mass term:

LM = −mD(ψLψR + ψRψL) = −mL(ψ
(c)
L ψL + H.c.) (1.46)

3where C = iγ2γ0
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mL here is known as the Majorana mass. This small algebraic change has radical

consequences for its interpretation. As before, the mass is generated by coupling

between left and right handed components, but now the right handed component is

the dependent conjugate of the left handed part.

As in the Dirac case, the mass states have both left and right chiral components

but, for the Majorana neutrino, this means it has both νL and ν
(c)
L components, which

behave like the SM particle and anti-particle respectively. This should be contrasted

with the sterile-active mixtures of the Dirac neutrino. Particle/anti-particle mixing

completely removes the distinction between particle and anti-particle for Majorana

spinors.

This description seems tailor made for the massive neutrino: it has just two de-

grees of freedom and a non-zero mass. However, the model is incompatible with the

symmetry that specifies neutrino interactions, a fact explored in detail in section 1.4.1.

1.3.1 A Majorana Mass means Majorana Neutrinos

It has been shown that there are two possible descriptions of the massive neutrino:

Dirac and Majorana spinors which give rise to Dirac and Majorana masses respect-

ively. It is worth asking how these two concepts are related: can a Dirac particle have

a Majorana mass and, if yes, is it still a Dirac particle? In fact, a non-zero Majorana

mass always implies the neutrino is a Majorana particle.

The most general neutrino mass Lagrangian contains both left and right handed

neutrino fields, Majorana masses for both and a Dirac mass that couples them.

Lmass = LDmass + LLmass + LRmass (1.47)

Written in terms of the left handed chiral fields:

NL =

(
νL
ν

(c)
R

)
=

(
νL
CνRT

)
(1.48)

The Lagrangian is:

Lmass =
1

2
NT
L C†MNL + H.c. (1.49)

which defines the neutrino mass matrix M :

M =

(
mL mD

mD mR

)
(1.50)

Because this matrix is non-diagonal, it implies that νL, νR do not have definite mass.

The fields with definite mass are apparent in the basis where M is diagonal:

MD =

(
m1 0
0 m2

)
ND =

(
ν1L

ν2L

)
(1.51)
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In this basis, the Lagrangian reads:

LM+D
mass =

1

2

∑

k=1,2

mkν
T
kLC†νkL + H.c. (1.52)

defining νk = νkL + ν
(c)
kL , this becomes:

LM+D
mass = −1

2

∑

k=1,2

mkνkνk (1.53)

This is the expression for two Majorana spinors, each with its own Majorana mass.

Therefore, if the neutrino has any Majorana mass, its correct description is a Major-

ana spinor, regardless of any Dirac terms.

1.4 Neutrino Mass Mechanism

A neutrino field described by Dirac or Majorana spinors correctly attributes the

neutrino masses of the forms:

−mD(ψ̄LψR + ψ̄RψL) (1.54)

−mL(ψ
(c)

L ψL + H.c.) (1.55)

Unfortunately though, both of these terms are forbidden by the foundational principle

which describes interactions between particle fields: gauge invariance. Before the

development of electro-weak symmetry breaking theory, the indisputable evidence for

the mass of all fermions directly contradicted the theory which correctly predicted

their interactions. The theory of the Higgs field and the subsequent discovery of the

Higgs boson solved this problem for the massive fermions and vector bosons of the

SM, but the neutrino mass still evades the same certainty. The next section briefly

outlines gauge invariance in the electroweak sector, its conflict with the neutrino mass,

and the theoretical mechanisms that hint at a solution.

1.4.1 Gauge Invariance

The electroweak sector of the SM requires that physics is invariant under local trans-

formations belonging to the symmetry group SU(2)L×U(1)Y . To ensure this, each

SM field is placed in a gauge multiplet, a combination of fields that transforms accord-

ing to a particular representation of the gauge group. The choice of representation

determines the charges of each particle under the electroweak interaction and is de-

termined experimentally. These are its weak isospin I3 and its weak hyper-charge Y ,
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Field I3 Y
er 0 -2
el -1/2 -1
νl 1/2 -1

Table 1.2: Weak charges for the electron and neutrino fields.

shown for the electron and neutrino in table 1.2. The symmetry also forces the intro-

duction of four new vector fields that represent the force carriers of the electroweak

interaction. Permitting all gauge invariant combinations of these fields to the SM

Lagrangian and no others successfully describes all electro-weak phenomena.

However, a problem arises when considering the charge of the Dirac mass term in

equation 1.55 for the electron. eL and eR have different I3 and therefore the two

contributions to the Dirac mass behave differently under gauge transformations and

their sum cannot be gauge invariant. If the neutrino was promoted to a Dirac particle

it would create exactly the same problem.

Furthermore, the Majorana mass term carries a weak hyper-charge of −1 + −1 =

−2, which cannot be gauge invariant either.

1.4.2 Higgs to the Rescue

Is it possible to reconcile the success of the SU(2)L×U(1)Y model with the fact we

don’t live in a massless universe? For Dirac particles, the solution is to promote the

mass to dynamical field that carries electroweak charges: the Higgs field.

The Higgs field is a Lorentz scalar complex SU(2) doublet:

Φ =

(
Φ+

Φ0

)
(1.56)

where both components carry Y = 1, and Φ+,Φ0 carry I3 of 1/2, −1/2 respectively. If

the left handed electron and neutrino fields are written together in an SU(2) doublet:

LL =

(
νL
eL

)
(1.57)

it is possible to form a Higgs coupling to the fields, with strength g , that has no

overall charge, making it gauge invariant.

− g
(
ν̄L ēL

)(Φ+

Φ0

)
eR + H.c. (1.58)
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The significance of this term becomes apparent because, below a certain temper-

ature, the Higgs field obtains a vacuum expectation value (V.E.V):

< Φ >=

(
0
v√
2

)
(1.59)

after this, the Higgs coupling includes terms of the form:

− gv√
2

(eLeR + eReL) (1.60)

which is just the mass term in equation 1.55 with

m =
gv√

2
(1.61)

The Higgs mechanism allows the theory to have its cake and eat it too: the electron

field is massive and its Lagrangian is gauge invariant.

For a Dirac neutrino, the Higgs mechanism could generate the neutrino mass in

the same way it generates the electron mass. The coupling is:

Lmass = −gν(νRΦ̃†LL + LLΦ̃νR) (1.62)

where

Φ̃ = iτ2Φ∗γ0 (1.63)

which gives rise to exactly the same mass term as equation 1.61.

One concern with this solution is the ‘unnaturally’ small Yukawa coupling, gv, that

would be required to describe a neutrino mass of 170meV [2]4. Figure 1.9 shows the

masses of the SM particles on a log-scale; the neutrino mass is at least 6 orders of

magnitude smaller than the next lightest, the electron. This requires that the Higgs

- neutrino coupling is also 6 orders smaller, which is considered unlikely by many.

It is natural to ask if the Higgs field can also make a Majorana mass gauge invariant.

The Majorana mass term carries a charge of Y = ±2, so two copies of the Higgs field

would be required. It is simple to show that such a term is non-renormalisable5.

Therefore a Majorana mass term, mL, can only emerge as the low energy realisation

of a BSM theory.

4the largest mass allowed by cosmology
5Fermion fields carry dimension [E]

3
2 , therefore the Majorana mass term carries dimension [E]3

whilst boson fields carry dimension [E]. Two Higgs fields in the interaction term would give it
dimension 5, Lagrangian terms of dimension greater than 4 are non-renormalisable.
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Figure 1.9: SM particle masses. The neutrino ranges show the masses which are compatible with
current experimental results.

1.4.3 Effective Field Theory

Many BSM theories treat the SM as an effective low-energy theory resulting from the

spontaneous symmetry breaking of a larger symmetry group. Then, the leading order

corrections to the SM are non-renormalisable, effective low-energy Lagrangian terms,

built from SM fields and respecting SM symmetries. The highest order correction

involves the neutrino field:

L5 =
g

M(LTLτ2Φ)C†(ΦT τ2LL) + H.c. (1.64)

where M is the scale of new physics that generates the term and LL is the lepton

SU(2) doublet. When the Higgs field obtains a V.E.V., this term generates a Majorana

mass term for νL:

< Φ >→
(

0
v

)
L5 =

1

2

gv2

M ν
(c)
L νL (1.65)

with mass:

mν =
gv2

M (1.66)

Therefore Majorana neutrino masses are expected to appear in many BSM theories.

The simplest theory that generates such a mass supposes that there are right handed

neutrino fields νR with large Majorana masses, which are not forbidden by gauge

invariance.

Note that the Majorana mass decreases as the scale of new physics increases, a

feature known as the see-saw mechanism. It is significant for two reasons: first,

a large M can suppress the neutrino mass without requiring an unnaturally small

Yukawa coupling, g. Second, it means that searches for the tiny neutrino mass are,

in fact, probes of new physics at the high energy scale M.
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1.5 Leptogenisis

The Majorana neutrino is related to one of the most profound questions in modern

science: what produced the universe’s matter/anti-matter asymmetry? Cosmological

observations confirm the hot big bang theory of the universe, in which there were

equal quantities of matter and anti-matter in the early universe [104], but there is

almost no anti-matter in today’s universe.

If at one stage, there were equal components of baryon matter and anti-matter,

without an asymmetry in the laws of physics, eventually there would be exact baryon

annihilation to γ. This is almost what is observed. Our universe is full of photons but

with a tiny contamination of baryons; the Planck collaboration recently observed:

nB
nγ

= 6.1+0.3
−0.2 × 10−10 (1.67)

[105] which requires an accumulation of baryons over anti-baryons at the level of 1

part per billion before annihilation.

1.5.1 Not Enough CP violation

In 1967 Sakarov published three conditions for baryongenisis, the accumulation of

baryons over anti-baryons [106]:

1. Baryon number violation

2. C and CP violation

3. Departure from thermal equilibrium

The first condition is self-evident, the third is provided by the expansion of the

universe but the second has proved a sticking point. CP violation is observed in the

quark sector [35], but the effects are not large enough to explain the observed Baryon

asymmetry.

1.5.2 Majorana Phases

A potential solution comes from the PMNS matrix for Majorana neutrinos. The

Majorana mass term is not invariant under rephasing of the neutrino fields νL → eiθνL,

which removes the phase freedom used to eliminate two phases in the PMNS matrix

[20]. The result is two additional Majorana phases φ1,2 which become physical for

Majorana neutrinos. The Majorana and Dirac PMNS matrices UM,D are related by:
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NR
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φ

NR

l

φ

Figure 1.10: Heavy NR decay to (anti-)leptons,
(−)

l, and Higgs particles,
(−)

φ which could have driven
leptogenisis in the early universe. Diagrams adapted from [107].

UM = UD · PM PM = diag(1, eiφ1 , eiφ2) (1.68)

Like δCP , φ1,2 lead to CP violation, perhaps in the quantities Sakarhrov required.

1.5.3 Heavy Neutrino Decay

Fukugita et al. [107] proposed a mechanism for realising baryogenisis using φ1,2. If

the heavy neutrino states described in section 1.4.3 do exist, they would have be

created in the big bang. As the universe cooled, these heavy neutrinos would decay

via their Yukawa couplings to Higgs particles
(−)

φ and charged leptons
(−)

l, as depicted in

figure 1.10.

The Majorana phases lead to CP violation in this decays, so that the rate of decay

to leptons is not equal to the rate of decay to anti-leptons:

R(NR → φ+ l) 6= R(NR → φ+ l) (1.69)

this would produce a l, l asymmetry and an accumulation of matter over anti-matter

[107] called leptogenisis. It is hypothesised that the asymmetry could be transferred

to the baryon sector via so called sphaleron processes that convert baryons to anti-

leptons and anti-baryons to leptons [108].

Therefore, if the neutrino is a Majorana particle, the decay of right handed particles

in the early universe could fuel the unexplained matter/anti-matter asymmetry ob-

served today.
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1.6 Observing Majorana Neutrinos

There are several compelling reasons to look for Majorana neutrinos. First, Occam’s

razor says that they’re there. The success of the SM rests on the principle of including

all gauge invariant terms in the Lagrangian, unless some symmetry explicitly forbids

them. No symmetry prevents a heavy right handed Majorana mass, mR, which would

make the neutrino Majorana, regardless of any Dirac mass. Second, the leading

order correction to the SM in effective field theory generates a Majorana mass for

the neutrino, making it a Majorana particle. Third, the see-saw mechanism could

explain the tiny neutrino mass without resorting to a highly tuned Yukawa coupling.

Finally, the decay of heavy Majorana neutrinos in the early universe offers a promising

explanation for the universe’s matter anti-matter asymmetry. This section discusses

the possible experimental signatures of Majorana neutrinos.

1.6.1 Flavour Oscillations

A natural place to look is neutrino flavour oscillations, which are driven by the PMNS

matrix, which differs for Dirac and Majorana neutrinos.

It is natural to look for differences in neutrino flavour oscillations produced by the

additional Majorana phases φ1,2. However, there is a well known argument [20, 109]

that shows that these phases can have no effect on oscillations. Equation 1.11 showed

that the flavour oscillation probability depends only on the combination UTU †, where

T is the mass basis representation of the time evolution operator (equation 1.12) and

U is the PMNS matrix. This combination is equal for Dirac and Majorana neutrinos:

UMTUM
† = UDPMTP

†
MUD

† = UDTUD
† (1.70)

so, there can be no observable differences in neutrino oscillation phenomena between

Dirac and Majorana neutrinos. This argument can be extended to show the same

result for oscillations in matter and for additional numbers of neutrino fields [110].

1.6.2 Lepton Number Violation

A second, more promising, possibility comes from the Majorana mass term. After

second quantisation, the term ψ
(c)
L ψL leads to a vertex that creates two (anti-)neutrinos,

changing the overall lepton number by ±2. Clearly, lepton number is no longer a good

quantum number in a universe with Majorana neutrinos, whereas lepton number is a

conserved quantity in the SM.
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W+∗ ν

e+

L W−∗
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Figure 1.11: A hypothetical νe → ν̄e Majorana neutrino experiment. The production of two same-
sign leptons is a signature for lepton number violation. The process is possible for Majorana neutrinos
but not Dirac neutrinos.

Section 1.3 showed that there is no distinction between particle and anti-particle for

a Majorana spinors. Therefore, Majorana neutrinos produce processes in which a SM

ν-like particle later behaves like a SM ν. Figure 1.11 shows a cartoon of an experiment

to look for this behaviour. It produces νe and then looks for νe-like creation of e+

some time later. Observing e+ is a positive signal for Majorana neutrinos. To see why,

it is useful to consider the helicity of the intermediate neutrino. For both Dirac and

Majorana neutrinos, the νe created in the first vertex almost always has left handed

helicity, because the weak interaction couples only to the left handed chiral part of

the field. However, differences emerge between the two in the rare case that the νe is

created with right handed helicity. In the Dirac case, the right handed νe is almost

completely sterile and will not interact at all but, for a Majorana neutrino, the right

handed
(−)

νe will behave as if it were a SM νe, possibly creating an e+.

Though this experiment works in principle, the problem is that the creation of the

right handed helicity neutrino is suppressed6, for both Majorana and Dirac neutrinos,

by a factor of (mν/Eν)
2. Given the produced neutrinos must have at least 0.5MeV

to create the second charged lepton and the neutrino mass is < 1eV, this is at least:

(m1

E

)2

<

(
1eV

500keV

)2

= 4× 10−12 (1.71)

which requires a completely infeasible neutrino flux and background rejection.

The next section describes neutrinoless double beta decay, an analogous nuclear

decay process. There, helicity suppression is overcome with Avagadro’s number, by

amassing a very large number of nuclei.

1.7 Neutrinoless Double Beta Decay

In this final section outlines the only viable experimental signature for Majorana

neutrinos: the possibility of neutrinoless double beta decay (0νββ). It describes

6This is just the same helicity suppression that causes π± to decay predominantly to µ.
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Figure 1.12: β and ββ transitions for even A nuclei. The blue lines show the trend in nuclear energy
(isobars); the black dots show example nuclear energies. For some even-Z, even-N nuclei β decay is
forbidden, but double beta decay (ββ) is allowed.

contemporary searches for it and introduces the SNO+ experiment, the focus of this

work.

1.7.1 Double Beta Decay

Figure 1.12 is a cartoon showing the trend in atomic mass isobars for even A nuclei.

The odd-Z, odd-N nuclei sit higher in energy than the even-Z, even-N nuclei because

paired nucleons are more strongly bound.

β± decay occurs when a nucleus can lower its energy by altering its Z by ± 1,

moving left/right across the diagram. A proton is converted into a neutron (or vice

versa), emitting an electron and a neutrino:

(Z,A)→ (Z ± 1, A) + e∓ +
(−)

νe (1.72)

For some nuclei, e.g. the one at Z - 2, β± decay raises the energy and is forbidden.

However, some of these nuclei can transition to a lower energy by simultaneously

undergoing two β± decays. This is double beta decay (2νββ), first proposed M.

Goeppert-Mayer in 1935 [111]. During a double beta decay, the nucleus emits two

electrons and two anti-neutrinos, changing its Z by two units:

(Z,A)→ (Z ± 2, A) + 2β∓ + 2
(−)

νe (1.73)

and releasing total kinetic energy Qββ
7:

Qββ/c
2 = m(Z,A)−m(Z,A± 2)− 2me (1.74)

7neglecting the neutrino mass.
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Figure 1.13: Quark-level Feynman diagram for 2νββ.

Figure 1.13 shows the quark level Feynman diagram for 2νββ. It is a second or-

der weak process which will be sub-dominant to single β decay when the latter is

kinematically allowed.

There are 35 known naturally occurring nuclei that could undergo 2νββ [35, 112]

but, in practice, the decay can only be observed in those isotopes for which single β

and α decay are forbidden or strongly suppressed8. Like the hypothetical example in

figure 1.12, those nuclei are all even-even → even-even transitions.

First directly observed in 82Se in 1987 by Elliot, Hahn and Moe [114], there are

now 20 measured double beta isotopes [35]. 130Te, which is the focus of the SNO+

experiment, has a measured 2νββ half-life of 8.2±0.2(stat)± 0.6(sys)× 1020yr [115].

1.7.2 Neutrinoless Decay

In 1948, Furry proposed that double beta decay could proceed without the emission

of neutrinos, leaving just two electrons in the final state [116, 117]:

(Z,A)→ (Z,A± 2) + 2 β∓ + 0
(−)

νe (1.75)

Clearly this process violates lepton number by ∆L = ±2, and cannot occur in the

SM. However, if neutrinos are massive Majorana particles, neutrinoless double beta

decay (0νββ) is possible, if mediated by a virtual Majorana neutrino, as shown in

figure 1.14.

In fact, the converse is also true: the existence of 0νββ decay implies that neutrinos

are Majorana particles, regardless of the mechanism. This is proven by the black-

box theorem [118, 119], depicted in figure 1.15. The argument states that if 0νββ is

possible, one can always draw Feynman diagram whose overall effect is 2d→ 2u+2e−

with an unknown vertex (left). This vertex can always be re-arranged to create

8The exception is the α emitter 238U for which the half-life was measured radio-chemically [113]
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Figure 1.14: Quark-level Feynman diagram for 0νββ via light neutrino exchange.
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Figure 1.15: Quark-level Feynamn diagrams for the black box theorem. Left: a general 0νββ
mechanism. Right: the resulting Majorana mass term generated. The shaded region shows the
overall effect of new physics.

ν → ν transitions (right), which generate a Majorana mass term of the form given

in equation 1.55, which, in turn, implies that the neutrino is a Majorana particle, by

the argument given in section 1.3.1.

The black box theorem is important because the Feynman diagram shown in fig-

ure 1.14 is only the most popular of many possible 0νββ mechanisms predicted by

beyond the standard model theories. Alternatives emerge in extra dimension the-

ories, models with leptoquarks, R parity violating super-symmetry, and left-right

symmetric models [120]. Indeed, several mechanisms may contribute and interfere.

Of particular importance in this work are the right-handed currents which emerge

in left-right symmetric theories. These theories posit that the electro-weak interaction

is left-right symmetric at high energies. This symmetry is spontaneously broken by

a Higgs field, at a temperature above the electro-weak symmetry breaking scale,

to produce massive right-handed gauge bosons, massive right-handed neutrinos and
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Figure 1.16: Feynman diagram for 0νββ via heavy neutrino exchange with right-handed currents.

an expanded Higgs sector. The interactions of these particles give rise to several

alternative 0νββ diagrams. In the simplest models, the right-handed current diagram

shown in figure 1.16 is expected to dominate [120].

1.7.3 0νββ Rates

The rate of neutrinoless double beta decay depends on both the nuclear physics

of the transition, and the particle physics in figure 1.14. For the light neutrino

exchange mechanism, the particle physics contributes a term proportional to the

effective Majorana mass of the neutrino mββ:

mββ =
3∑

k=0

U2
ekmk (1.76)

which can be easily read off from figure 1.14. The two factors of Uek come from the

fact that the weak interaction projects out only the νe component of the neutrino, the

sum over mass states k comes from that fact that any of the three massive neutrino

states could be exchanged, and mk comes from helicity suppression: one of vertices

must create a left handed ν, so that it may be absorbed at the other. This suppression

means 0νββ will have far lower rates than 2νββ for realistic values of mk.

The nuclear and particle physics contributions are separable to good approximation,

so the half-live may be written as the product of the nuclear matrix element M0ν ,

the phase space of the decay G0ν and mββ normalised to me [121]:

1

T1/2

= G0ν ||M0ν ||2
( |mββ|

me

)2

(1.77)

mββ, as stated in equation 1.76, hides a lot of complexity. It depends on all three of

the absolute neutrino masses and the elements of the PMNS matrix, including the

unknown Majorana phases φ1,2. Figure 1.17 shows mββ as a function of the lightest
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Figure 1.17: mββ as a function of lightest neutrino mass [122]. IH/NH indicate the inverted/normal
hierarchy. mmin is the (partly constrained) lightest neutrino mass; mββ is the effective Majorana
mass. The bands represent increasing uncertainty in the neutrino mixing angles and mass splittings,
as well as the (unknown) Majorana phases.

neutrino mass. The shaded region shows the possible values of mββ, allowing for

φ1,2 ∈ [0, 2π] and 1-5σ variation the mass splittings and mixing angles. There is a

strong dependence on the hierarchy below a degenerate regime9, mmin < 0.1eV, where

0νββ rates are 2-4 orders of magnitude lower for the normal hierarchy. There is also

the possibility of complete cancellation between terms in equation 1.76 for the normal

hierarchy and a lightest neutrino mass of around 4meV.

The Feynman diagram for 0νββ is related to the hypothetical Majorana neutrino

experiment discussed in section 1.11 by a simple rotation, so it’s worth asking what

makes this experiment any more feasible. The answer is that it is possible to amass

many more nuclei of 2νββ isotope than the number of ν that could be produced in a

collider, and, rather than wrong sign beam contamination, the dominant background

is now low energy radioactivity which can be suppressed using many established

techniques.

However, introducing nuclear physics comes with two costs. First, the quantity

of interest mββ is proportional to the square root of the observable T1/2 which leads

to poor sensitivity scalings. Second, there is considerable uncertainty in the values

of M0ν , which limits mass measurements and makes comparison between isotopes

difficult. Figure 1.18 shows a recent review of the field; there is a factor 3 uncertainty

for 130Te [121].

9part of which is not ruled out by cosmology
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Figure 1.18: Nuclear matrix elements for 0νββ isotopes in a range of popular models. Upper: the
predicted nuclear matrix elements. Lower: the overall constant of proportionality that relates T 0ν

1/2

(measured) to m−2
ββ (the quantity of interest). [121]

Kamland-Zen currently holds the most stringent limit on mββ measured with 136Xe

[123]:

mββ < 61-165 meV at 90% confidence (1.78)

where the range reflects uncertainty on the nuclear matrix element of 136Xe. Most of

the mββ range allowed by cosmology is unexplored.

1.7.4 Experimental Signature

2νββ and 0νββ produce the same amount of kinetic energy10, Qββ, but they differ

in the number of particles in the final state. The recoil energy of the heavy nucleus

is negligible. So, in 2νββ, Qββ is shared between four light particles. The neutrinos

typically escape detection, so the total visible energy from the electrons has a con-

tinuous spectrum with an end point at Qββ, see figure 1.19. However, in 0νββ, the

electrons take all of the energy and the visible energy is fixed at the end point of the

2νββ spectrum. Therefore, the experimental signature is an excess of two-electron

like events at Qββ.

10ignoring the neutrino mass
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Figure 1.19: A cartoon of the visible kinetic energy spectra of 2νββ (normalised to 1) and 0νββ
(normalised to 10−2, 10−6 in the inset) [124]. 5% Gaussian energy resolution assumed.

0νββ is a three body decay, so there is no kinematic constraint on the separation

or energy split between the two electrons. Rather, the distribution depends strongly

on the underlying particle physics mechanism. Figure 1.20 compares the cosine of the

angle separating the electrons and the fraction of the energy going to the first electron

for the light neutrino exchange and the right handed current mechanisms [125].

1.7.5 0νββ Experiments

At the maximum allowed mββ of around 100meV, SNO+ would expect just 2.5

counts/100kg/yr of 0νββ in natural Te11.

In these circumstances, what makes a good 0νββ experiment? For a simple count-

ing experiment using Nββ nuclei of double beta isotope, we typically set up a signal

region around Qββ, constrain the rate of background counts expected, rB, during

live-time, t, and the signal detection efficiency, ε. Then, count the number of events

actually observed in the signal region and use it to derive a confidence limit on the

decay half-life. For a background limited experiment, the expected classical 90%

confidence limit is 12:

T 90%
1
2

=
ln 2

1.28
√
rB
· ε ·
√
t ·Nββ (1.79)

11assuming G0ν = 3.96× 10−14, M0ν = 4.03
12in the limit that the number of background counts is Gaussian
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Figure 1.20: Model dependence for 0νββ decay kinematics. Left: the cosine of the angle separating
the emitted electrons (MC truth). Right: the fraction of the total energy release taken by electron
1 (arbitrarily chosen). Generated using RAT 6.1.6, which implements the distributions in [125].

so, 0νββ experiments require large quantities of 2νββ isotope and low backgrounds.

Typically, Qββ is in the range 0− 5MeV, so the background can be dominated by

natural radioactive decays [112]. Air and water typically have activities of ≈ 3× 1010

counts/100kg/yr [126] of 222Rn alone, 10 orders of magnitude above the expected

signal.

The 2νββ background is also a major concern. Finite energy resolution both widens

the 0νββ signal region and smears the much larger, steeply falling 2νββ spectrum

into it. This compound effect means that the expected 2νββ counts a is non-linear

function of energy resolution. For Gaussian smearing of width σE [124, 127].

B2ν ∼ σ5.5
E (1.80)

For these reasons, 0νββ searches tend to focus on extreme radio-purity and min-

imising energy resolution [128].

Choice of Isotope

The choice of isotope is also key to determining the size of the 0νββ signal and the

expected backgrounds.

There are three considerations in determining NI : the procurement cost, the nat-

ural abundance and the enrichment cost. A high isotope abundance means greater

Nββ, without the expense, engineering challenge and additional background of a larger

detector. Typically isotope enrichment is expensive >10$ g−1 [127], so a reasonable

natural abundance is critical.
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Experiment Isotope Isotope Mass/kg Technology
FWHM Energy Resolution

at Qββ

Particle ID Latest Limit (90% confidence) Reference

CUORE 130Te 206 Crystal Bolometer 7.7± 0.5keV - 1.5 ×1025 [129]

GERDA 76Ge 35 Segmented Germanium Detectors 2.7keV Pulse shape discrimination 8.0 ×1025 [130, 131]

EXO-200 136Xe 160 Time Projection Chamber 35 Single/multi-site discrimination 1.1 ×1025 [132]

NEMO-3

100Mo

82Se

116Cd

130Te

150Nd

96Zr

48Ca

6.9

0.9

0.4

0.5

37(g)

9

7(g)

Tracking Calorimeter 108 (at 3MeV) Full tracking

4.6 ×1023

1.0 ×1023

5.0 ×1021

5.0 ×1022

9.2 ×1021

2.0 ×1022

[133]

[133]

[134]

[135]

[136]

[137]

[138]

Table 1.3: Summary of low background 0νββ experiments.

The nuclear physics of the isotope also determines the expected signal size. Isotopes

with larger 0νββ nuclear matrix elements and phase space factors produce larger

0νββ signals for the same mββ. Given any search can be limited by the 2νββ mis-

reconstructions, in practice, the ratios ||M
0ν ||

||M2ν ||
G0ν

G2ν are also important.

The position of the end point, Qββ, has three major impacts. First, a larger energy

releases are associated with larger phase factors. Second, a larger energy release will

be easier to detect with high efficiency. Third, if the end point lies many resolution

widths away from any natural radioactivity, 0νββ events will be easy to discrim-

inate from the radioactivity that is impossible to completely remove from detector

materials.

Technology

Many orders of magnitude in mββ are still allowed by experiment so, to stand a good

chance of discovering 0νββ, the sensitivity of experiments must scale well with expos-

ure. Unfortunately, equation 1.79 shows that, for a background limited experiment,

the half-life sensitivity only increases with the square root of the live-time. Further-

more, if the dominant background scales in proportion to the amount of 2νββ isotope,

the sensitivity only increases as ∝
√
Nββ as the size of the detector increases. Worse

still, because T1/2 ∝ m
−1/2
ββ , the expected limit on mββ scales ∝ t−

1
4 , and ∝ N

− 1
4

ββ if the

background scales with the signal. 0νββ experiments fall into two broad categories,

divided by their approach to dealing with this terrible scaling law.

The first approach is to aim for an experiment with close to zero background,

using very fine energy resolution and/or particle ID techniques that can reject back-

ground. If achieved, the half-life sensitivity increases linearly with exposure and

mββ ∝ (tNββ)1/2, albeit at the cost of densely instrumented detectors that are of-

ten difficult to scale in Nββ. A non-exhaustive list of such experiments is given in



1.7. Neutrinoless Double Beta Decay 39

table 1.3. The next generation of these experiments targets the inverted hierarchy

regime of mββ. Only NEMO-3, and its successor SUPERNEMO [139], are sensitive

to the underlying 0νββ mechanism via individual tracking the two emitted electrons.

The alternative approach is to aim for a large and easily scaled Nββ, even at the

cost of accepting some background. If the dominant component to this background

does not scale with Nββ, one can still achieve sensitivity gains ∝ N
− 1

2
ββ , though im-

provements with live-time are only t−
1
4 .

This approach was pioneered by the Kamland-Zen experiment [123]. The detector

uses Xe-loaded liquid scintillator, containing 340kg of 136Xe in a balloon placed inside

the Kamland detector. The energy resolution is much wider at 270keV FWHM, so

their energy region of interest contains significant contamination from 2νββ and 214Bi

originating on the balloon, but the isotope mass can be scaled up by increasing the

enrichment or Xe doping.

The SNO+ experiment, the focus of this work, is pursuing the same background

limited, large 2νββ mass approach. The SNO detector will be filled with liquid scin-

tillator and loaded with 2νββ isotope [140]. 130Te is the chosen isotope: at 34%, it has

by far the largest natural abundance of any 2νββ emitter, after 130Xe it has the second

best expected ratio of 2νββ to 0νββ [127] and it is transparent in the wavelength

region detectable by the SNO PMTs [141]. The Q-value of 130Te is 2.5MeV; in this re-

gion, the dominant radioactivity is 212/214Bi, which may be rejected using the delayed

coincidence technique. Favourable scaling with isotope mass will be achieved by in-

creasing the loading fraction of Te until the 2νββ background dominates. The SNO+

experiment is described in detail in the following chapter.



Chapter 2

The SNO+ Experiment

The SNO+ experiment will retrofit the SNO detector [59], replacing its heavy water

target with a liquid scintillator one. The SNO detector has several features that are

ideal for new investigations. First, its location 2km underground in the Creighton

Mine, Sudbury, Canada ensures a muon flux of just 0.27µ/m2/day [142]. Second, it

still has the highest photo-cathode coverage of any kTonne scale water Cherenkov or

liquid scintillator detector [59, 143, 39, 144]. Finally, the experiment now sits within

SNOLAB, a multi-purpose laboratory providing excellent infrastructure for providing

the radio-purity that is critical to many rare process searches.

Transitioning from a water Cherenkov detector to a liquid scintillator one provides

several advantages. First, organic scintillators are non-polar and therefore purifiable

to 1000 times smaller concentrations of radio-impurities than water [145, 59]. Second,

organic scintillators produce more photons per MeV of deposited energy than Cher-

enkov emission in water by as much as 50x. This makes it possible to lower the

trigger threshold to sub-MeV energies, and to achieve energy resolutions of a few

%·
√

(E/MeV) [144, 143].

To facilitate the transition, the detector has been fitted with ‘hold down’ ropes to

counter the buoyancy of the scintillator relative to its water bath shield and the DAQ

system has been upgraded for the increased light yield and higher event rates, as well

as to accept the broader time profile expected [140].

The experiment will progress through 3 phases, filling the target volume first with

water, then pure liquid scintillator, then, finally, tellurium loaded liquid scintillator

[140]. The primary goal of the SNO+ experiment and the primary concern of this

work is the search for 0νββ in 130Te. Here, the significance of the initial two phases

is their potential to provide constraints for the final Tellurium phase but they have a

physics reach of their own that is better described elsewhere [140].

40
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This chapter describes the SNO+ hardware as an extremely sensitive photon counter,

reviewing the creation and propagation of optical photons inside it. A brief overview

of the expected calibration campaign explains how unknowns in the detector model

are constrained and, finally, the detector simulation used to apply that model to a

search for 0νββ is discussed.

2.1 Detector

Optical photons created in the detector centre propagate outwards until they reach

photon detectors which record their arrival times. The SNO+ detector is organised

as a series of near concentric spheres around a central target, to maximise photon

detection probability. Figure 2.1 shows a cross section; working inwards it shows

[59, 140]:

• Cavity: This 22 x 34m cylindrical void houses 7 kTonne of ultra-pure water

(UPW). The water shields the detector from radiation originating in the sur-

rounding rock and provides buoyancy to support it (external water onwards).

• Photomultiplier Tubes (PMTs) and PMT support structure (PSUP):

The PSUP is a geodesic sphere of radius 8.8m built from triangular panels, each

supporting 10s of PMTs. The PSUP itself if supported by cables running to

the cavity walls and ceiling.

• Hold up and hold down ropes: These exist to offset differences in buoyancy

between the target and the surrounding water shield. The hold-up ropes exis-

ted to support a heavy water target in the SNO experiment. The hold-down

ropes prevent the new, positively buoyant, liquid scintillator target from floating

upwards.

• Acrylic vessel (AV): The AV is an optically polished sphere, 5.5cm thick and

12m across, which houses the water/liquid scintillator targets. It is filled via a

6.8m long cylindrical neck at its north pole.

• Cover gas: The SNO cover gas system was upgraded to meet more stringent

requirements for liquid scintillator. The detector is now kept isolated from

the laboratory air by radon tight buffer bags filled with high purity nitrogen

gas. The system sits between the upper surface of the external water and the

laboratory above. The system is designed to reduce radon contamination by a

factor of 105 [140].
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Figure 2.1: A cut through of the SNO+ detector showing the PMT array, acrylic vessel, hold
up/down ropes, the surrounding rock cavity and the deck above [146].
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Figure 2.2: Left: Cross-section of the r1408 PMT. The seven dynodes are shown as solid horizontal
lines, the anode is the ‘U’ at the bottom and the focussing grid is the dashed line above the dynodes.
Right: Cross-section of the PMT with attached concentrator. Measures in cm. [59]

2.2 PMTs

The basic detection unit of the SNO+ detector is the Hamamatsu 8” r1408 PMT

shown in figure 2.2. A PMT uses the photo-electric effect and charge multiplication

to perform single photon counting. The main structure is glass containing a vacuum

[147]. The inner surface of this glass is coated with a thin caesium bialkali film [147]

called the photo-cathode. The glass is held at ground potential, whereas the anode

at the base is held at 1700 - 2100 V, creating a strong field inside the PMT. The

dynode stack consists of 7 metal plates, coated with a secondary emissive material

and horizontally stacked into a ‘venetian blind’. Together they form a potential

divider circuit, which steps up the voltage from ground to the anode potential.

A photon incident on the photo-cathode can create a photo-electron (p.e.). Electric

fields within the main volume accelerate any created p.e. towards the central dynode

and focus them onto the stack. Potential differences accelerate electrons through the

stack and, at each stage, the total charge is multiplied by secondary electrons created

in collisions with the plates. This magnifies the current into a measurable signal that

is fed out to an external ‘base’ circuit at the anode.

Originally installed for the SNO experiment, these PMTs are now far from the state

of the art. What follows is a non-exhaustive review the r1408 features of significance

for the studies to follow.
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Figure 2.3: Combined collection and quantum efficiency as a function of wavelength for the Hama-
matsu r1408 PMT. Each line shows an individual r1408 PMT. [148]

2.2.1 Efficiency

Two factors contribute to the PMTs efficiency in converting photons into charge

pulses: the quantum efficiency and the collection efficiency. The first is the efficiency

in creating p.e. that escape the photo-cathode, the second is the efficiency in collecting

them. i.e. what fraction of p.e. are successfully magnified down the dynode stack.

Figure 2.3 shows the combined efficiency of 4 r1408 PMTs [148] as a function of

wavelength. On average, the peak efficiency is around 13.5% at 440nm.

2.2.2 Timing

One important characteristic is the PMT transit time: the time between light in-

cidence on the photo-cathode and the time the resulting current pulse reaches its

maximum. The absolute value of the transit time determines an offset on all PMT

hits and is therefore unimportant here. However, the jitter on this transit time, com-

monly referred to as the transit time spread (TTS), is more important because it leads

to ambiguities: is an early charge pulse the result of an early photon or a shorter than

average transit time?

Figure 2.4 shows the transit time distribution for the r1408. The dominant ‘prompt’

peak has a FWHM of 3.7ns. The sub-dominant early peak is ‘pre-pulsing’: cases where

photons have passed through the photo-cathode but created a p.e. directly on the top

of the dynode stack. Later ‘late-pulsing’ peaks arise when p.e. elastically scatter on

the first dynode back towards the photo-cathode, only creating secondary electrons

when they arrive at the top of the stack a second time.
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Figure 2.4: The transit time response of a typical Hamamatsu r1408 PMT, taken from the RAT

simulation, originally measured by P.Skensved.

2.2.3 Charge

Even with no incident photons, PMT produce current at their base. In SNO+, real

p.e. are distinguished from this ‘dark current’ using the total charge deposited at

the base. Figure 2.5 shows the single p.e. and dark current spectra for the r1408. A

threshold is set at roughly 1/4 of the average charge deposited by a single electron,

determined for each PMT separately. When this threshold is crossed the PMT is

considered ‘hit’. In this configuration, around 25% of real p.e. are lost, incorrectly

labelled as noise, and the PMTs cross threshold on noise at a rate of 500Hz [59].

In principle, the total charge deposited can also used to estimate the number of p.e.

arriving in a single PMT. Figure 2.5 shows the distribution of the total charge (in

ADC counts) read out at the anode, for 1 - 4 p.e. created in the PMT during a 400ns

period. Unfortunately, at low numbers of p.e., it is near impossible to discriminate

to better than ± 2 p.e. from charge alone.

2.2.4 Arrangement

Photons can only be detected if they hit a PMT, so the 9700 PMTs are arranged

on the PSUP facing inwards to maximise photo-cathode coverage of the 4π solid

angle, as viewed from the detector centre [59]. In addition, each PMT is fitted with

a ‘concentrator’, a bucket built from reflective petals and placed in front of the PMT
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Figure 2.5: Charge performance of the Hamamatsu r1408 PMT. Left: the single p.e. spectrum with
dark noise [59], typical thresholds are 9 counts above pedestal. Right: analytically calculated multi
p.e. charge responses [149].

.

face (see figure 2.2). These concentrators increase the photo-cathode coverage from

31% to 59% by area [59]. Of course, the reflectors are not 100% reflective, and so

the effective coverage is around 54% [140]. Moreover, the concentrators aged during

SNO, reducing the effective coverage to 49%, and around 400 PMTs failed, leaving

around 9300 active PMTs [140].

There are also 4 PMTs surrounding the neck to help veto events occurring inside

it, and 91 outward looking PMTs to veto events from high energy particles, mostly

muons, passing through the external water.

2.3 Data Acquisition System (DAQ)

The DAQ system is responsible for reading out the time and charge of PMT hits and

grouping them into events. Most simply, this is achieved by constantly buffering the

data associated with each PMT hit, until a global trigger arrives to collect it or a reset

time elapses and it is discarded. Global triggers (GT) are issued on the coincidence of

several PMT hits, determined by the analogue sum of trigger signals issued by each

PMT that crosses threshold. The next sections describe the most important parts of

this system’s implementation1.

1A more complete description of the SNO DAQ may be found in [59]. The SNO+ upgrades are
described in [140].
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2.3.1 PMT Interface

Each PMT is connected by a single cable that both supplies the high voltage and

carries charge signals from the PMT: this is an electronics ‘channel’. The 9728 chan-

nels are divided into groups of 512 channels, each managed by one of 18 identical

electronics crates.

A single crate contains 16 PMT interface cards (PMTIC), with 4 attached paddle

cards. Every channel meets the crate at one of these paddle cards, giving 8 channels

per paddle, 32 per PMTIC.

The role the PMTIC is two fold. First, it controls the high voltage supply to each

PMT via 4 relays that control the supply to 8 PMTs at a time. Second, it collects

signals from the 32 PMTs and forwards them on to the readout system.

2.3.2 Readout

Inside the crate, each PMTIC has an associated front end card (FEC) which, mirror-

ing the PMTIC paddles, connects to 4 daughter boards (DB), each responsible for 8

channels. Signals passed from the PMTIC arrive at one of these 4 DBs.

The DB are responsible for discrimination and integration of the PMT signals.

Each is fitted with two four channel discriminators, two 8 channel integrators and

8 1 channel CMOS chips. If an input signal crosses a channel’s threshold, a hit is

registered and a time-to-analogue-converter (TAC) inside the channel’s CMOS chip

starts. At the same time the input signal is passed into two of the integration channels,

one high gain and one low gain, which integrate over short and long time intervals

(60 and 390ns respectively).

If a global trigger arrives, the TAC stops and, after the integration time is complete,

the charge and time (relative to trigger) is saved to analogue memory cells in the

CMOS chip and a ‘CMOS data available’ flag is set. A hex ID number for the GT

(GTID) and status flags for the hit are saved in digital memory. If no GT arrives

within 410ns, the data is not saved and the TAC resets automatically.

The FEC card itself contains a sequencer, analogue to digital converters (ADCs),

and FIFO memory. The FEC sequencer continuously polls all of the data available

flags. If a flag is set, the sequencer pulls the hit data from memory and sends it to

an ADC for digitisation. The output is a PMT bundle: three 8 bit words containing,

among other things, the GTID, addresses for the PMT, the digitised charge integrals

and hit time. This bundle is pushed into the FIFO and a ‘FEC data available’ flag is

set.
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Each crate also contains a single XL3 card, connected to each of the FECs via a

backplane. One major responsibility of the XL3 card is to monitor the FEC data

flags, retrieve the PMT bundles from the FEC and bus them over Ethernet to a

dedicated server.

2.3.3 Trigger

When a channel crosses threshold its DB injects analogue signals into several trigger

sums. The sum is performed at the crate level by a dedicated crate trigger card

(CTC). Each CTC, in turn, passes its total on to 7 MTC/A+ boards where they are

combined into a detector wide sum. Each MTC/A+ is equipped with three amplifiers

and three corresponding discriminators with adjustable thresholds. If one of these

discriminators fires, a signal is passed on to the MTC/D. The MTC/D compares this

trigger type against a programmable mask. If masked in, the MTC/D issues a GT

latched to its 50Mhz clock. The trigger gate is 400ns long, collecting all of the hits

registered in the 400ns before its arrival. After a GT is issued, there is a 420ns lockout

during which no further GTs may be issued.

The main workhorse physics trigger is N100. For this trigger each PMT hit issues

a square pulse of length 100ns and equal height. Thresholding on the sum of these

pulses detects coincidences of a set number of hits within a 100ns window.

The MTC/D can force individual channel discriminators to fire (PED) or manually

issue global triggers (PULGT) and synchronously/asynchronously accept external

triggers from calibration sources.

2.4 The Target

The SNO+ collaboration has selected Linear Alkyl Benzene (LAB) as its primary

scintillator. It has excellent light levels [150], good α − β discrimination [151], it

is compatible with acrylic [140] and it is extremely cheap. At the time of writing a

purpose built scintillator plant is being commissioned to purify the required 782 tonnes

of LAB underground [140, 152]. The plant uses the same techniques as the Borexino

plant [145, 152] and similarly targets purification levels of 10−17 g of uranium/thorium

chain contaminants per g of LAB. At the end of the water phase, scintillator will be

fed in to the top of the AV, gradually replacing water removed from pipes at its base.

One of the biggest experimental challenges for SNO+ is loading the tellurium into

the liquid scintillator. This is difficult for exactly the same reason that the scintillator

is easy to purify: its non-polarity. Furthermore, the loading must be done in a
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way that is compatible with acrylic and other detector components, that is safe for

underground laboratories, and which preserves the optics and radio-purity of the

scintillator.

This will be achieved by first manufacturing an organometallic complex of Tellurium

with 1,2 butanediol (Diol and TeDiol onwards). TeDiol is soluble in LAB, highly

transparent, compatible with acrylic and it can be easily purified with distillation

[153, 141].

The tellurium is procured as telluric acid (TeA). After purchase, the TeA will be

shipped underground where it will be purified with acid-base extraction using nitric

acid and synthesised into TeDiol.

Phase I of SNO+ will load 0.5% tellurium by mass into the scintillator volume

using 1.03% Diol (8 tonnes).

2.5 Optics

SNO+ is an extremely sensitive probe of light created in its target volume. Relating

these detected photons to the energy, position, time and type of particles producing

them requires an understanding of the production, propagation and absorption of

optical photons at the MeV scale. The next section examines each of these processes

in turn, starting with the production of Cherenkov and scintillation light.

2.5.1 Cherenkov Radiation

A charged particle travelling through a dielectric medium will emit Cherenkov radi-

ation if its speed exceeds the local phase velocity of light. Photons are emitted from

a shock in the polarisation field of the medium.

As a charged particle traverses the medium it polarises it. This is true at any speed,

but the result is drastically different depending on whether the particle is faster or

slower than the local light speed.

The left hand diagram in figure 2.6 shows the case where the speed of the particle

is slow compared with the speed of light. Here the polarisation field has time to

compensate for the particle motion and remains symmetric around the particle centre.

Viewed at a distance, there is no overall dipole associated with the particle2.

However, if the particle moves faster than the phase velocity of light (figure 2.6,

right), the field does not have time to fully compensate for the motion of the particle

2Molecular sizes are 2-3 orders of magnitude larger than the wavelength of optical light and so
dipoles of varying orientation average to zero.
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Figure 2.6: Polarisation of a dielectric by a passing charged particle. Left: sub-luminal speed, right:
super-luminal speed [154].

Figure 2.7: Huygens’ principle for Cherenkov wavelets [154].

and so, viewed instantaneously, there is an overall dipole along the direction of motion

in the region around it. As the particle passes through the medium, sections of it

gradually polarise and de-polarise by this mechanism and radiate as an oscillating

dipole would, with intensity ∝ sin2 θ w.r.t the dipole axis.

Adding up the wavelet contribution of each of the regions according to Huygens

principle shows that light is emitted in a forward cone around the direction of particle

motion, known as a Cherenkov cone, shown in figure 2.7.

The opening angle the cone, θC , for wavelength λ is fixed by the particle velocity

v and the refractive index of the medium n

cos θC(λ) =
1

n(λ)

c

v
(2.1)
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Figure 2.8: Cherenkov photons in LAB. Left: emission times for 2.5MeV electrons in LAB, right:
number of Cherenkov photons as a function of electron energy.

provided v > c ·n(λ). As v → c, this converges on arccos( 1
n
), which is 0.76 for optical

photons in LAB.

Emission begins immediately and continues until the particle velocity drops below

c/n. For 2.5MeV electrons in LAB, the light is emitted within 60ps (figure 2.8). This

is drastically less than the FWHM of the PMT TTS, so the emission is effectively

instantaneous.

The Frank-Tamm formula gives the number of emitted photons per unit track

length, Nγ, per unit energy loss energy E, produced by a particle with β = v/c

travelling though a material of refractive index n and permeability µ:

d2Nγ

dx dE
=
α2Z2

~c
µ(E)

(
1− 1

β2n(E)2

)
(2.2)

This can be integrated over the length of the particle track with Monte Carlo. Fig-

ure 2.8 shows just that for 2.5MeV electrons in LAB; above 0.5MeV, around 610

Cherenkov photons are produced per MeV of kinetic energy; below 1MeV there is

significant non-linearity.

For both water and liquid scintillators µ(E), and n(E) are approximately constant

in the optical range spectrum so the number of photons falls towards the red end of

the spectrum:

N(E) ∼ constant =⇒ N(λ) ∼ 1

λ2
(2.3)

2.5.2 Scintillation

Scintillation is an example of fluorescence: light emitted after a non-thermal excitation

produced by ionizing radiation. The short (ns to µs) decay times of fluorescence

distinguish it from, slower, phosphorescence (ms to s).
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Figure 2.9: Jablonski diagram of molecular π orbitals in a scintillating organic liquid [155].

Organic liquids containing aromatic rings scintillate via the excitation and relaxa-

tion of highly de-localised electrons within those rings. The planar geometry of the

ring leads to sp2 hybridisation in the constituent carbons, whereby the states that

overlap to form the primary σ-bonds between carbons are superpositions of the s

orbital (L = 0) and two of the three p orbitals px, py (L = 1). This leaves the pz or-

bitals, pointing perpendicular to the plane of the ring, to overlap and form secondary

π-bonds. These π bonds are highly de-localised, so their excited states are typically

separated by a few eV. Figure 2.9 shows an energy diagram of these π states.

Passing particles can excite electrons in these π orbitals either directly, via elastic

scattering or indirectly, via ionisation and recombination into an excited state. Once

in one of these excited states, electrons radiatively de-excite and emit optical photons.

The lifetime of this excited state and the wavelength of light emitted depends on the

excitation’s path through the energy levels in figure 2.9.

In the case of elastic scattering, electrons are almost always promoted to S =

0 singlet states, because transitions to S = 1 triplet states are forbidden by spin

selection rules. Regardless of which singlet state the electron is excited to, it de-

excites to the lowest excited state, S10, within ps or less, by vibrational relaxation and

internal conversion. From there, the most likely outcome is that the molecule decays

to the ground state, or one of its vibrational excitations, with ns characteristic time,

emitting primary scintillation photons (corresponding to S10 → S0X in figure 2.9).

In order to be useful, a scintillator must have a Stokes’ shift. This is the requirement

that photons emitted by the scintillator are too low in energy to re-excite it, limiting

self-absorption of the scintillation light. In organics the shift is provided by vibrational
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excitations: in figure 2.9, absorbed photons have energies of at least S10 - S00, whereas

emitted photons have energies of at most S10 - S00.

Instead of scintillating, the excitation can return to the ground state without emis-

sion of a photon. This ‘non-radiative’ relaxation occurs directly, via overlap between

S10 and vibrational excitations of the ground state S01,2,3... The ratio of the radiative

and non-radiative outcomes determines the scintillator’s fluorescence quantum yield:

the fraction of excitations that lead to the emission of a photon.

Triplet excited states can be created indirectly from singlet states via inter-system

crossing, but the process is relatively rare. More commonly, they are produced by

ionisation-recombination, which produces triplets in 75% of cases. After vibrational

de-excitation to T0, the triplet state is very stable (again due to spin/parity selection).

The radiative decay of these states over ms to tens of seconds is phosphorescence.

More relevant for scintillation detectors is delayed fluorescence, where the excitation

is converted back into a singlet state, and the singlet state decays. If the decay is ra-

diative, the result is emission that is identical to primary scintillation, but apparently

with a longer time constant.

Light emitted on the time scale of ns to 100ns is therefore of two components:

primary fluorescence created by singlet decays and delayed fluorescence created by

indirect triplet decay. The proportion of the latter component increases strongly with

the ratio of ionisation-recombination to excitation by elastic scattering. This gives

heavy ionising particles (e.g. α) a ‘long tail’ scintillation pulse that can be used to

distinguish them from lighter particles (e.g. e−) [151].

A second effect of heavy ionisation is ionization quenching. This is an effect whereby

regions of dense ionization produce less scintillation light then those without ioniza-

tion. A comprehensive description of the microscopic mechanism is still lacking, but

the light yield is well described by Birk’s law:

dL

dx
= S

dE
dx

1 + kB
dE
dx

(2.4)

here L is the light yield, x parametrises the particle’s path, dE/dx is the particle’s

energy loss and kB is Birk’s constant, which is particle and scintillator dependent.

The performance of liquid scintillator detectors can often be improved by the in-

clusion of one or more dopants called fluors. Primary fluors are typically doped in

concentrations of a few g/L. At these concentrations, optical photon absorption and

molecular excitation are dominated by the scintillator itself, but excited scintillator

molecules typically encounter a dopant molecule before they fluoresce, transferring
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the excitation to the dopant. Radiative transfer also occurs, but it is sub-dominant

at these concentrations.

There are two primary advantages to transferring excitations to a dopant. First,

the dopant may have a better quantum yield than the primary scintillator, even once

the transfer efficiency between the two is taken into account. Second, the dopant will

have a different emission profile to the primary scintillator, which can be chosen to

enhance the Stokes’ shift of the overall : if the primary fluor emits below the threshold

energy for absorption by the primary scintillator, the scintillation light will not be

absorbed.

In addition, one or more secondary fluor may be added at the mg/L level to radiat-

ively shift the wavelength spectrum by absorption re-emission. Typically this is done

to limit self-absorption by the primary fluor and to match the scintillator’s emission

spectrum to the optical response of the detector.

2.5.3 SNO+ cocktail

The SNO+ LAB will be doped with 2g/L of the primary fluor 2,5-Diphenyloxazole

(PPO). The quantum yield of PPO is 80% and non-radiative transfer from LAB to

PPO is 75% efficient at this concentration.

During the tellurium phase, a second fluor, 1,4-Bis(2-methylstyryl)benzene (bisMSB),

will be included at a concentration of 15mg/L. Figure 2.10 shows how the two dopants

enhance the scintillator’s Stokes’ shift; PPO emits light with wavelengths too long

to be absorbed by LAB, and bisMSB emits at higher wavelengths than PPO is able

to absorb. bisMSB also improves spectral overlap between the emitted light and the

efficiency of the PMTs.

2.5.4 Attenuation and Re-emission

The absorption lengths of the SNO+ optical components are given in figure 2.11. For

the wavelengths accepted by the PMTs, the scintillator attenuation lengths are long

compared with the detector size.

Light absorbed by LAB has a 60% (= 80% x 75%) chance of being transferred

to PPO and re-emitted. Light absorbed by PPO directly has an 80% chance of

re-emission and light absorbed by bisMSB is re-emitted with 96% efficiency. The

scattering length of LAB is over 10m in the optical range [157, 160].

The scattering and absorption lengths of water are both of order 100m in the

optical range so optical attenuation in the external water is negligible. However,
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Figure 2.10: Stokes’ shift and optical matching for the SNO+ scintillator cocktail. The solid lines
show emission spectra, the dashed lines show inverse absorption lengths and the dotted line shows
the PMT combined efficiency curve [156–159].

Figure 2.11: Absorption lengths of SNO+ optical components. The assumed fluor concentrations
are PPO 2g/L, bismsb 15mg/L [158, 160, 159]. The horizontal lines are conservative assumptions
where measurements are not available.
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the mismatch between the refractive indices of the three components is significant:

it causes reflections/refractions at the boundaries, particularly for events occurring

close to the AV.

The AV thickness is only 55mm so absorption by acrylic is only significant for

Cherenkov photons in the UV range.

2.5.5 Effect of Te Loading

TeDiol produces chemical quenching in the LABPPO mixture it is loaded into: at

0.5% loading, the light yield is reduced by 44 %, to 6650γ/MeV [156]. At this light

yield, the detector will collect 408 p.e./MeV, or 1020 p.e. at the 0νββ end point.

The quenching increases steeply with increasing concentration. The light level

determines the detector’s energy resolution and, therefore, the rate of 2νββ mis-

reconstructions into the signal region of interest. The quenching thus limits the

amount of Te that can be usefully loaded into the scintillator. It has been explicitly

demonstrated that the Diol has no effect on the emission spectrum of LABPPO or

LABPPO + bisMSB [156].

Figure 2.12 shows the effect of the TeDiol loading on LAB-PPO timing. In the

region dominated by the fastest decay time, the two curves are very similar. At later

times however, the longest time constant is preferentially quenched in the loaded

mixture; this will have a detrimental effect on α/β discrimination, which relies on the

prominent late tail of α scintillation pulses.

The absorption of the Diol itself has been measured explicitly across the relevant

wavelength range. It absorbs strongly in the UV range, but this light is otherwise

absorbed by LAB and is almost undetectable by the PMTs. More importantly, there

is close to zero absorption in the wavelength range emitted by bisMSB and PPO.

More recently, the possibility of loading dimethyldodecylamine (DDA) has emerged.

All evidence points towards DDA conferring stability to the TeDiol + LABPPO

cocktail and raising its light yield by as much as 10-15%. Although it is likely that

this will be deployed in SNO+, the work that follows uses simulations that assume

no DDA.

2.6 Detector Calibration

The account in this chapter so far gives a model for the processes that lead from a

0νββ event in the target volume to PMT hits built into analysable detector events.
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Figure 2.12: Emission time distributions for LABPPO with and without 0.5% TeDiol loading [156].
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However, there are many free parameters in this model that are a priori unknown.

Constraining these parameters is the task of calibrations.

Understanding the SNO+ scintillator requires knowledge of its light yield, the tim-

ing and wavelength distributions of the light it emits, the attenuation and scattering

coefficients that govern light propagation through it, and the optical matching where

light leaves it.

Equally important is understanding the PMTs, their concentrators and their readout

channels. The detector collects events comprised of digitized times and charges, read

out from the PMTs. These readout times must be related to the arrival times of the

incident photons. This is difficult because each PMT produces a differently shaped

charge pulse, each TAC behaves differently and issued GTs arrive at different times

for each channel. In addition, the the digitized charges must be related to the charge

deposited at the anode of each PMT. Each channel has a different dark noise rate,

a different threshold, and each integrator has a different charge pedestal. Finally,

the reflectivity of the concentrators and its variation with incidence angle need to be

measured explicitly.

Individual PMTs and small scintillator samples can be measured on the bench top

but optical properties have been demonstrated to vary with volume scale [161] and the

PMT on the bench top sits in a different environment to those in the detector. Hence

the need to measure these properties directly in the detector with in-situ calibration.

2.6.1 Electronics Calibration

Front end calibrations focus on the PMTs and their readout channels. ECAL and

ECA are run directly on the electronics using features built into the DAQ.

ECAL performs many on-board diagnostic procedures, and sets the discriminator

thresholds of each channel to a level that results in dark hits at 500hz.

ECA runs calibrate the time and charge response of each channel using forced

discriminator firing (PED) and forced global triggering (PULGT). There are two

types of runs:

• Charge pedestals run PED on a channel, followed by a PULGT 150ns later.

These ECA runs measure the DC offset in the charge integrators channel by

channel, cell by cell.

• TAC Slope By varying the time offset between the PED and the PULGT in

10ns steps (0,10, 20, 30...500ns), these runs build a map between TAC values



2.6. Detector Calibration 59

and hit time before trigger. This is performed channel by channel, and for both

TACs on each channel.

During data processing, ECA calibrations are applied to every hit: pedestals are

subtracted for each integrated charge, and the TAC is converted into a time relative

to the GT time using the measured slopes.

2.6.2 Optical Calibrations

Optical calibrations use two well understood light sources to calibrate the PMT re-

sponse and optical properties of the detector components. The laserball is deployed

directly into the scintillator, while the ELLIE system injects light into the detector,

via optical fibres mounted on the PSUP.

The laserball [162] is a quartz sphere, 10.9cm in diameter, filled with 50µm diameter

air filled glass beads suspended in soft silicone gel. A nitrogen laser on the deck

above the detector is passed through one of several dye resonators to produce light at

several optical wavelengths. Fibre optic cables feed this laser light into the laserball

to produce near isotropic light. The laser intensity is tuned to produce only single p.e.

hits on any PMT and, by forcing the detector to trigger asynchronously, the laserball

produces light with a fixed, known relationship to the GT. The laserball is deployed

into the AV and moved through the target volume using a system of ropes controlled

from the deck. The laserball data are used to fit an optical model, calibrating the

PMTs themselves and extracting optical parameters [162]; its major elements are:

• Cable delay Comparing the global offsets between channels measures the GT

delay per channel.

• Time walk The discriminator crossing time of the channels is charge depend-

ent, mapping out the charge vs. hit time calibrates this effect.

• PMT efficiency Comparing PMT hit rates allows for relative channel by chan-

nel efficiency measurements.

• Attenuation lengths/angular response Correlating across different laserball

positions allows the attenuation lengths of the target, AV and external water

to be extracted. The angular response of the concentrators is extracted from

the angular variation of the PMT hit probability.
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Isotope Particles Dominant Mode Visible Energy/MeV Calibrates
AmBe n, γ (2.2 + 4.4) neutron capture response

46Sc γ 1.1 + 1.3 energy scale & reconstruction
57Co γ 0.1 energy scale & reconstruction
48Sc γ 1.0 + 1.1 + 1.3 energy scale & reconstruction
8Li optical photons - Cherenkov light

Table 2.1: Radioactive sources for SNO+ scintillator phases [166]. The γ response will differ from the
electron response. The difference between them can be estimated with Monte Carlo and calibrated
using in-situ sources.

During data processing, a correction is made to each hit time based on the measured

cable delay and time walk effect for each PMT.

The ELLIE (Embedded LED/Laser Light Injection Entity) is designed to allow

in-situ optical calibrations without the dead-time and radio-contamination risk of

deploying the laserball. Light is injected into the detector from inward pointing

fibres, mounted onto the PSUP.

Its timing system, TELLIE [163], consists of 92 fibres and LED drivers. The LEDs

produce light pulses of 103−5 photons in under 5ns, and the fibres distribute the

photons into a wide cones of 20◦ half angle, allowing redundant cover of all inward

facing PMTs. Like the laserball, it can asynchronously trigger the detector and the

intensity is chosen to produce single p.e. hits. From these runs, the cable delays and

time walk of the PMTs can be measured [163].

The scattering module, SMELLIE [164], measures the Rayleigh scattering length

and scattering angle of the cocktail, using laser light injected into one of 15 fibres

across the PSUP, directed across the detector at different angles, and collimated into

narrow 3◦ beams. The light is produced by one of 4 fixed wavelength lasers or a super

continuum laser that produces light in the range λ = 400 − 700nm. The scattering

angle and length of the scintillator cocktail can be measured using analysis of the hit

probability and charge distributions as a function of angle w.r.t fibre direction [165].

2.6.3 Radioactive sources

Once light propagation and detection is understood, the final piece of the puzzle is the

behaviour of primary particles. For this purpose, several known radioactive sources

have been prepared for deployment into the detector; a list of sources under develop-

ment for the scintillator phases is given in table 2.1. Key measurements include the

energy scale of the detector (the overall number of hits/MeV of deposited energy)

and the performance of position/energy fitters.
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2.7 RAT simulation

The RAT (Reactor Analysis Tools) software package was originally written by Stan

Siebert for the Braidwood collaboration. The SNO+ version of RAT serves as the

event generator, detector simulation and on-line analysis package for the experiment

It contains a Geant4 based simulation of the full detector geometry, including all

standard electro-magnetic and hadronic physics relevant at the MeV scale.

In addition, the GLG4sim package, originally produced for the Kamland experiment,

is used for primary event generation and the simulation of scintillation photons. Every

optical photon is tracked through the detector, accounting for reflections, refraction,

scattering and absorption. Events from radioactivity (including 0νββ) are simulated

using a C++ port of the Decay0 generator written by V. Tretyak.

The PMTs and concentrators are modelled as full 3D objects. The front end and

trigger system are simulated in full, down to each discriminator and each trigger

signal. Artificial electronics noise is added to each PMT hit during ‘uncalibration’

and corrected for using calibration constants measured on the detector.

After running event by event analysis on the produced Monte Carlo/data, the

results are written to disk as ROOT files for analysis.



Chapter 3

Reconstruction

In order to turn the raw hit and trigger data read out in SNO+ detector events into a

0νββ analysis, one must first determine what events produced them. Reconstruction

is the process of inferring high level particle information from the data read out in

each event.

ScintFitter is the SNO+ reconstruction algorithm for the scintillator and tel-

lurium phases, implemented in RAT. It is important to describe here because it is used

to produce the vertex positions used to classify events in chapters 5 and 6, the signal

extraction PDFs used in chapter 8, and the seed for the reconstruction algorithms

developed in chapter 9.

The first half of this chapter describes ScintFitter itself; this is mostly a necessary

description of other’s work but it pays particular attention to a multi-hit correction

method developed by the author. The second half of the chapter introduces the ideas

that will be applied in chapters 5 and 6; it shows that the topology of each event is

encoded in the hit times read out and it sets out some general principles for event

classification using those times.

3.1 ScintFitter

SNO+ reconstruction relies on the PMT hit times to determine event time and po-

sition. The true event time determines a global offset on the hit times, whereas the

event position determines the shape of the hit time distribution. For example, events

at the detector centre produce photons that all arrive at approximately the same

time, but events near the AV create photons with a range of arrival times: the PMTs

closest to the event are hit first and those on the far side of the detector hit last.

62
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The event energy is determined from the number of PMT hits. Higher energy

particles deposit more energy in the scintillator, produce more scintillation photons

and trigger more PMT hits.

ScintFitter reconstructs the time, position and energy of events under the as-

sumption that they are 3MeV electrons. The fit proceeds in three stages: first, a

simple seed time and position is estimated using QuadFitter; second, a more accur-

ate time and position is estimated using PositionTimeLikelihood; and, finally, the

energy is estimated using the number of hits in the event (Nhit). The next sections

describe each of these methods in turn, summarising their overall performance.

3.1.1 Time and Position Fit

ScintFitter estimates the event time relative to trigger and the position of the event

vertex in detector coordinates. These detector coordinates are Cartesian coordinates

with respect to an origin at the centre of the AV. It is useful to define the event

radius, r =
√
x2 + y2 + z2, and the polar angle, θ, defined by the smallest angle a

vector makes with the z-axis.

The position and time fit proceeds in two stages. QuadFitter provides a rough

estimate of the vertex using an analytical calculation then PositionLimeLikelihood

uses QuadFitter as a seed, improving its estimate with a likelihood fit.

For a uniform detector with perfect timing resolution, the event time and position

of a instantaneous, point-like event is exactly calculable using four PMT hits and the

time of flight equation:

|~xh − ~xv| = c(th − tv) (3.1)

here ~xh, th are the position and time of a PMT hit, c is the photon speed in the detector

material and ~xv, tv are the event time and position. Four PMT hits produce four

equations, which can be used to determine the four unknown parameters, xv, yv, zv, t,

without uncertainty.

QuadFitter, developed by I.Coulter and others [167], adapts this principle for the

imperfect SNO+ detector. Noise hits, PMT jitter and the broad scintillation timing

profile mean that the solution to equation 3.1 will depend on the 4 PMT hits chosen.

QuadFitter takes a large number of sets of 4 PMTs, calculates xv, yv, zv, tv for each

set and then selects the median of each parameter as the best fit. The effective speed

in equation 3.1 is chosen to minimise the radial bias of events in the central 5m.

PositionTimeLikelihood, written by P. Jones and I. Coulter [168, 167], takes the

QuadFitter result as a seed and improves on its estimate in two ways. First, the single
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QuadFitter light speed is adapted to take into account the different light speeds in

acrylic, water and scintillator. Second, the distributed emission of the scintillator is

modelled using an emission time PDF and the method of maximum likelihood.

PositionTimeLikelihood extends equation 3.1 by calculating the path lengths in

water, scintillator and acrylic for each hit. It assumes straight line paths and converts

to time of flight using effective velocities for each material:

tt.o.f =
dw

ceffw

+
da

ceffa

+
ds

ceffs

(3.2)

where ds,a,w and ceffs,a,w are the path lengths and effective speeds in scintillator, acrylic

and water, respectively.

To account for distributed emission, the apparent emission times after the event

start are calculated using ‘time residuals’:

tres(~xv, tv) = th − tt.o.f − tv (3.3)

The time residuals for a hypothesised vertex can be compared with the distribution

that would be observed using the true vertex. The best fit vertex time and position are

chosen to maximise agreement with this distribution, using the method of maximum

likelihood and Powell optimisation [169]. Fits that do not converge are flagged as

invalid. The log-likelihood is:

logL(~xev, tev|hi) =

Nhits∑

i=0

logP (tires(~xev, tev)) (3.4)

Figure 3.1 shows the PDF used in PositionTimeLikelihood; its shape is dom-

inated by the scintillator emission profile (figure 2.12), but it differs in presence of

noise hits, smearing from the PMT TTS, and late hits from scattered, re-emitted and

reflected light.

Figure 3.2 summaries the ScintFitter position fitter performance on 0νββ events

occurring in the central 3.5m of the detector. d is the projection of the vector that

points from the truth vertex onto the true electron direction. ‖~xfit − ~xtruth‖ shows

the absolute distance between the true and reconstructed position. The x, y, z, t, r

plots show the difference between the reconstructed coordinates and their truth equi-

valents. The x, y, z coordinates are estimated with a Gaussian resolution of 5.7cm

and negligible bias. There is a 2.5cm bias along the direction of motion of the elec-

tron. Overall, the true vertex and the reconstructed vertex are separated by 8.5cm

on average.
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Figure 3.1: Time residual PMT hit PDF used in the ScintFitter position fit.

3.1.2 Energy Fit

Section 2.5 showed that the number of scintillation photons produced in an event

is proportional to the (quenched) energy deposited in the scintillator. The expected

number of p.e. collected across the detector Np.e. will also scale proportionally:

Np.e. ∝ EQ
dep (3.5)

but, in any given event, there are Poisson fluctuations in the number of p.e. actually

collected Np.e.:

Np.e. ∼ Poi(Np.e.) (3.6)

For large Np.e., this is approximately a Gaussian with width σ =
√
Np.e.. This

expression places a fundamental limit on the resolution of any energy reconstruction

algorithm. Even if the constant of proportionality in equation 3.5 is known exactly,

the resolution is limited by the statistical width of the Np.e. distribution. This is

referred to as the Poisson limit.

The SNO+ detector will collect 1020p.e1 at Qββ, so the fractional energy resolution

there is limited to 1/
√

1020 = 3.1%, or 78keV. Even deviations of a few % from this

limit can damage 0νββ sensitivity, because the number of background 2νββ counts

in the signal region is very non-linear in energy resolution, n2ν ∝ σ5.5
E .

This simple picture is made more complicated by the fact that SNO+ measures

Nhit, not Np.e., and because the constant of proportionality in equation 3.5 depends on

1For events with rfit < 1m. The total number of generated p.e. is around 20% larger, but not
all PMTs receiving a p.e. will cross threshold.
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Figure 3.2: Fit performance for 0νββ events r/m < 3.5 for valid fits with the ITR cut described

in section 3.2.1. x, y, z are Cartesian positions co-ordinates w.r.t the detector centre. d̂ is the true
direction of the first electron (arbitrarily chosen), r =

√
x2 + y2 + z2.
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vertex position. ScintFitter accounts for the first effect using a multi-hit correction

and the second using a functional form that relates the number of p.e. generated by

events at the detector centre to the number of p.e. generated at an arbitrary position.

These two corrections are described in detail in the following sections.

Multi-hits

The first complication comes from p.e. lost to the pile up of multiple hits on a single

PMT. In any physics event, a large number of photons are created, each with a very

small probability of causing a hit in the ith PMT. The result is a Poisson distribution

in the number of p.e. collected in i:

N i
p.e. ∼ Poi(µi) (3.7)

where µi is the expected number of p.e. in this PMT for this event. The probability

of registering a hit is then approximately the probability of observing one or more

photo-electrons2:

Phit = P (Np.e. >= 1) = 1− exp(−µ) (3.8)

and the fraction of single p.e. hits is

F =
P (Np.e = 1)

P (Np.e. >= 1)
=

µ exp(−µ)

1− exp(−µ)
(3.9)

Figure 3.3 shows the single p.e. fraction as a function of event energy calculated using

equation 3.9. At 2.5MeV around 7% of p.e. are lost to multi-hits. This difference is

significant: it corresponds to a reduction in energy resolution of 3.5% and 29% more

2νββ background in the region of interest. At 10MeV the fraction of p.e. lost is over

25%. The effect is more severe further away from the centre of the detector.

Multi-hit Correction

A simple solution would be to infer the number of p.e. from the total charge collected

by each PMT, however the charge collected by the SNO+ PMTs is a very weak

estimator of Np.e. at low hit multiplicity. The alternative, presented here, is to group

the PMTs into ensembles that are approximately equally illuminated and then infer

Np.e. from the statistical properties of those ensembles.

The crux of the problem is to estimate the number of p.e. in the ith PMT, N i
p.e.,

when the detector only records whether the PMT is hit or not, hi = (0 or 1). On

2the relation won’t hold exactly because PMTs that have already received a p.e. that didn’t cross
threshold are more likely to register a hit if another p.e. arrives



3.1. ScintFitter 68

Energy/MeV
2 4 6 8 10

S
in
gl
e-
h
it
F
ra
ct
io
n

0.75

0.8

0.85

0.9

0.95

Poisson Model (All p.e.)

Rat Simulation (All p.e.)

Rat Simulation (p.e. on triggered hits)

Figure 3.3: The fraction of p.e. that hit a tube with no other p.e. as a function of event energy
in the SNO+ Te phase I, calculated using a simple Poisson model. The red line shows the fraction
for 0νββ events at 2.5MeV, r < 1m, estimated using RAT6.1.6. The blue point shows the single
hit fraction for all p.e. (i.e. including p.e. on PMTs that do not cross threshold), the green point
shows the same fraction including only those p.e. on PMTs that cross threshold. The model agrees
perfectly when all p.e. are considered, but over-estimates the single p.e. fraction when only the hit
PMTs are considered. This is because a multi-hit PMT is more likely to cross threshold than one
with a single p.e. The calculation assumes there are 9023 on-line, inward PMTs, that the light is
isotropic, and that there are 532.2 p.e./MeV on those 9023 PMTs.
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its own, equation 3.8 isn’t very useful: observing a hit in PMT i tells you no more

about Phit than a single head tells you the fairness of a coin. However, with Nobs

observations of hi, P i
hit can be estimated from the number of hits on the PMT, N i

hit:

P̂ i =
N i
hit

Nobs

(3.10)

Physics events can be engineered to happen twice. But, in a single event, one can

choose a set of PMTs with approximately the same illumination and therefore ap-

proximately the same µi = µ. Then, the expected number of hits in the ensemble

is:

Nhit =

NPMT∑

i=0

(1− exp(−µi)) = Npmt(1− exp(−µ)) (3.11)

where NPMT is the number of PMTs in the ensemble. Rearranging for µ gives:

µ = − log(1− Nhit

Npmt

) (3.12)

Of course, in reality, no two PMTs share exactly the same µ because each PMT

subtends a different solid angle with respect to the event vertex, PMT efficiencies

vary etc., but, it should be possible to choose a set of PMTs with approximately the

same µ:

µi = µ̃− εi (3.13)

for some central value µ̃ for which εi << µ̃. In that case the expected number of hits

is given by:

Nhit =

NPMT∑

i=0

(1− exp(−µ̃+ εi)) (3.14)

= NPMT − exp(µ̃)

NPMT∑

i=0

exp(εi) (3.15)

This matches the expression for the ensemble with identical PMTs, provided:

1

NPMT

NPMT∑

i=0

exp(εi) = 1 (3.16)

If the variation between the PMTs is small, ε << 1, then this condition becomes:

NPMT∑

0

εi = 0 (3.17)
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if this condition is satisfied3, the representative µ̃ is just the arithmetic mean of the

µ of each PMT, µ̃ = µ̄, because:

Nhit∑

i=0

εi =

Nhit∑

i=0

µi − µ = Nµ−Nµ = 0 (3.18)

So, provided variations are small, the ensemble behaves although every PMT has

µi = µ and the total number of p.e. in the ensemble is given by:

N ens
p.e. = −NPMT log(1− Nhit

NPMT

) (3.19)

The PMTs can be grouped into as many ensembles as required to have εi << µ

hold everywhere. Then the total number of p.e. collected by the detector is well

approximated by the sum over the ensembles:

Ndetector
p.e. = −

∑

ens

N i
PMT log(1− N

i

hit

N i
PMT

) (3.20)

where N i
PMT and N

i

hit are the number of PMTs, and the expected Nhit in ensemble i,

respectively. This derived relationship can be used to produce an energy estimator,

the multi-hit corrected hit count N corr
hit :

N corr
hit = −

∑

ens

N i
PMT log(1− N i

hit

N i
PMT

) (3.21)

The critical difference between equation 3.21 and equation 3.20 is that the expected

hit count in each ensemble Nhit has been replaced by the number actually observed,

Nhit, introducing statistical variations. For low energy events, N corr
hit is equivalent to

the total Nhit:

N corr
hit → Nhit as

N i
hit

N i
PMT

→ 0 (3.22)

but at high energies, it corrects the Nhit upwards to account for multi-hits.

At very high hit probabilities, there is a significant pathology in N corr
hit : if all of

the PMTs in an ensemble are hit, the estimate for the hit probability is P̂ = 1, from

which equation 3.21 implies an infinite light output µ̂ → 1. In practice, the PMT

ensembles must be chosen to balance the uniform illumination condition with the

variance of P̂ and the risk of P̂ = 1 estimates.

3Note that the condition is absolute, rather than a comparison with µ̃, this means that variation
between PMT efficiencies sets an upper limit on µ for this technique. The method breaks down
once µ > 1/∆E, where ∆E is the maximum fractional difference between any two PMT efficiencies
within the ensemble.
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Figure 3.4: PMTs divided into 100 equal solid angle segments about the detector centre.

Segmentor

A new Segmentor class was added to RAT to divide the PMTs into these ensembles.

The 4π solid angle as viewed from any given point in the detector is divided in to

n2
div equal solid angle segments by dividing the regions cos θ ∈ [−1, 1] and φ ∈ [−π, π]

into ndivs intervals of equal length.

Figure 3.4 shows a flat map of the PMTs divided into 10 x 10 such equal solid angle

segments about the detector centre. Figure 3.5 shows the comparative performance

of Nhits and N corr
hits , calculated using these ensembles, over the range 0 - 10MeV. Nhit

begins to saturate above 1MeV, whereas the corrected statistic remains linear well

into the multi-hit regime. This linear behaviour leads to smaller errors propagated

into the energy estimate from the observed count.

Asymmetry Corrections

To get close to the Poisson limit, reconstruction must also account for the dependence

of Np.e. on event position. This is dominated by two asymmetries, one radial and one

in the polar angle θ.
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Figure 3.5: Nhit and N corr
hit as functions of energy for electrons at the centre of the SNO+ detector

in the pure scintillator phase (the scintillator phase will have a higher light yield than the tellurium
phase).
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As the event vertex moves away from the detector centre, the number of hits tends

to increase, because the increased solid angle and reduced attenuation of the photons

travelling the short length across the detector more than compensates for those going

the other way. Close to the AV surface itself however, very acute incident angles can

produce total internal reflection that greatly reduces the number of hits.

The asymmetry in θ arises because the PMTs are not uniformly distributed in solid

angle about the centre: there are fewer PMTs in the northern hemisphere because of

the neck and the rope systems are not symmetric about the equator.

The EnergyFunctional method of ScintFitter fitter corrects for these effects

using empirical functions which relate the observed N corr
hits to the equivalent value at

the detector centre N corr
hits (0,−):

N
corr

hits (r, θ) = N
corr

hits (0,−)f(r|θ) (3.23)

f(r|θ) is continuous polynomial function of radius, piece-wise in θ, estimated using

Monte Carlo.

ScintFitter fits the energy of a particle after first estimating its time and position.

The N corr
hits is first calculated according to equation 3.21 using 100 segments calculated

around the detector centre. This is then related to an equivalent N corr
hit deposit at the

detector centre using equation 3.23 and compared with a look-up table that relates

energy deposited to N corr
hits observed at the centre. Figure 3.6 shows the performance of

ScintFitter energy reconstruction on 0νββ events. The bias is statistically signific-

ant but negligible compared with the resolution. The energy resolution of σ = 82keV

is only 5% greater than than the Poisson limit of 78keV for 403 p.e./MeV.

3.2 Event Topology with Time Residuals

Once the event is reconstructed, it is useful to calculate the time residuals with respect

to the fit vertex:

tres = thit − tt.o.f − tfit (3.24)

where tt.o.f is calculated from ~xfit to ~xpmt using equation 3.2.

These ‘reconstructed time residuals’ are an estimate of the photon emission times

for a given event assuming it’s an electron. Figure 3.7 shows these for 2.5MeV electron

events generated uniformly in the AV, alongside the ‘MC time residuals’, calculated

with respect to the true position and time. Comparing the curves reveals that finite

vertex resolution leads to a slight broadening of the prompt peak rising edge.
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Figure 3.6: ScintFitter energy reconstruction performance on 0νββ events r < 3.5m. Valid fits,
r < 3500mm, with ITR cut.
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Figure 3.8: The dependence of the electron time residual spectrum on reconstructed energy, rfit <
3.5m. Left: the time residual spectra. Right: the standard deviation of the distributions. The
events were generated uniformly in the AV, and uniformly in 1MeV < E < 10MeV.

The shape of the time residuals is dependent on the event energy. Figure 3.8 shows

that the reconstructed time residuals for electrons, for several energy bins in the range

1 - 5MeV. The distributions become more strongly peaked as the energy increases

because more hits means smaller vertex resolution and because of the increasing

number of multi-p.e. hits which arrive earlier on average4.

Reconstructed time residuals also run with event radius. Figure 3.9 shows that the

spectra become more strongly peaked as the event radius increases, until the near

AV region (r > 5m), where they become broader again. This must be a physical

effect rather than a reconstruction effect, because the same trend is shown in the MC

residuals (not shown here). Moving from the detector centre to the edge of the near

AV region, absorption preferentially selects short paths which are more likely to be

straight and, therefore, more likely to be properly accounted for by the straight line

tt.o.f calculation. However, in the near AV region itself, total internal reflection effects

lead to very poor time of flight corrections, and the trend is reversed.

There are two reasons an event’s time residuals might not look like those in fig-

ure 3.7: either the vertex is reconstructed badly, or the event was not an electron.

The first effect can be used to reject bad fits (ITR classifier) the second may be used

to classify event types.

3.2.1 The ITR classifier

The In Time Ratio classifier (ITR onwards) uses the reconstructed time residuals

as a figure of merit for the position fit. To test consistency with figure 3.7, the

fraction of hits with −2.5 < tres/ns < 5 is compared with a reference window of

4the first of two photons will, on average, arrive before a single photon



3.2. Event Topology with Time Residuals 76

tres/ns
-10 0 10 20 30 40 50

P
ro
b
ab

il
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 < r/m < 1 1 < r/m < 2

2 < r/m < 3 3 < r/m < 4

4 < r/m < 5 5 < r/m < 6

rfit/m
0 1 2 3 4 5 6

√
V
ar
[t
r
e
s
]

33.5

34

34.5

35

35.5

36

36.5

Figure 3.9: The dependence of the electron time residual spectrum on reconstructed radius, for
2.5MeV electrons. Left: the time residual spectra. Right: the standard deviation of the distributions.
The events were generated uniformly in the AV.

0.33 < ITR < 0.45. Events with ITR values outside of this window are rejected as

bad fits. Figure 3.10 shows the effect on the x position fits for 0νββ events which

reconstruct inside the central 3.5m, the non-Gaussian tails of the distribution are

reduced by roughly a factor of two.

3.2.2 Timing Signatures for PID

Complex event topology is the second cause of time residual distortion. The time

residuals considered so far are for single vertex electron events. If an event deposits

energy in several vertices, there will be separate distributions for each. However,

their combination will not be a simple sum of electron curves, because each event is

reconstructed as a single electron, with a single vertex, and the residuals are calcu-

lated relative to the fit position. The resulting distortion leads to measurable time

differences in several important cases, discussed in the following section.

Electrons

Figure 3.11 shows that, in the scintillator, 2.5MeV electrons produce tracks of around

1cm length. SNO+ is expected to reconstruct events 8.5cm away from the true vertex

position, on average, so information regarding the length and direction of the electron

track is washed out by position resolution and the events appear ‘point-like’. This is

the reason electron reconstructed time residuals are close to the intrinsic time response

of the scintillator (figure 2.12).
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Figure 3.10: Valid position fits for 0νββ events before and after the cut 0.33 < ITR < 0.45,
r < 3500mm.
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Figure 3.11: Total track length for 2.5MeV electrons, 2.5MeV γ and 1.25MeV γ in the SNO+
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Figure 3.12: Early reconstructed time residuals for electrons and γ, rfit < 3500mm.

0νββ and 2νββ

Figure 3.12 shows that the reconstructed time residual spectra for 0νββ and 2.5MeV

electrons are identical, because timing resolution and vertex reconstruction wash out

any difference between one electron track and two. 2νββ events will only differ from

0νββ events because their energy is, in general, different and time residuals run with

energy.

γ

γ have no charge and therefore do not scintillate directly. However, they are de-

tectable via secondaries produced in interactions with the scintillator. For a mostly

Carbon target, the interaction cross-section of O(1MeV) γ is dominated by Compton

scattering [170], which produces high energy scintillating electrons. A single γ will

scatter 10s of times, producing electrons at each interaction site. The time delay

between these scatters will be detectable, if the separation of the scatters in time and

space is large enough.

The mean free path for such γ is easily estimated. Assuming that LAB has uniform

chains of chemical formula C6H5C13H27, LAB is proportionately 57
65

Carbon and 8
65
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Hydrogen by weight. The absorption lengths per unit density for Compton scattering

on electrons bound in Hydrogen and Carbon are given by the PDG as λH = 7gcm−3,

λC = 19gcm−3 at 1MeV [170]. The total mean free path per unit density is then
1
λtot

= wH
λH

+ wC
λC

and, using ρLAB = 0.863gcm−3, the overall mean free path is λtot ∼
18cm.

In reality, such γ scatter multiple times, depositing most of the energy in the first

few scatters. Figure 3.11 shows the track lengths of 1MeV and 2.5MeV γ events;

the averages are 43cm and 57cm respectively. LAB has a refractive index of ≈ 1.5 so

40cm corresponds to a time delay of ∼2ns. This is comparable to both the PMT TTS

(1ns) and the fast scintillation time of LAB (8ns) so the delay should be detectable

and γ events will appear non-point-like. Indeed, figure 3.12 shows the time residuals

are broader for the γ events than electron events.

Radioactive β decays are often followed by one or more nuclear de-excitation γ

after ps time scales. In the ns scale SNO+, detector these will appear as a single

event with both point-like and non-point-like components.

Positrons

Positions scintillate in an identical way to electrons, but their behaviour at the end of

the track is different, where each position annihilates with a nearby electron, emitting

γ. When a positron annihilates in vacuum there is a finite probability of forming an

e+e− bound state called positronium. Combining two spin 1/2 particles allows for

two possibilities: a spin 0 singlet state and a spin 1 triplet state. The former, para-

positronium (p-Ps), decays to two γ within ps, while spin selection rules mean that

the latter, ortho-positronium (o-Ps), decays after 138.6ns to three γ. The degeneracy

of the the triplet state means that o-Ps is formed in 3/4 of cases.

This picture is more complicated in dense matter; there, chemical reactions, mag-

netic effects and interactions with electrons cause o-Ps to p-Ps conversions, shorten-

ing the o-Ps lifetime and reducing the probability of its formation. These effects are

medium dependent so the lifetime and formation fraction of o-Ps are also medium

dependent. The formation fraction and o-Ps lifetime have been measured in LAB +

H2O + 0.3% Te solution to be (0.36± 0.009) and (2.69 ± 0.05)ns [171]. The SNO+

Phase I loading will be higher, but the formation fraction and lifetime have been

shown to be insensitive to the Te and H2O concentrations in this range [171].

p-Ps decay is too quick to be distinguished from direct annihilation, but the 2.7ns

live-time of o-Ps is comparable to the detector resolution, and should be comfortably

detectable in many cases.
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Unfortunately, o-Ps simulation is not implemented in Geant4, so a custom physics

process was added to the RAT simulation to handle positron annihilation. With 36%

probability, it introduces a time delay between the end of the positron track and the

creation of the annihilation γ. The delay is sampled from an exponential probability

distribution with characteristic time 2.7ns. All events containing positrons in this

work have been simulated with this modification except the production Monte Carlo

used for 0νββ signal extraction in chapter 8.

3.2.3 Hypothesis Testing for Event Classification

This final section addresses how best to classify an event as signal or background

using its reconstructed time residuals and defines the techniques that will be applied

in later chapters.

Typically, the time residuals are binned into a histogram with Nbins with bin con-

tents {N i}. The task is to condense that information in to a single discriminant T
which can be used to distinguish 0νββ from background using a cut or a likelihood

fit.

The simplest method places a hard cut on the time residuals and counts the fraction

of hits above or below the corresponding critical bin icrit. The fraction of hits before

this critical time is fprompt, a linear classifier of the form T =
∑Nbins

i=0 wiN i with

weights defined by:

wi =

{
1 i < icrit

0 otherwise
(3.25)

fprompt has no guaranteed optimal properties, but it is conceptually simple and robust.

The Neyman-Pearson lemma guides the choice for an optimal statistic. It states

that, for any two simple hypotheses5, the likelihood-ratio test is uniformly most

powerful [172]. In this context, a cut on the likelihood-ratio gives the highest 0νββ

efficiency at any given background rejection. For event classification, the hypotheses

are the different event types, signal or background H = (S or B), and the observables

are the bin contents {N i}, so the likelihood is the probability of observing a given

histogram for an event of the type considered:

LH = L(H|{N i}) = P ({N i}|H) (3.26)

and the likelihood-ratio is:

T =
P ({N i}|S)

P ({N i}|B)
(3.27)

5i.e. all of the parameters in the hypothesis are specified.
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This work uses the convention that, for each likelihood-ratio considered, positive val-

ues indicate events with signal-like time residuals (0νββ) and negative values indicate

background-like events. Unfortunately, the PDF in equation 3.26 has as many dimen-

sions as there are bins in the histogram. To distinguish between the event classes in

figure 3.12, this is comfortably 50D, which is intractable to estimate with Monte

Carlo.

One remedy is to assume that each hit is independent, then the likelihood for each

hit depends only on which time residual bin it falls into. If hit j falls into time residual

bin bj with probability P (bj|H):

LH = ΠNhit
j=0 P (bj|H) = ΠNbins

i=0 P (bi|H)Ni (3.28)

P (bj|H) is a 1D distribution which can be easily estimated from Monte-Carlo, by

calculating the average spectrum from a large number of events (e.g. figure 3.12).

Combining the two hypotheses, the log-likelihood-ratio is:

T = log
LS
LB

= ΣNbins
0 N i log

P (bi|S)

P (bi|B)
(3.29)

which is a linear classifier with weights wi = log P (bi|S)
P (bi|B)

.

The accuracy of this assumption depends on the type of events tested. For point-

like events like electrons, the SNO+ detector is insensitive to internal degrees of

freedom such as track length, so the time residuals of each event look as though they

are random draws from the same average distribution. In this case the independent

hit assumption is likely sound.

For multi-vertex events the picture is less clear. A radioactive decay event emitting

a β and two γ is a complex composite hypothesis with many unspecified parameters:

the γ track lengths, the separation angles of the particles the etc. will vary between

events. These internal degrees of freedom will create correlations. For example, a

longer than average γ track length will create more late hits than average across

several bins. Therefore, for these events, the late bins will be positively correlated

with one another and anti-correlated with earlier times.

It can be useful to assume independence even when correlations are significant. In

this context the expression in equation 3.29 is known as a ‘Naive Bayes’ classifier

in the machine learning community. There it has been shown that the classifier

performs well on correlated inputs, provided the correlations are similar between the

event classes [173] e.g. a common reconstruction effect.
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If correlations between the bins are significant, a simple extension is to use a Fisher

discriminant. This is another linear classifier which explicitly considers correlations

in the calculation of the weights:

~w = (ΣS + ΣB)−1 · (~µs − ~µb) (3.30)

where ~µiH and ΣH are the average normalised bin contents, and the covariance matrix

between those bins for hypothesis H, respectively. The Fisher discriminant maxim-

ises the separation between the average classifications of the classes, divided by the

variance of the classification within the classes:

T̄S − T̄B
Var(TS) + Var(TB)

(3.31)

If the hypotheses are Gaussian with common covariance this is equivalent to the

full correlated likelihood-ratio [172].

The Gatti parameter is another linear classifier used by the Borexino collaboration,

with weights are defined by:

wi =
µiS − µiB
µiS + µiB

(3.32)

On close inspection, the Gatti parameter, is just a special case of the Fisher discrim-

inant in which the the hits are independent. Then, the content of each bin is Poisson

distributed with mean µi and Σ = diag(µ0, µ1, µ2..). Substituting these conditions

into equation 3.30 recovers equation 3.32.

The Gatti parameter is often claimed optimal (e.g. [174]), but it is only valid when

the hits are independent and, even in those circumstances, one is able to use the

likelihood-ratio provided in equation 3.29, which has guaranteed optimal properties.

If the data are highly correlated and not linearly separable, better results may come

from machine learning algorithms, because many have the advantage of being able to

learn non-linear classification boundaries. If the data are not linearly separable, such

algorithms can drastically out perform those described above. Conversely, if the data

are close to linearly separable, such algorithms can add much to complexity and little

to efficacy.



Chapter 4

Backgrounds

At current maximum allowed 130Te 0νββ half-life of T1/2 = 1.5 · 1025yr, SNO+ would

expect 278 signal counts per year at the 2νββ end point, 2.5MeV, smeared by an

energy resolution of 82keV.

Unfortunately, there are many significant sources of background in this region.

Claiming a 0νββ signal, or setting a stringent limit on its rate, requires that these

backgrounds are, first, kept to a minimum and, second, that they are well constrained

to mitigate systematic error.

This chapter reviews each of the expected major backgrounds: their origin; their

expected rates; and the handles that may be used to reject or constrain them. The

final section of this chapter defines the SNO+ signal window, the projected back-

ground budget inside it and the sensitivity of SNO+ to 0νββ using a simple counting

analysis.

4.1 Solar Neutrinos

During the tellurium phase, SNO+ will detect neutrinos which are produced in the

sun, which free stream to earth before interacting with the scintillator target. These

neutrinos can be a 0νββ background. Of particular concern are ν−e elastic scattering

events which produce single electrons. In SNO+, these events are indistinguishable

from 0νββ using timing or by any other means1. Figure 4.1 shows the neutrino

fluxes at the surface of the earth; only 8B spectrum neutrinos contribute significantly

to the signal window. The rate of these events will be well constrained by SNO

measurements of the 8B flux to within 4% [77], but additional uncertainty arises from

1There are differences in the Cherenkov signals between the two, but the SNO+ detector is
insensitive to these [176, 177].

84
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Figure 4.1: Neutrino fluxes at the earth’s surface [175]. DSNB = diffuse supernova background,
Atm = atmospheric neutrinos.

the shape of the 8B spectrum and the dependence of the νe survival probability with

energy [178].

4.2 Double Beta Decay

Another major background comes from ordinary 2νββ decays: finite energy resolution

pushes events from the steeply falling 2νββ tail into the signal window. 0νββ and

2νββ differ from one another only in the amount of visible energy released, so this

background cannot be reduced without improved energy resolution.

The half-life of the decay is well constrained by CUORE-0 to be 8.2±0.2(stat) ±
0.6(sys)× 1020yr [115]. This half-life translates to one 2νββ event every 6s in SNO+

phase I. It likely that the CUORE experiment will publish an improved measurement

on the half-live and energy spectrum in time for use in SNO+ analysis [115]. The

CUORE measurements could be used as a constraint on the 0νββ rate, provided the

number of 130Te nuclei in the target can be accurately determined.

In addition, the 2νββ background should dominate the events collected in the

region 1.5 - 2.5MeV. There, its steeply falling energy spectrum will be powerful for

extracting the 2νββ normalisation, provided energy response uncertainties can be

kept under control [178].
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Figure 4.2: The uranium and thorium decay chains [179, 180].

4.3 Natural Internal Radioactivity

There will also be background counts from natural radioactive isotopes inside the

scintillator cocktail. The most important isotopes are the daughters of 238U and
232Th, for which the decay chains are shown in figure 4.2. In this work, the chains

are assumed to be in equilibrium2.

The most problematic isotopes are 214Bi and 212Bi. Both are βγ decays with en-

dpoint values of 3.27MeV/2.25MeV, respectively. 212/214Bi decays are followed by
212/214Po α decays after characteristic times of 0.3/164µs. These decays have Q val-

ues of 8.95/7.7MeV which are typically quenched down to visible energies of 0.9MeV

and 0.75MeV, respectively3.

The Bi and Po events can fall into a single trigger window or two, depending on

the delay between the two; both cases are problematic. If the decays fall in separate

windows, the Bi decay can fall into the signal region, whereas if the decays fall into

the same trigger window, their combined energy can do the same.

2i.e. they had time to reach steady state, without injection of isotope mid-chain. Equilibrium is
often broken between 238U and 226Ra, but this is unimportant for 0νββ searches, for which all of
the significant backgrounds are below 226Ra in the decay chain.

3according to RAT6.1.6 simulation
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Less important, but significant, is 210Tl, a β decay isotope. It has Q = 5.5MeV,

leading to overlap of its reconstructed energy spectrum with the region of interest.

The primary strategy for removing this background is purification of the scin-

tillator. SNO+ targets LAB impurity levels equal to those measured by Borexino

[181, 182, 145] and aims to purify the Diol to the same level as the external water [181].

Tables A.2 and A.3 in appendix A show the each of the target concentrations of these

contaminants and their resulting yearly counts across the detector. Even after puri-

fication, significant suppression is required: SNO+ would expect 4.73×104 and 682

counts per year of 214BiPo and 212BiPo, respectively, in the region Qββ ± σE.

Fortunately, the delayed coincidence between the Bi and Po decays can be used

to tag these events. Two trigger events will be tagged using the proximity of the

two events in space and time, whilst events that pile up into a single trigger will be

rejected using the double pulse structure of their hit time residuals [165]. Overall,

these techniques allow for rejection factors of ≈ 5×105 with < 1% 0νββ sacrifice [183].

The eliminated sample will also provide a useful tagged sample of 214Bi events that

may be used for calibrations and, if equipped with evidence of equilibrium, estimations

of other U/Th chain contaminants.

Simulation studies suggest that the BiPo events that pass the coincidence cuts come

in two categories. First, those two trigger events where a high energy γ produced

in 214Bi decay travels several meters away from the initial decay before Compton

scattering. In this case the Bi and Po vertices are too far apart for them to be

associated, without also rejecting an unacceptable number of 0νββ events. The second

type is those one trigger events where the β and α decay are separated by less than

5ns [165, 183]. These will look like single vertex events, to within the resolution of

the detector.

The final handle is pulse shape discrimination. The long tail of Po α decays distin-

guishes them from electron like 0νββ. Furthermore, the multi-site nature of the Bi

and Tl βγ decays distinguishes them from point-like 0νββ events; this is explored in

detail in chapter 5.

4.4 External Radioactivity

Other significant sources of radioactivity lie outside of the scintillator volume. Such

‘external’ backgrounds originate in the external UPW, the volume of the AV, dust on

the inner/outer AV surfaces, the PMTs and the rope systems. The isotopes of most
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Figure 4.3: Reconstructed energy spectra for external 208Tl and 214Bi decay inside the AV, normal-
ised to the expected rate in that region.

concern are 208Tl and 214Bi which produce low energy particles outside of the AV and

> 1MeV γ, that can penetrate into the detector centre.

Figure 4.3 shows the expected external background contribution of those events

that reconstruct inside the AV, as a function of energy. 208Tl decay always produces

a particularly dangerous 2.6MeV γ, which leads to a strong peak close to Qββ, while
214Bi can produce a range of γ, giving it a broad energy spectrum which overlaps

with the signal region in parts. The rate of both 208Tl and 214Bi decays dwarfs any

realistic signal.

The primary strategy for these events is to fiducialise away the outer parts of the

detector, where the decays originate. However, they can still present a background to

0νββ because the Compton scattering length of the 2.6MeV γ is 10cm in water and

26cm in LAB. This means that a very small fraction of these γ travel into the detector

centre, producing an event of close to 2.6MeV apparent energy. The expected yearly

rates for these external backgrounds are shown as a function of event radius r in

figure 4.4.

Within the detector centre, where the external backgrounds are lowest, the biggest

contributors are 208Tl decays from the external water, hold down ropes, acrylic vessel

and the PMTs.

Those decays that do penetrate into the detector centre can be distinguished from

real 0νββ, using light produced by particles outside the AV and using the time smear-
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Figure 4.4: Yearly external background rates vs event radius in the AV, normalised to the expected
rate in that region.

ing caused by the multiple scattering of the γ inside the scintillator volume. These

handles are explored in more detail in chapter 6.

The external event rates assumed in this work are shown in table A.4 of appendix A.

Constraints on these normalisations will come from measurement in the water and

scintillator phases and the high radius side-band during the Tellurium phase [178].

4.5 Leaching

During the years between draining the SNO experiment in 2006 and refilling in 2016,

the inside of the AV was exposed to airborne radon which plated onto the surface, to

a depth of several hundred nm. In days, 222Rn decays to 210Pb which has a half-life

of 22.2 years. The result is a layer of 210Pb, several hundred nm thick, which steadily

feeds the detector with its daughters: 210Po and 210Bi. Activity measurements of the

AV suggest activities of 1.18kBq for both [181].

The quenched energy deposited in these decays is too low to form a direct back-

ground to 0νββ, unless the rate is much higher than expected, so that there is signi-

ficant pile up. However, a large rate can contribute to signal sacrifice in coincidence

cuts, the α produced can create free neutron backgrounds (section 4.6) and low energy

pile-ups can complicate side bands used to constrain other backgrounds.
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Similarly, 222Rn from the external water and PMT surfaces can diffuse through the

AV acrylic into the scintillator. This will produce additional background from 210Pb

and its daughters [184].

4.6 α - n Decays

α − n backgrounds occur when α created in radioactive decay are absorbed by a

nucleus, causing the nucleus to emit a neutron, a daughter nucleus and sometimes

associated particles.

Such events produce several signals: first, the α produces scintillation light; second

the neutron scatters into protons causing them to scintillate; third, once thermalised,

the neutron captures on another nucleus, possibly causing it to γ decay. Most common

is capture on hydrogen to produce a 2.2MeV γ. Both signals can reconstruct close to

the 0νββ signal window, forming a background.

The dominant source of α in the SNO+ detector will be 210Po nuclei, on the AV

surface and leached into the scintillator volume. The exact rate of these decays de-

pends acutely on the leaching model but 6 possible contributions have been identified,

shown in table A.5 of appendix A.

At current leaching assumptions, the event rate is greatest for AV α decay but

decays in the scintillator form the largest contribution to the signal window inside

the detector centre [185].

The neutron capture signal is delayed relative to the other ‘prompt’ signals by a

thermalisation time of 220µs and an average path length of 49cm [140]. α− n back-

grounds can be tagged with high efficiency using the delayed coincidence between the

initial prompt signal and the neutron capture signal (this cut is applied in chapter 8).

4.7 Cosmogenics Isotopes

Cosmogenic isotopes are isotopes which are not naturally abundant but can be created

by the spallation of cosmic rays on natural materials at the earth’s surface [186].

These radioactive decays can form a background to 0νββ; heavy tellurium4 is of

particular concern as a target for producing long lived, radioactive isotopes with

high-Q values. The SNO+ tellurium will be exposed to a significant cosmic ray flux

at the surface, producing contamination of these cosmogenic isotopes, until the Te is

taken underground to SNOLAB.

4relative atomic mass of 127.6u
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Isotope T 1
2
/days Q/MeV Decay Mode (BR)

22Na 950.6 2.84 EC/β+

26Al 2.62 ×108 4.00 β+

42K (direct and daughter of 42Ar) 0.51(1.2 ×104) 3.53 β−
44Sc (direct and daughter of 44Ti) 0.17(2.16 ×104) 3.65 EC/β+

46Sc 83.79 2.37 β−
56Co 77.2 4.57 EC/β+

58Co 70.9 2.31 EC/β+

60Co (direct and daughter of 60Fe) 1925.27 (5.48 ×108) 2.82 β−
68Ga (direct and daughter of 68Ge) 4.70 ×10−2 (2.71) 2.92 EC/β+

82Rb (daughter of 82Sr) 8.75 ×10−4 (25.35) 4.40 EC/β+

84Rb 32.8 2.69 EC/β+ (96.1)
88Y (direct and daughter of 88Zr) 106.63(83.4) 3.62 EC/β+

90Y (direct and daughter of 90Sr) 2.67(1.05 ×104) 2.28 β−
102Rh (direct and daughter of 102Rh(m)) 207.3 2.32 EC/β+ (78)

102Rh(m) 1366.77 2.46 EC (99.77)
106Rh (direct and daughter of 106Ru) 3.47 ×10−4 (371.8) 3.54 β−

110Ag(m) 249.83 3.01 β− (98.67)
110Ag (daughter of 110Ag(m)) 2.85 ×10−4 2.89 β− (99.70)

124Sb 60.2 2.90 β−
126Sb(m) (direct and daughter of 126Sn) 0.01(8.40 ×108) 3.69 β−(86)
126Sb (direct and daughter of 126Sb(m)) 12.35(0.01) 3.67 β−

Table 4.1: Cosmogenic 0νββ background candidates produced on Tellurium [186]. Each isotope has
Q >2MeV, Z > 131 and T 1

2
> 20d. (m) denotes meta-stable states.

These isotopes require a more in-depth treatment than the backgrounds discussed

so far, because they are expected to be removed almost completely in underground

tellurium purification. What makes many of them dangerous is their ability to mimic

a 0νββ signal if the purification is incomplete. For this reason, the next section

identifies the most problematic cosmogenic isotopes in terms of their degeneracy with

a 0νββ signal, rather than their expected rates.

4.7.1 Problem Isotopes

Lozza and Petzoldta calculated the possible cosmogenic isotopes produced by spalla-

tion of cosmic rays on a natural Tellurium target at surface [186]. Table 4.1 shows

the 18 candidates they identified that satisfy Q > 2MeV, Z < 131 and T 1
2
> 20d (

shorter half-lives have been included if they are fed by a longer lived parent).

Very long lived isotopes produce slow event rates for a given normalisation and very

short lived isotopes decay away during a ‘cool down’ period. More worrisome are the

O(1yr) half-lives, which are comparable with the likely run-time of the experiment.

In this regard the problematic isotopes are 110,110mAg, 56,58,60Co, 22Na, 102,102m,106Rh,
124,126Sb, 106Rh, 44,46Sc, 42K and 88,90Y.
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Figure 4.5: Reconstructed energy distributions for cosmogenic 0νββ backgrounds and 0νββ signal
events.

These decays only cause difficulty if they have similar energy spectra to the expected

signal. Fortunately, few of these decays have significant overlap with 0νββ energy

spectrum. (56,58Co, 90Y) have negligible probability of reconstructing in the 0νββ

signal region5. 102,102(m)Rh, 126Sb, 46Sc do contribute to the signal region but each

have a peak elsewhere that contains orders of magnitude more probability; if these

isotopes did contribute a background to the signal region, the peaks outside the

window would be easily identified.
110Ag may also be discounted because its parent, 110Ag(m), only produces it in

1.33% of decays, so the latter could always be measured from the former.

The remaining isotopes 44Sc, 42K, 60Co, 22Na, 106Rh, 110Ag(m) and 88Y have both

significant energy overlap and O(1yr) half-lives. These are as the ‘problem isotopes’

for study in chapter 5. Figure 4.5 shows their energy spectra alongside the 0νββ

signal and figure 4.6 shows their cool down over several years.

Lozza and Petzoldta calculated the production rate of each of these isotopes [186],

the results are shown in table A.1 of appendix A. They find that, without purific-

ation, these isotopes would contribute thousands of events per tonne of Te in the

experiment’s first year, after 1 yr exposure at the surface. All considered, the most

dangerous isotopes are 60Co, 88Y and 22Na. They are formed in large numbers during

surface exposure, they have half-lives of several years and their energy distributions

are similar in shape and scale to the 0νββ signal.

5according to RAT 6.1.6 simulation
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Figure 4.6: Cool-down of problem cosmogenic isotopes. In cases where very short lived isotopes are
fed by long lived parents, the parent’s half-live is shown.

4.7.2 Mitigation

After underground Te purification, SNO+ aims to reduce the yearly cosmogenic event

rate from several thousand per tonne of Te, to a total event rate of 0.19cts/yr [181].

These event rates are insignificant; more difficult is constraining the rates of these

isotopes in-situ. There are three available handles. First, their characteristic decay

times can be used to distinguish them from 0νββ. If there were a significant contam-

ination of one or several of these isotopes the event rate should cool down according

to figure 4.6, whereas a 0νββ signal rate would change only with additional load-

ing. Second, the contamination can be constrained ex-situ using measurements of

the pre-purification tellurium activity and the purification efficiency can be estim-

ated using spike tests. Finally, many of these decays emit γ or e+. This gives those

decays a characteristic multi-site signature that differs from point-like 0νββ decays.

Discrimination based on this principle is explored in detail in chapter 5.

4.8 Counting Analysis

The simplest SNO+ 0νββ analysis defines a signal region in reconstructed energy

and event radius and uses it to perform a counting experiment. There are only a

few expected external counts per year inside the central 3.5m. This is the SNO+

fiducial volume, chosen to maximise the detector sensitivity: inside this region, other

backgrounds, particularly 8B ν ES events, dominate over the externals [167]. In
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Figure 4.7: 0νββ background budget and energy spectrum near Qββ inside the fiducial volume [185].

addition, a region of interest in energy is defined around Qββ, to isolate the 0νββ

signal from most backgrounds; for this, an asymmetric window is chosen in order to

offset the effect of the steeply falling 2νββ spectrum below Qββ:

Qββ − 0.5σE → Qββ + 1.5σE = (2.49− 2.65) MeV (4.1)

Figure 4.7 shows the expected energy spectrum near Qββ after 5 years live-time,

inside the fiducial volume, assuming a 0νββ signal equivalent to mββ = 100meV. The

signal presents as an excess of events on top of the falling 2νββ edge. Inside the

signal window, the background is dominated by 8B ν ES events, with sub-dominant

contributions from radioactive backgrounds.

A statistics only counting analysis using this signal window gives an expected limit

on the 0νββ half-life of T1/2 > 1.9 × 1026 years at 90% confidence, after a 5 year

live-time [185].

Figure 4.8 shows the published half-life [187] andmββ limits as of August 20176 [187]

alongside this projected sensitivity. If achieved, the SNO+ limit will be world leading.

Cosmogenic decays are a negligible contribution to the background budget. How-

ever, the energy spectra of these backgrounds make them degenerate with the 0νββ

signal. This severely limits the experiment’s discovery potential: without proper con-

straint, the excess in figure 4.7 could just as easily be 60Co. Indeed, what makes these

isotopes particularly tricky is that they are introduced with the tellurium, so their

rate will scale linearly with the Te-loading, in the same way as a 0νββ signal would.

Thus the need for an in-situ constraint of these decays, the focus of chapter 5.

6CUORE have since improved their limit to 1.5×1025 [129]
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Figure 4.8: Comparison between existing 0νββ limits [187]. Diagonals indicate the (unknown)
constant of proportionality between T 0ν

1/2 and mββ , which is determined by nuclear physics. Each
of the points shows a theoretical prediction of this constant for the 0νββ nucleus used in each
experiment.



Chapter 5

Pulse Shape Discrimination for
Internal Backgrounds

This chapter applies the reconstructed time residual technique outlined in section 3.2

to discriminating between 0νββ and internal β±γ radioactive backgrounds. The first

section deals with separating 0νββ events from the problem cosmogenic isotopes

identified in section 4.7. Other than decay half-life, this is the only method for in-

situ constraint of these isotopes, which are strongly degenerate with the 0νββ signal.

The second section deals with the possibility of using the same technique to further

reduce the background count from uranium and thorium chain contaminants in the

scintillator. The last section explores the method’s robustness and the expected

signals that could be used to calibrate it.

Each of the data sets in this chapter was generated uniformly in the AV volume and

across the full energy range of the decay, but cuts were applied to select only events

that reconstructed as valid, within an energy signal window of 2.438 < E/MeV <

2.6021 and within the fiducial volume of r < 3.5m. In each case, the events used to

tune the classifiers are completely independent from the events used to test them.

5.1 Cosmogenics

There are many cosmogenic isotopes which will be produced in cosmic ray spallation

on the tellurium, while it is at surface. Chapter 4 identified seven of the isotopes that

can be produced on Te as particularly dangerous for a 0νββ search; these were: 44Sc,
42K, 60Co, 22Na, 106Rh, 110Ag(m) and 88Y. These isotopes are expected to be produced

in large numbers at the surface, they have half-lives comparable to the length of the

experiment and their energy spectra strongly overlap with that of the 0νββ signal.

1this is ± one energy resolution from Qββ .

96
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5.1.1 Event Topology

The 8 cosmogenic problem isotopes are either β− or β+/EC emitters, but they are

better grouped by the most energetic particle of their most common decay mode.

The first group is the β− emitters. 42K and 106Rh are close to pure β decay: they

emit no γ 82% and 76% of the time, respectively. The dominant decay mode of these

decays will thus be difficult to separate from the 0νββ signal with timing, because

both are electron-like. However, there are sub-dominant decays with γ: 8% of 42K

decays emit a 1.1MeV γ and the sub-dominant modes of 106Rh almost always produce

a single 0.5MeV γ.

The γ group is 60Co, 124Sb, 110Ag(m) and 88Y. The first three have dominant mode

β end points of 0.3MeV, 0.1/0.4MeV and 0.7MeV respectively, with the rest of the

energy deposited by O(1MeV) γ. 88Y decay is dominated by electron capture decay

with the emission of two γ of ≈ 1MeV. These non-point-like events should have

broader time profiles than point-like 0νββ events.

The final, β+γ, group is 22Na, and 44Sc. The dominant mode for these decays is β+

decay and both come with associated γ of 1.2MeV and 1.3MeV respectively. These

events will share the broadening of the γ group. There should also be a distinct

sub-population of decays with very late light, produced by o-Ps formation in 1/3 of

cases.

5.1.2 Time Residuals

Figure 5.1 shows the reconstructed time residuals of these candidate isotopes and

the 0νββ signal. The only feature in the spectrum sharp enough to be noticeably

distorted by a O(1ns) delay from Compton scattering or o-Ps formation is the central

prompt peak.

Figures 5.2, 5.3 and 5.4 show this prompt peak in more detail for the β+, γ and

β− groups. Within each group, the cosmogenic decays have near identical spectra,

reflecting their common topology, but, in each case, the non-point-like cosmogenic

timing spectra are broader than point-like 0νββ.

The decays in the β group have only a very modest difference from 0νββ events,

which is driven by the sub-dominant γ decay modes. 42K is noticeably broader than
106Rh because its sub-dominant mode emits a higher energy γ.

The γ group shows the expected broadening relative to 0νββ events, though the

difference is at most 10% and confined to around 20 bins.
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Figure 5.1: Time residual PDFs for problematic cosmogenic decays and 0νββ. Spectra shown are
the normalised means of 40000 events in the target volume, reconstructing in rreco < 350cm. The
first and last bins are overflows.

Finally, the β+γ group shows the largest difference with 0νββ. These decays pro-

duce the smallest prompt peak and the most hits on its falling edge.

It is important to note that the cosmogenics appear to produce more early hits as

well as late ones, for each of the groups. The cosmogenics in figures 5.2, 5.3 and 5.4

all have more hits for tres < 0ns than 0νββ events. This is a reconstruction effect:

Compton scattering and the o-Ps lifetime do push prompt hits in cosmogenic decays

to later times than 0νββ events, but, the picture is complicated by vertex position

reconstruction. PositionTimeLikelihood reconstructs these events by comparing

them with the expected electron PDF. The algorithm selects a vertex that aligns the

prompt peak of the event with the prompt peak of the PDF, making the earliest hits

appear as though they occurred before the event.

The following three sections use increasingly complex discriminants to separate

0νββ from cosmogenics using the distributions in figures 5.2, 5.3 and 5.4.

5.1.3 fprompt

The simplest discriminant for exploiting the differences between the time residual

spectra is fprompt, the fraction of hits before a critical time:

fprompt =
Nhit(tres < tcrit)

Nhit

(5.1)
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Figure 5.2: Early time residuals for β− dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV .
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Figure 5.3: Early time residuals for γ dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.
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Figure 5.4: Early time residuals for β+γ dominated decays. Valid fits only, r <3.5m, 2.43MeV
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√
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Figure 5.5 shows the relative expected significance for a fprompt cut used to distin-

guish between 0νββ and cosmogenic backgrounds. It suggests that a critical time of

4ns is optimal for the fprompt classifier2. The plot also suggests that a cut at -3ns

could work equally well. However, the expected number of hits with tres < −3ns for

0νββ events is only around 10, where the Gaussian approximation used to generate

the figure breaks down.

Figures 5.6, 5.7 and 5.8 show the fprompt distributions for the three decay classes. As

expected, there is essentially no power to separate the β− class, except for potentially

a tail from the sub-dominant 42K γ decay. The β+γ and γ classes show separation

of around 1/2 of one standard deviation and the β+γ events show a clear low fprompt

tail, caused by long-lived o-Ps states.

2Note fprompt and C differ in that the former is calculated event-by-event and the latter is
calculated from the average spectrum.
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Figure 5.6: fprompt distributions for β− dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.
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Figure 5.7: fprompt distributions for γ dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.
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Figure 5.9: ∆ logL distributions for β− dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.

5.1.4 ∆ logL
Reconstruction effects mean that the cosmogenics have additional early hits as well as

additional late hits. A single hard cut on time residuals, like fprompt does not make use

of the former effect. In order to make use of the excess of early hits for cosmogenics

shown in figure 5.5, one could separate the tres < 5ns region into two regions, one

tres < 0ns and another 0ns < tres <5ns. A better approach is to use all 210 time

residual bins, calculating a log-likelihood for each event under the cosmogenic and

0νββ hypotheses. Assuming independent hits, the log-likelihood ratio is:

∆ logL =

Nbin∑

j=0

Nj log

(
P (bj|0ν)

P (bj|C)

)
(5.2)

where Nj is the number of hits observed in time residual bin j and P (bj|0ν), P (bj|C)

are the probabilities of observing a hit in time residual bin bj, for 0νββ and cosmogenic

events, respectively. These PDFs are just the distributions shown in figures 5.2, 5.3

and 5.4.

Figures 5.9, 5.10, and 5.11 show the ∆ logL distributions for the three event types.

Each distribution was estimated using 40000 events before cuts. The dashed lines are

0νββ events, and their colours indicate which cosmogenic PDF was used to calculate

∆ logL. In each case, dashed and dotted lines should be compared as they represent

the same discriminant, tuned using the same PDFs. As expected, there is essentially

no discrimination power for the β− group but the separation for the β+γ and γ classes

is improved to around 1 standard deviation and 1.5 deviations respectively.
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Figure 5.10: ∆ logL distributions for γ dominated decays. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.
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Figure 5.11: ∆ logL distributions for β+ decays. Valid fits only, r <3.5m, 2.43MeV < E < 2.60MeV.
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Figure 5.12: Bin to bin time residual correlations for 0νββ, 60Co and 22Na. Valid fits only, r <3.5m,
2.43MeV < E < 2.60MeV.

5.1.5 Fisher Discriminant

To go one step further and take into account the correlations between the bins, a

Fisher Discriminant can be used. The covariance matrix between all of the bins, Σ,

was estimated for 0νββ, a γ decay, 60Co, and a β+γ decay 22Na, according to:

Σij =
1

Nev − 1

Nev∑

α=0

(Ñα
j − P (bj)) · (Ñα

i − P (bi)) (5.3)

where Nev is the number of events in the sample, P (bj) is the binned time residual

PDF and Ñα
j is content of bin j in the time residual spectrum of event α, normalised

to one hit.

Note that the overflow bin has been moved from 200ns to 40ns, to mitigate the

effect of low statistics bins in the late tail. The later bins are less well constrained

and figure 5.1 strongly suggests that later bins carry little information for event

classification. The bin index 0 → 40 corresponds to time residuals of −10 → 30ns.

The prompt peak sits between bins 10 - 20.

The covariance matrices were converted to correlation matrices according to

Corrij =
Σij

Σii

(5.4)

Figure 5.12 shows these correlation matrices for 0νββ, 60Co and 22Na.

There is evidence of structure in all three plots, though the size of the correlations

is larger for 60Co than 0νββ and larger still for 22Na. The three matrices also differ

in the shape of the correlations. For 0νββ the only significant structure is negative

correlation between bins close to 10, where the prompt peak begins. For 60Co hits on

the rising and falling edge are negatively correlated with hits in the prompt peak and

positively correlated with each other. This is the result of variation in γ Compton
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Figure 5.13: F for 0νββ and 22Na events. Valid fits only, r <3.5m, 2.43MeV < E < 2.60MeV.

scattering: a particularly diffuse γ deposit will lead to a late estimation of the event

time and extra light on both sides of the prompt peak together.
22Na shows the same structure to a greater extent, as well as additional positive

correlations for j > 20, resulting from the o-Ps sub-population: if there is lots of light

in one late bin, it is likely that o-Ps was formed and therefore there is more likely to

be light in the other nearby late bins.

To include these correlations in a discriminant, the Fisher weights ~w for 60Co and
22Na were calculated according to:

~w = (Σ0ν + ΣC)−1(~P0ν − ~PC) (5.5)

where ~P0ν and ~PC are the bin contents of the normalised time residual spectra. Fisher

discriminant parameters for both 60Co and 22Na were then calculated using:

F =
1

Nhit

~Nj · w (5.6)

Figures 5.14 and 5.13 show these two discriminants for 60Co and 22Na against 0νββ.

The 60Co plot shows a slightly greater separation if compared with ∆ logL in fig-

ure 5.10.
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Figure 5.14: F for 0νββ and 60Co events. Valid fits only, r <3.5m, 2.43MeV < E < 2.60MeV.
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Figure 5.15: Discriminant comparison for 60Co and 0νββ events. Valid fits only, r <3.5m, 2.43MeV
< E < 2.60MeV.
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Figure 5.16: Discriminant comparison for 22Na and 0νββ events. Valid fits only, r <3.5m, 2.43MeV
< E < 2.60MeV.

5.1.6 Comparison and Power

Figures 5.15 and 5.16 compare the signal and cosmogenic efficiencies that could be

achieved by cutting on fprompt,∆ logL and F for 60Co and 22Na events. In both cases

F and ∆ logL outperform fprompt. The latter two allow for greater background rejec-

tions at the same signal sacrifice because they both make use of the full spectral shape

of the time residuals, rather than a single bin. For 60Co, including the correlations,

allows to F perform better than ∆ logL over the whole range. For 22Na the im-

provement from using F is border-line significant, perhaps suggesting that, although

correlations are strong, the data are not linearly separable. The two known, distinct

sub-populations in 22Na decay (o-Ps and p-Ps) may warrant a more sophisticated

approach.

The separation is clearly not large enough for event by event discrimination between

e.g. 0νββ and 60Co. However, the discriminants developed in this chapter are useful

for statistically discriminating between 0νββ and background in the case that a large

potential signal is observed; this is explored in chapter 8.
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Figure 5.17: Running of ∆ logL for 0νββ and 60Co events inside the fiducial volume. Errors are
RMS not standard error. Valid fits only, r < 3.5m.

5.1.7 Running with E and r

The electron time residuals vary with the energy and radius of the event, so the

statistics based on them will too. Figure 5.17 shows the variation of the mean ∆ logL
as a function of reconstructed energy for 0νββ and 60Co events inside the fiducial

volume. Figure 5.18 shows the running with r inside the energy signal window. The

error bars show the event to event RMS3.

There is a slight upward trend in the statistic with energy for both event types,

indicating that the time residuals of both event types look more 0νββ-like as the en-

ergy increases. This is because the reconstructed time residuals become more strongly

peaked with increasing energy (shown explicitly in figure 3.8) and 0νββ is the more

peaked hypothesis. However, the separation of the mean ∆ logL for the two event

types does not change significantly relative to the RMS values, thus the discrimination

power is near constant over the range of the 0νββ energy window.

Figure 5.18 shows that there is also an upward trend in ∆ logL with increasing

r, for r < 5.2m. This is because the time residuals become more strongly peaked

3both figures contain 53483 and 19829 60Co and 0νββ events respectively
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Figure 5.18: Running of ∆ logL for 0νββ and 60Co events inside the energy window. Errors are
RMS not standard error. Valid fits only, 2.43MeV < E < 2.60MeV.

as the vertex position approaches the AV. For r > 5.2m, there is a sharp downward

turn suggesting that both events look more 60Co-like. This is likely to be because of

total internal reflection effects of the AV, which make the time residuals less peaked,

favouring the broader 60Co hypothesis. Both of these phenomena were shown for the

electron time residual PDF in figure 3.9.

These two effects show that, if a time residual classifier is used in a likelihood

fit for 0νββ decay, there will significant variations in its value for both signal and

background that must be accounted for to avoid a bias in the fit.

5.2 U/Th Chain

Near the 0νββ end point the significant uranium and thorium chain contributions are
210Tl and 214,212BiPo events. 214Bi, 212Bi and 210Tl are all βγ decays, so they should

have characteristic non-point-like timing signatures that may be used to distinguish

them from point-like 0νββ.

Unlike the comogenics, these backgrounds are expected to have rates of > 1

count/yr but the rates are still a small proportion of the overall background rate,
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so the goal here is to reduce their count with minimal sacrifice.

5.2.1 Event Topology

BiPo decays where the Bi and Po fall into separate trigger windows are tagged if

the two events reconstruct within ∆R =1.5m of each other, within a reference time

window (see chapter 4). Of these decays, the ones that are not tagged this way are

those in which the Bi and Po decays reconstruct a large distance away from each

other. J. Wilson showed that this occurs when the Bi decay emits a γ of energy

> 1.7MeV [188]. These γ can travel O(m) before Compton scattering, leading to

a reconstructed Bi position that is more than 1.5m away from the true vertex and

the following reconstructed Po event4. The PSD technique can be used to reject this

residual BiPo background, because the high energy γ produced in these events will

deposit over multiple sites, and create distinctive broad timing profiles.

Events from this part of the decay scheme are very rare. To get the required

statistics for this special case, 214Bi events were simulated using a version of RAT

6.1.6 modified to only simulate the parts of the decay scheme that produce a 1.7MeV

γ or greater. 160,000 events were generated for the PDFs and 450,000 events for the

test data, before cuts.
210Tl is a β− emitter with a Q-value of 5.5MeV. The βνe pair ranges in energy from

1.4MeV to 4.4MeV, and there is always the emission of a 0.8MeV γ. The 210Tl decays

which can fall into the 0νββ signal window will be those where the ν carries away at

least 2.5MeV of energy, so these events will have a significant γ energy deposit, and,

in principle, they should have broad timing spectra accordingly.

5.2.2 Time Residuals

Figure 5.19 shows an inset of the time residual spectra for 0νββ and 210Tl decays. As

expected the 210Tl residuals are broader than those for 0νββ, but the effect is smaller

than for the βγ and β+γ decays in the cosmogenic section. This is because the events

that fall into the signal region emit only < 1MeV γ.

Figure 5.20 shows the time residuals for 214Bi events which emit γ of 1.7MeV or

more. The events have been divided into several bins of ∆R, defined by the distance

between the true and reconstructed vertices. Large ∆R values indicate longer than

average γ tracks, which are more likely to be missed by the BiPo coincidence cut. In

4Of course, the ∆R cut could be increased to catch these events, but increasing the radius of this
cut further leads to unacceptable signal sacrifice: once the near AV region is less than ∆R from the
detector centre, the high external event rate leads to many accidental tags.



5.2. U/Th Chain 111

tres/ns

-10 -5 0 5 10 15 20

P
ro
b
ab

il
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

210Tl

0νββ

Figure 5.19: Time residual spectra for 210Tl and 0νββ events. Valid fits only, r <3.5m, 2.43MeV
< E < 2.60MeV.

each case, the 214Bi events are considerably broader than 0νββ. In particular, there

is an excess of early hits at tres < 0 which grows with ∆R. These events reconstruct

where the γ scatter so the light produced by the β appears to occur before the event.

5.2.3 ∆ logL
Figure 5.21 shows the ∆ logL statistic for 210Tl and 0νββ events, calculated relative

to the 0νββ and 210Tl PDFs in figure 5.19. As expected the separation is slight: the

peaks are less than half of one standard deviation apart.

Figure 5.22 shows the same statistic for 214Bi events, for the four bins in ∆R, using

the corresponding PDFs in figure 5.20. There is a clear trend towards greater sep-

aration with increasing ∆R, because longer γ tracks produce broader time residuals.

Unfortunately, only a handful of events have ∆R > 0.8m, so the study is statistically

limited.

Figure 5.23 shows the estimated background and signal efficiencies for cuts placed

on the ∆ logL distributions. The 210Tl cut requires significant signal sacrifice to

remove even 10% of events. Given the small contribution of these events to the total
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Figure 5.21: ∆ logL for 210Tl events and 0νββ events. Valid fits only, r <3.5m, 2.43MeV < E <
2.60MeV.
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Figure 5.22: ∆ logL for 214Tl events and 0νββ events for different ∆R ranges. Valid fits only,
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Figure 5.23: Efficiency plot for 210Tl and 214Bi backgrounds and the 0νββ signal. Valid fits only,
r <3.5m, 2.43MeV < E < 2.60MeV.

background, this cut is not worth making. However, there is power for rejecting
214Bi events, particularly those with large ∆R. For the smallest bin in ∆R, one

could reject 60% of background events for around 20% sacrifice. The power of the

discriminant improves drastically with increasing ∆R however, as the longest γ paths

look most different to point-like 0νββ events. Despite the limited statistics, one

could conservatively expect to remove 80% of events with ∆R > 1.5m, with no signal

sacrifice. High ∆R events are those most likely to be missed by the BiPo coincidence

cut, so this is a powerful complimentary technique.

5.3 Calibration

This section explores the robustness of pulse shape parameters for internal back-

grounds. It shows that the discrimination power relies only on the best understood

part of the time residual spectrum, that a variety of well understood backgrounds may

be used to calibrate the technique, and, finally, that only a couple of discriminants

are required to reject many different backgrounds.
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5.3.1 Overflow Time

Figure 5.1 strongly suggests that the timing differences between 0νββ and multi-site

backgrounds are concentrated in the prompt peak. This is fortunate as the earliest

and latest hits are the hardest to understand: very early hits are dominated by noise

and pre-pulsing, whereas very late hits are dominated by absorption-reemission, late

pulsing and reflections. In in order that the analysis doesn’t depend on the shape of

the residuals in these regions, the overflow bins may be moved towards the prompt

peak.

Figure 5.24 shows the results of the 60Co analysis where the overflow bin has been

moved from 200ns to 30ns, alongside the result using the full 210ns window. As

expected, the results are same up to statistical fluctuations. The Fisher discriminant

in section 5.1.5 also used this reduced range.

5.3.2 Calibrating the multi-site response

Given the small predicted time difference between the point-like and non-point-like

time residual spectra, care must be taken to carefully calibrate the multi-site timing

response inside the detector, so as to reduce the reliance on Monte Carlo. Fortunately,

there are several other well understood backgrounds that may be used for in-situ

measurement.

First, a high statistics pure sample of 2.2MeV γ events could be extracted by

inverting the (α−n) coincidence cut to select the γ created from neutron capture on

hydrogen.

Second, with the γ response calibrated, more complicated βγ events may be ex-

amined by inverting the 212/214BiPo cuts. There will be over 4.2× 105 of these events

per year, which can be used to produce a pure, high statistics sample in the centre of

the detector. The broad BiPo energy spectrum would allow measurement of how the

timing response runs with reconstructed energy and the uniform volume distribution

would allow the running with r to be estimated.

Finally, in the fiducial volume, the energy spectrum just above the energy region

of interest is dominated by internal 208Tl decay. This region could be used to gain

yet another sample of βγ events, this time at a higher energy. Again, the sample can

be purified further using the method of delayed coincidences: there is a characteristic

delay of 3.1 min between the parent 212Bi α decay and the daughter 208Tl βγ decay.

Figure 5.25 shows the time residual spectra for these 3 event classes, alongside 0νββ

and 60Co, 22Na, two cosmogenic isotopes of interest. They are each more similar to



5.3. Calibration 117

tres/ns
0 50 100 150 200

P
ro
b
a
b
il
it
y

10−4

10−3

10−2

10−1

-10 < tres/ns < 200

-10 < tres/ns < 30

∆ logL
-15 -10 -5 0 5 10

P
ro

b
ab

il
it

y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

60Co

-10 < tres/ns < 200
-10 < tres/ns < 30

0νββ

-10 < tres/ns < 200
-10 < tres/ns < 30
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using both ranges. Valid fits only, r < 3.5m, 2.43MeV < E < 2.60MeV.
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Figure 5.25: Time residual spectra for 0νββ, cosmogenic backgrounds of interest and other back-
grounds which can be tagged. Valid fits only, r < 3.5m.

one other than to 0νββ. If the three tagged samples with different energies can be

faithfully reproduced in Monte Carlo, one could reasonably expect to extrapolate to

the particles produced by 60Co, 22Na etc.

To calibrate the positron response one could use the decay of 11C produced by cos-

mic muons. These may be tagged using the three fold coincidence technique demon-

strated by Borexino [189]. This would allow for in-situ verification of the o-Ps lifetime

and formation fraction.

Finally, there are 44Sc and 60Co calibration sources [166, 140] that could be used

to directly calibrate the βγ response in the region of interest. These would be best

deployed after the observation of a possible signal to avoid contamination risk.

5.3.3 Calibrating the 0νββ response

A similar calibration must be performed for the point-like 0νββ response. This can

be done with a deployed an electron source, or the 2νββ background may be used

in-situ. Figure 5.26 shows the expected data set for a 3 year live-time in the region

1.6MeV to 2MeV and the fraction of those events that come from 2νββ. 2νββ events
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Figure 5.26: Left: expected energy spectrum after 1 year’s live-time. Right: expected 2νββ counts as
a fraction of total counts. Error bars show expected variation. BiPo coincidence, (α−n) coincidence,
r < 3.5m and ITR cuts applied.

contribute over 90% percent of the events collected in this region, with only a small

contamination of βγ 228Ac and 234Pa(m) decays from the thorium and uranium chains,

respectively.

The 2νββ time residual spectrum differs from 0νββ only due to running with

energy, so, if the point-like response of 2νββ could be extracted in several energy bins,

one could use Monte Carlo to extrapolate to the energy of 0νββ events. Figure 5.27

shows the gentle variation in the 2νββ time residuals with energy and those of 0νββ.

5.3.4 How many discriminants are needed?

The results of this chapter so far show that, if the timing PDF can be measured, a

discriminant can be produced to separate internal backgrounds with γ or β+ from

0νββ signal, but one discriminant was tuned for each background. Each of these

must be calibrated and assigned systematic uncertainties.

The uranium and thorium chain backgrounds are best dealt with using a hard cut

with little sacrifice. In these cases, nothing prevents SNO+ using a cut targeted for

each background.

However, for the cosmogenics, the expected rates are too low and the distributions

insufficiently different for a hard cut. Instead, these discriminants are best used as

PDFs for 0νββ signal extraction. In that case, tuning a discriminant for each of the

many internal backgrounds leads to very high dimensional signal extraction PDFs

which require a prohibitively large Monte Carlo datasets to estimate.

Fortunately, the shared event topology of decays in the β+ and γ groups means that

it is sufficient to have one discriminant for each group. Figure 5.28 shows the ∆ logL
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Figure 5.27: Variation of the 2νββ/0νββ reconstructed time residuals with energy. Valid fits only,
r < 3.5m.

statistic for the γ and β+γ cosmogenic isotopes. Each of the γ group isotope likeli-

hoods were calculated using the 60Co PDF, whereas each of the β+γ likelihoods were

calculated using the 22Na PDF. These are indistinguishable from figures 5.4 and 5.3

where each isotope was calculated using its own PDF, which demonstrates that similar

topology leads to exact interchangeability from the point of view of PSD.

One might go a step further and ask if it is sufficient to use only one discriminant

for both γ and β+γ groups, e.g. using the 60Co PDF for both. Figure 5.29 shows

the ∆ logL statistic for 22Na events using the 60Co PDF (solid line) and 22Na PDF

(dashed line). The dashed lines, using the 22Na PDF display a better separation

indicating that there is a significant advantage to using a tailored β+γ discriminant.
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Figure 5.28: Interchangeability of PDFs within the β+ and γ event classes. In the first plot the
22Na PDF was used to calculate the likelihood, in the second the 60Co PDF was used. Valid fits
only, r < 3.5m, 2.43MeV < E < 2.60MeV.
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Figure 5.29: ∆ logL for β+ decays, using 60Co and 0νββ time residual PDFs. Valid fits only, r <
3.5m, 2.43MeV < E < 2.60MeV.



Chapter 6

Pulse Shape Discrimination of
External Backgrounds

The next, more exploratory, chapter investigates the possibility of discriminating

between 0νββ signal events and radioactive backgrounds created by 208Tl decay

outside of the scintillator volume. Of these, 208Tl decay inside the AV, hold-down

ropes (HDR), external water (H2O) and the PMTs (PMT β − γ) form the biggest

background contributions inside the fiducial volume, so these are the focus of this

chapter. The analysis updates earlier work by I.Coulter and L.Segui, who first ap-

plied a likelihood-ratio technique to the time residuals of these events, in two ways:

first, by introducing a new discriminant, based on the angular distribution of hits

and, second, by showing that the likelihood-ratio can be improved upon by taking

into account correlations between time residual bins, using 208Tl AV as a case study.

The first section of this chapter describes the decays in detail. The second and

third sections show that the backgrounds have distinctive hit patterns in time and

detector angle that may be used to form discriminants to reject them. The final

section investigates correlations between these two discriminants and the power in

combining them for 208Tl AV events.

For each data set considered, cuts were applied to select only events that recon-

structed as valid, within an energy signal window of 2.438 < E/MeV < 2.6021 and

within enlarged fiducial volume of r < 4.2m. In each case, the events used to tune

the classifiers were completely independent from the events used to test them.

1this is ± one energy resolution from Qββ .
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2.6 MeV  γ

Fiducial Volume

γ β

Figure 6.1: 208Tl decay on the AV.

6.1 Decay Details

208Tl β decays to 208Pb with a Q value of 4999keV and a branching fraction of 100%.

The decay scheme is shown in figure A.1 of appendix A. The β decay is always to

the second excited state of 208Pb, or a higher energy level. All decays reach the first

excited state through γ decay, which then decays to the ground state, emitting a

2.61MeV γ in all cases.

Figure 6.1 shows a cartoon of 208Tl AV decay. The initial β and low energy γ,

emitted in decay to the first excited state, deposit their energy close to the AV, but the

2.6MeV γ can free stream several meters and deposit its energy in the detector centre,

mimicking a 0νββ event. The same topology is present in all external background

events, though the exact location of the initial particles will be different.

Figure 6.2 shows the reconstructed radial position for 208Tl HDR events. Inside

the central 4.5m of the detector, the number of events falls exponentially towards

the centre, according to the Compton length of the γ. Only a very small fraction of

external events produce a 0νββ background, but the rate of decay is large enough to

produce a background of a few counts in the signal window per year. The fiducial

volume of SNO+ is set at the radius at which the externals cease to be the dominant

background. If the external background could be reduced, the optimal fiducial volume

would be larger, and more of the detector’s volume would be made use of. Therefore,

the events of most interest for a rejection study, are those that reconstruct just outside

the fiducial volume of 3.5m. This is the reason for choosing a cut of r < 4.2m for the

studies that follow.
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Figure 6.2: Exponential attenuation of external γ radiation from the hold down ropes. Points show
the probability that a γ created by 208Tl decay in the hold down ropes will reconstruct at radius
rfit, along with an exponential fit.

Two features of this decay can be used to discriminate between these background

events and real 0νββ events. First, if the β or low energy γ reach the external

water, or the scintillator volume, they may create Cherenkov or scintillation light,

respectively. This light will produce hits close to the event site that appear very early

relative to the main deposition in the centre. Second, the 2.6MeV γ will deposit its

energy over multiple sites, smearing the event’s time residuals in the same way as

the internal backgrounds in the previous chapter. These two effects give external

background events characteristic signatures in their time residuals and the angular

distributions of their earliest hits. These two handles are explored in the following

two sections.

6.2 Timing Discrimination

Figure 6.3 shows the average time residual spectra for 0νββ and the four external

decays. The logarithmic plot shows that there is an early hit contribution between

-10 and -2ns for each of the external backgrounds, that is not present for 0νββ events.

The hit probabilities in this region are 10 - 20 times larger for external events than

0νββ. This is the result of the initial γ and β, which create early hits close to

where the decay occurs. The time residuals of these hits are calculated relative a
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Figure 6.3: Time residuals for 0νββ and external background events. Left: the earliest hits on a
logarithmic scale. Right: the prompt peak on a linear scale. Overflow bins at -10 and 50ns. Valid
fits only, r < 4.2m, 2.438 < E/MeV < 2.602.

single reconstructed vertex position, which is at least 4.2m away, so these hits look as

though they occurred before the event started. The delay between the initial deposit

and the deposit in the centre is proportional to the path length of the 2.6MeV γ. The

effect is most noticeable for the AV and HDR ropes, followed by the H2O events, then

the PMT β − γ. This is likely because of the different location of the initial decay:

events on the AV or HDR are close enough that the low energy particles, which deposit

close to the decay, can produce scintillation light in much larger quantities than the

Cherenkov light produced when the particles deposit in the external water. For decays

occurring inside a PMT, the early light is emitted at oblique angles with respect to

other PMTs nearby, which is less likely to cause early hits. Further investigation is

required to confirm this hypothesis.

The linear plot shows the second expected difference: for each of the external

backgrounds, the prompt peak is smaller by around 5% and broader on the falling

edge. This is the result of the multi-site deposition of the 2.6MeV γ: it creates

several electrons, distributed in space and time, but each time residual is calculated

relative to a single reconstructed vertex, incorrectly accounting for time of flight.

The broadening is close to identical for each of the backgrounds, reflecting the same

2.6MeV γ produced in each.

6.2.1 ∆ logL
Events of unknown origin can be classified as 0νββ or external by comparing the

event’s time residuals against the average distributions in figure 6.3, using a likelihood-

ratio test. This statistic was calculated in the same way as the internal background

discriminant in the previous chapter, using the PDFs shown in figure 6.3.
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Figure 6.4: ∆ logL distributions comparing 0νββ events and external backgrounds. Valid fits only,
r < 4.2m, 2.438 < E/MeV < 2.602.

Figure 6.4 shows the ∆ logL distributions for the external backgrounds. The 0νββ

events have a Gaussian distribution in each statistic, consistent with Poisson fluc-

tuations. However, for each of the externals, there are two distinct contributions.

Roughly half of the events have a Gaussian distribution, offset from the 0νββ peak

by around 1/2 of one standard deviation. The other contribution is a long tail, indic-

ating events which are much more background-like than the former group. This same

trend is visible in figure 9.22, which shows the number of hits with tres < −2ns for

background and signal. For each of the external events, particularly PMT β−γ, there

are many events which are consistent with 0νββ, but, for each, there is an additional

tail at high early hit count, which is not consistent with Poisson statistics. Comparis-

ons between the different externals are hampered by poor statistics. Investigations by

I.Coulter indicate that these separation contributions could arise from events where

the initial β ends its track in the external water, scintillator or acrylic [167].

Figure 6.6 shows the background and signal efficiencies that could be obtained by

cutting on the ∆ logL distributions. At the low signal sacrifice end of the plot, the

cut works similarly well for each of the backgrounds, with the exception of the PMT

β − γ for which the performance is noticeably worse. One could expect to reject
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Figure 6.5: The number of hits with tres < −2ns for 0νββ and external background events. Valid
fits only, r < 4.2m, 2.438 < E/MeV < 2.602.

50% of AV, HDR and H2O events and 40% of the PMT β − γ events, with negligible

sacrifice.

At larger signal sacrifices, there is larger variation between the different back-

grounds but the limited statistics warn against over-interpretation. In particular,

the trends in figure 6.2.1 suggest that there was a fluctuation in the AV events at

around ∆ logL = 0 that reduces the estimated rejection and a fluctuation in the H2O

events at ∆ logL = −5→ 0, which increases the apparent rejection.

6.2.2 Correlations

Evidence for non-Poissonian variation within the external events indicates that there

will be strong correlations between the bins and, therefore that, in some cases, one

could improve upon ∆ logL, which assumes that the hits are independent. Figure 6.7

shows the bin to bin correlations explicitly for 208Tl AV and 0νββ events. The

structure is markedly different between the two.

For the externals, three distinct regions are apparent: the earliest hits in the first

8 bins; the prompt peak in bins 8-15 and the falling edge in bins >15. The earliest

and latest hits are positively correlated with one another, and negatively correlated

with the prompt peak. This suggests that the inherent variability in these events is

between those with lots of light in the prompt peak and those where the prompt peak

is relatively weak, with additional very early and late light.
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Figure 6.6: 0νββ efficiencies and background rejection factors for the ∆ logL statistic. Valid fits
only, r < 4.2m, 2.438 < E/MeV < 2.602.

The 0νββ matrix has only one, much weaker, feature. The bins inside the prompt

peak are negatively correlated with one another, and bins on the falling edge are

negatively correlated with later times. This structure is likely caused by variation of

the time residual spectra with event radius (figure 3.9).

The interpretation of the external background correlations is hampered by recon-

struction effects. The amount of early light and the time delay between it and the

central energy deposit vary between events, but the events are always reconstruc-

ted so that the prompt peak of the time residual spectrum is where it should be

for an electron event. This leads to distortions which are often difficult to explain

conclusively.

An alternative approach, first employed by L.Segui and K.Majumdar, offsets the

time residuals of each event to the 10th earliest residual in the event:

tioff → tires − t10
res (6.1)

where t10 is the 10th time residual. This has the effect that all events appear share

a common start time, rather than a shared prompt peak. For true electron events,

this inevitably introduces jitter into the time residuals, because, for these events, the

prompt peak is the best estimate of when the event occurred. But, for external back-

ground events, it makes the variable time delay between event start and deposition

in the centre apparent.



6.2. Timing Discrimination 130

0νββ 208Tl AV

0 10 20 30 40 50 60
Time Residual Bin

0

10

20

30

40

50

60

T
im

e
 R

e
si

d
u
a
l 
B

in

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

0 10 20 30 40 50 60
Time Residual Bin

0

10

20

30

40

50

60

T
im

e
 R

e
si

d
u
a
l 
B

in

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

0 10 20 30 40 50 60
Time Residual Bin

0

10

20

30

40

50

60

T
im

e
 R

e
si

d
u
a
l 
B

in

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

0 10 20 30 40 50 60
Time Residual Bin

0

10

20

30

40

50

60

T
im

e
 R

e
si

d
u
a
l 
B

in

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

Figure 6.7: Time residual correlations for 0νββ and 208Tl AV events. Above: using tres. Below:
using toff . Valid fits only, r < 4.2m, 2.438 < E/MeV < 2.602.
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Figure 6.8: Time residual spectra for 0νββ and 208Tl AV background time residuals, raw and offset
to the 10th hit. Valid fits only, r < 4.2m, 2.438 < E/MeV < 2.602.

Figure 6.8 compares tres and toff for 0νββ and 208Tl AV events. For 0νββ, using

toff shifts the spectrum to later times (of course) and slightly broadens the spectrum,

reflecting jitter in the earliest hits. For 208Tl events, the difference is more drastic:

the prompt peak is no longer electron like, because the average spectrum is the sum

of events which contain a spectrum of time delays between the initial deposit and

the central deposit. This is clear from the toff correlations for 208Tl AV in figure 6.7,

early and very late hits are strongly anti-correlated with the prompt peak and strongly

correlated with each other.

Although it represents the same information, this matrix is simpler to interpret

than the correlations for tres. Events with very little early light appear electron-like,

because the event appears to start with the central deposit. In these events all of the

bins around the electron prompt peak (bin 10) receive more light than average, so

these bins are positively correlated with one another.

For events with more early light, the event appears to begin with the initial deposit,

and the central deposit arrives some time later. The time delay between the two

signals determines where the central peak appears in the spectrum and correlations

arise from the variability in that delay. For example, if the main deposit arrives 30ns

after the initial one, bins close to bin 40 will all receive more light than the average

for them.
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Figure 6.9: Fisher discriminants for 208Tl AV and 0νββ events, with and without a time residual
offset. Valid fits only, r < 4.2m, 2.438 < E/MeV < 2.602.

6.2.3 Fisher Discriminant

To investigate the usefulness of these correlations, Fisher discriminants, F , were con-

structed for the 208Tl AV background. The procedure for constructing the discrimin-

ant was exactly as described in chapter 5, except for the fact that, in this case, the

discriminant was constructed using the standard time residuals, tres, and the offset

time residuals, toff .

Figure 6.9 shows both discriminants. Unlike the ∆ logL statistic, there is no evid-

ence for contributions from distinct groups, rather there is a single smooth curve for

the externals.

Figure 6.10 compares these two discriminants with ∆ logL from the previous sec-

tion. The first interesting comparison is between the two Fisher discriminants: the

offset time residuals appear to perform better over the entire range. This could be be-

cause, in toff , the events are more linearly separable, because the correlation matrix is

better determined, or simply because there was a statistical fluctuation. The second

note is that the Fisher discriminants perform the same to within error, or worse, than

the ∆ logL statistic close to 100% 0νββ efficiency, but significantly out-perform it at

the low signal efficiency end.

6.3 Angular Discrimination

The second distinguishing feature of the external events is the angular distribution of

the early hits. For 0νββ events, the hits that do fall into the early window (tres <-2ns)

will be noise hits, which are randomly distributed across the detector. On the other

hand, for external events, those hits will be localised to the region of the detector
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where the 208Tl decay occurred. The true decay position is, of course, unknown,

but it may be statistically inferred from the reconstructed event position. Those

events where the 2.6MeV γ reaches the centre of the detector will be dominated by

events where the γ was emitted close to radially inwards: an inward radial path is

the shortest path into the detector, and all other paths are exponentially suppressed.

This behaviour is clear from the radial distribution of these events, which simply falls

off with the Compton scattering length of the γ. This means that, on average, the
208Tl decay occurred at a position radially outward from the reconstructed position.

Figure 6.11 shows the geometry of the early hits in a 208Tl AV event. The 2.6MeV

γ travels radially inwards and scatters in the detector centre to produce an event that

reconstructs radially inwards from the initial decay. Associated particles produce

Cherenkov or scintillation light, which cause hits at early times. These hits occur at

small angles θ with respect to the reconstructed event position, where θ is defined by:

cos θ =
~xfit
|~xfit|

· ~xPMT − ~xfit
|~xPMT − ~xfit|

(6.2)

xfit is the reconstructed event position and xPMT is the position of the hit PMT.

Figure 6.12 shows the cos θ probability distributions for hits with tres < −2ns, for

external and 0νββ events. As expected, all four background types show a strong rise

towards cos θ = 1, equivalent to θ = 0. In addition, for both signal and background,

there is contribution that rises towards cos θ = −1, corresponding to PMTs on the

far side of the detector. This is the noise hit contribution. Even though noise hits

are uniformly distributed across the detector, the time of flight correction makes the

furthest away hits appear earliest, so distant noise hits, on the far side of the detector,

are most likely to pass the early time cut.

This information can be used to classify events by comparing the cos θ distribution

observed in an unknown event with the probability distributions in figure 6.12 with

a likelihood-ratio:

∆ logLθ =

Nbins∑

i=0

N i log

(
P i
ββ

P i
Tl

)
(6.3)

where N i is the number of hits observed in cos θ bin i, and P i
ββ,Tl are the bin prob-

abilities for signal and background, shown in figure 6.12. Figure 6.13 shows this

discriminant, comparing each of the four backgrounds with signal. There is evidence

of two populations within the external events, as was visible in the timing likelihood-

ratio. In each case the separation is comparable to, but smaller than, than the timing

separation achieved in the previous section. Figure 6.14 shows the background and



6.3. Angular Discrimination 135

cos θ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
ro
b
ab

il
it
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
0νββ PMT β - γ

208Tl AV 208Tl H20

208Tl HDR
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Figure 6.13: Angular ∆ logL for external backgrounds. Valid fits only, r < 4.2m, 2.438 < E/MeV
< 2.602.

signal efficiencies for cuts on ∆ logLθ; 20% of PMT β − γ events and around 30% of

HDR, AV and H2O events may be rejected with negligible signal sacrifice.

6.4 Combination

The gain from including an angular cut as well as a timing cut depends on to what

extent the two discriminants cut the same events, i.e. how correlated they are. Fig-

ure 6.15 shows the timing F discriminant (using toff ) against the angular ∆ logL for
208Tl (AV) and 0νββ events. For background, the two are correlated because both

are sensitive to early light from the initial 208Tl: events with little early light ap-

pear electron like in timing, and have random angular distributions in the early light.

However, for 0νββ events the two are completely uncorrelated: those signal events

that happen to have additional early light contributions from are no more likely to

mimic the angular distribution of an external background. This means that there

will be a gain from combining the two discriminants. This was performed using a 2D

Fisher discriminant. Figure 6.16 shows the cut efficiencies for signal and background,

alongside the timing only discriminant F and the original ∆ logL method for com-
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Figure 6.15: Correlation between angular and timing discriminants for 0νββ and 208Tl events. Valid
fits only, r < 4.2m, 2.438 < E/MeV < 2.602.

parison. It shows that adding angular information improves the performance at the

high signal efficiency end, but not at high background rejection factors. Using the

combined discriminant 90% of background events can be rejected at the cost of 50%

signal sacrifice.

6.5 Conclusion

This chapter has confirmed the earlier work of I.Coulter and L.Segui for the most

recent SNO+ optical model, showing that a ∆ logL statistic, based on timing, can

be used to separate external backgrounds from 0νββ signal. 40% of PMT β − γ

backgrounds and 50% of the other dominant 208Tl backgrounds within r < 4.2m can

be rejected, with negligible signal sacrifice.

In addition, it has shown that the angular distribution of early hits in external

events provides further discrimination power, that is partly independent from the

first method. Studies on 208Tl AV events also showed that the timing statistic can

be improved by taking into account strong correlations between timing bins for the

external events, caused by variation in the time delay between the initial deposit

outside the AV, and the main deposit in the centre. The correlations buy little at

low signal sacrifices, but improve the efficacy significantly at high signal sacrifice.

This improvement could be made use of with a likelihood fit which includes the PSD
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Figure 6.16: Cut efficiencies for the combination of the timing and angular discriminants. Valid fits
only, r < 4.2m, 2.438 < E/MeV < 2.602.

parameter as a fit dimension, or in a hard cut in the outer parts of the detector, where

large background rejection factors are required to suppress the dominant external

backgrounds.

Further studies could confirm the later conclusions of this chapter with increased

Monte Carlo statistics, further investigate the origin of the variability between the

events and perhaps expand upon the methods shown here with more sophisticated

non-linear methods. For its inclusion in a 0νββ likelihood fit, the running with energy

and event radius should also be investigated.



Chapter 7

The OXO Signal Extraction
Framework

OXO is a C++ signal extraction framework for particle physics, with an emphasis on

Bayesian statistics. It is written for use in analysis in any particle physics experiment,

but its design was informed by SNO+ analyses, particularly the 0νββ search. In a

nutshell, OXO is a set of C++ classes which represent the major elements of an analysis:

the probability distribution functions, parametrisations of systematic uncertainty, test

statistics and optimisation or sampling algorithms. Using these components allows

for quick ‘plug and play’ implementations, or they can be mixed with user defined

implementations of the underlying interfaces, to achieve a greater level of control.

The code was written mostly by the author of this work, with valuable contribu-

tions from others. This chapter briefly reviews it, with particular emphasis on the

techniques used for 0νββ extraction in chapter 8.

7.1 Test Statistics

Many particle physics analyses rest on optimising a test statistic with respect to

parameters of interest, or sampling the distribution of that statistic with respect

to those parameters. Commonly, the test statistic is a likelihood or a chi-squared

statistic expressed in terms of fit parameters, which represent model uncertainty.

Correspondingly, OXO analyses centre around a TestStatistic, an object which

returns the value of a statistic for any given set of fit parameters. This can be any C++

class which performs this function, a schematic of the inputs and outputs is given in

figure 7.1. For SNO+, the statistic might be the likelihood of all the events observed,

written in terms of parameters which include the normalisation of a 0νββ signal, and

the energy resolution of the detector.

140
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Figure 7.1: Schematic of a TestStatistic.

Test Statistic

Fit Parameters Statistic Value

Optimiser/Sampler

Figure 7.2: Schematic of an Optimiser/Sampler.

Two classes use the input and output of a TestStatistic to perform fits. Optimisers

adjust the fit parameters to find extremal values of the TestStatistic, whilst Samplers

map of the distribution of the statistic with respect to the fit parameters. For op-

timisation, OXO includes implementations of the grid search algorithm, as well as a

wrapper of the ROOT Minuit optimiser. For sampling, it offers several Markov chain

Monte Carlo algorithms, which are described in detail in section 7.8.2.

A common problem encountered is the need to fit several disjoint data sets sim-

ultaneously. For example, one might fit SNO+ data from three separate runs, each

with different live-times, tellurium loadings and background rates. To cater for this,

any number of OXO test statistics may be combined into a single test statistic using

addition, as would be appropriate for log-likelihoods or chi-squares, or multiplication,

for likelihoods. The combination then behaves like a single statistic, on which a single

Sampler or Optimiser can act.

Sometimes parameters must shared between these statistics, for example, the solar

mixing parameters should be exactly the same between two SNO+ runs. To achieve

this, the parameter need only be given the same name in both statistics for it to be

recognised as a single parameter.

The simplest use of the library is to write a TestStatistic from scratch, specifying
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Figure 7.3: Schematic of a FitComponent.

its fit parameters and how to calculate it. Then to apply an Optimiser or Sampler to

it. However, most analyses are expressed in a common language of functions, PDFs,

cuts and systematic distortions. Furthermore, many operations on these objects are

identical across analyses. For this reason, OXO offers implementations of binned and

unbinned PDFs, cuts, systematic distortion of events and distributions etc. that may

be built into TestStatistics. Often, these operations have associated parameters

with uncertainty, which determine the precise action of the operation. For example,

an object that performs Gaussian convolutions will have parameters that repres-

ent the mean and standard deviation of the kernel. For this, OXO has the concept

of a FitComponent, that allows parameters to be associated with operations. If a

FitComponent is included in a TestStatistic, its fit parameters are automatically

recognised by the TestStatistic and any Optimiser/Sampler which acts on it.

The next section describes some of the most fundamental objects, and the features

included to solve common problems in particle physics analysis.

7.2 Events

Most particle physics experiments read out data in discrete events, each comprising of

any number of observables. In OXO each event is represented as a set of observations

keyed by a string containing the name of the corresponding observables, figure 7.6.

7.3 PDFs

One of the the building blocks of any statistical model is probability distribution

functions (PDFs). In particle physics, a particularly important use of PDFs is to rep-

resent the relative probability of observing any given event. In OXO, this relationship is

expressed by EventDistributions, which take in an Event and return a probability
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Figure 7.4: The structure of an OXO event.
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Figure 7.5: Schematic of an EventDistribution.

(figure 7.5). Each EventDistribution is equipped with a set of observables, which

determine the dimensionality of the distribution. During any EventDistribution

operation involving events, the relevant observables for each EventDistribution are

automatically extracted from each event and, in fits, the normalisation of each PDF

included in an OXO fit is automatically recognised as a fit parameter to be optimised.

The most important type of EventDistribution is the BinnedED class, which

represents the internal probability distribution as a binned histogram. This is the

most common representation of probability in particle physics, as the distributions

are often estimated from Monte Carlo events. However, the use of these distributions

is always limited by the curse of dimensionality. Any experiment may produce a large

number, ndim, of high level parameters that are powerful for differentiating between

different signals. In many cases, producing a full ndim dimensional PDF for signal

extraction is infeasible with the available statistics. OXO offers three approximations

for this common problem.

First, one can choose to use an analytic PDF, if the shape of the distribution is

well known. There is complete freedom for users to specify this with any C++ class

and uncertainty on the shape of the PDF may be parametrised with any number of

fit parameters. This could be used, for example, to describe the 8B ν ES spectrum,

floating the solar mixing parameters in the fit. Second, there is functionality for

automatically converting any analytic PDF into a binned one, by integrating the

analytic distribution over each of the bins. This is particularly useful for maintaining
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the same code path for the analytic approximation, as with binned PDFs that may

be available with more Monte Carlo in the future. Finally, one can ignore correlations

between variables, by replacing a single ndim PDF with the product of several lower

dimensional PDFs. For example, for a fit extracting the 0νββ rate from SNO+ data, a

PSD parameter, C, might only have very weak correlation with reconstructed energy

and radius E, r. Then the PDF could be re-factorised as:

P (E, r, C) = P (E, r)× P (C) (7.1)

The advantage of this factorisation is that P (C) may be estimated with the same

Monte Carlo as P (E, r), so it requires no additional statistics. In OXO, relationships

like equation 7.1 are expressed simply as a multiplication of EventDistributions,

which may be binned, analytic or any other form. The result behaves like a single

EventDistribution in all respects, and, given an event, the correct observables for

each are automatically fanned into the respective constituent distributions.

7.4 Propagating Systematic Uncertainty

Often the most robust way of propagating systematic uncertainty is to parametrise

the effect of the uncertainty and float the parameters in the fit. This can be achieved

in two ways in OXO.

The first method, EventSystematic, models the effect of systematic uncertainty

at the event level, by modifying the observed quantities of a single event, with a

distortion which depends on the internal fit parameters of the EventSystematic

object; some examples are given in table 7.1. These fit parameters are naturally

recognised by the TestStatistic for inference. Most commonly, these operations

are performed on Monte Carlo events before they are used to fill a template PDF, for

example, when rebuilding the expected energy spectrum of SNO+ near Qββ, while

considering an additional energy shift.

The second method models the effect of systematic uncertainty at the probability

distribution level, by modifying the bin contents of a BinnedED directly. This has the

advantage that the effect of any number of these distortions can always be described

as a single detector response matrix M , that relates the undistorted bin contents bi

to the distorted bin contents b′i:

b′i =

Nbins∑

i=0

Mijbj (7.2)
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Figure 7.6: Schematic of an EventSystematic.

Name Effect Fit Parameters
Scale x→ αx α
Shift x→ x+ β β

Gaussian Resolution Correction x→ x+ γ(x− xT ) γ
Resolution function (x1, x2, x3..)→ P (x1, x2, x3..|xT1 , xT2 , xT3 ..) Fit Parameters of P

Table 7.1: Example event level systematics. x is the observable in each case, xT is the true value
(only relevant when considering Monte Carlo events). P (x1, x2, x3..) is an arbitrary N → N function
of any number of observables.

a relation that holds equally well for distributions of any dimension. There are three

reasons why, in general, this leads to much faster fits than the first method. First,

a single matrix can be calculated to represent all systematic distortions, just once,

and then applied to any number of distributions, which leads to a smaller number

of operations. Second, the number of bins in a typical fit is usually far fewer than

the number of events used to build the PDFs. Third, there is highly optimised code

available for matrix operations like equation 7.2 for both CPUs and GPUs. This

method does, however, come with the added risk of bin effects, because information

on scales smaller than the bin width is thrown away.

Both methods require care at the fit boundary. Systematics can smear events out

of, or in to, the fit region. Simply applying a distortion across the whole range fails to

account for the latter effect, leading to a bias. For this reason, OXO has an adjustable

buffer region, inside which events are applied systematics but which are ignored when

calculating the test statistic.

A recent addition by B. Liggins allows systematics to be targeted at specific groups

of distributions. This is used to treat the energy response of β and α differently in

the low energy side band fit.
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7.5 Parameter Constraints

Often there is prior information on the parameters being estimated. Prior measure-

ments of normalisations and systematic uncertainty parameters come from calibration

runs, independent side bands and other experiments. These constraints can pertain

to a single parameter, for example a constraint on the 8B ν ES rate from SNO, or

relate several parameters, for example a calibration run may provide a correlated

constraint on the energy resolution and energy scale. OXO deals with these cases with

prior PDFs which can relate any number of parameters. Those PDFs are understood

as the prior probability that a given set of values for those parameters is true. It can

be user defined or chosen from a number of pre-written alternatives.

7.6 Binned Maximum Likelihood

Several, configurable test statistics come pre-written, including the BinnedNLLH class,

which implements a standard extended binned log-likelihood of the form:

logL = −
Nnorm∑

i=0

Ni+

Nbins∑

j=0

N j
obs log

(
Nnorm∑

i=0

NiP
j
i (~∆)

)
+
Nnorm∑

i=0

Ci( ~N)+

Nsys∑

i=0

C̃i(~∆) (7.3)

where Ni are Nnorm event class normalisations, N j
obs is the number of events in bin j of

the data set, P j
i is the content of bin j of the BinnedED corresponding to normalisation

j. The shape of the PDFs are parametrised by a set of systematic variables ~∆.

Ci, C̃i are the constraints on the normalisations ~N and the systematic parameters ~∆,

respectively. The dependence of the BinnedED on the systematic parameters can be

expressed using EventSystematics, in which case each of the distributions is rebuilt

according to ~∆ at each fit iteration, or DistSystematics, in which case the binned

distributions are applied directly to the distributions at each step. An adjustable

buffer region is included to handle the fit boundary. The corresponding fit parameters

are the Nnorm normalisations and each of the systematic parameters ~∆.

This is the likelihood used for the 0νββ fit in the following chapter.

7.7 Data Sets

Data sets and histograms can be read from, or written to, ROOT files, or stored in a

native hfd5 format.

Most analyses involving fits require a demonstration that the fit parameters are

estimated without bias. Demonstrating this requires a number of fake data sets, from
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which each of the parameters is estimated. The bias and pull of these distributions

is a good diagnostic of a well behaved fit. To cater for this, OXO provides utilities for

producing fake data sets from binned and unbinned Monte Carlo.

Given unbinned data sets and expected normalisations for each signal type OXO

can split the datasets into a number of fake data sets of user specified live-time,

optionally including Poisson fluctuations. The independent remainder can be saved

for estimating PDFs or cut efficiencies. Given expected rates and binned or unbinned

data, OXO can create the equivalent binned Azimov data set, where each of bin contents

is equal to its expected value. This dataset has been shown to obtain the median

experimental sensitivity of a search or measurement [190].

Finally, given an Azimov data set (or any other binned data) OXO can add Poisson

fluctuations on each bin to produce fake binned data.

7.8 Bayesian Inference

Bayesian analysis can be performed in OXO by defining a test statistic that returns

the posterior probability of a set of model parameters and mapping out the posterior

using one of the Markov chain Monte Carlo (MCMC) samplers. With an estimate

of the posterior distribution, one can calculate credible intervals for limit setting

or measurement with error. These concepts are briefly described in the following

sections, referencing the 0νββ fits performed in chapter 8.

7.8.1 Posterior Probability

Whereas classical statistics uses probability distributions to describe relative fre-

quency, Bayesian statistics uses them to express degree of belief. In particular, the

posterior distribution describes the probability that a given set of model parameters,

~µ, are the correct ones, having seen the observations in an experiment, ~x. It is related

to the classical likelihood L by Bayes’ theorem:

P (~µ|~x) = L(~µ|~x)
P (~µ)

P (~x)
(7.4)

P (~x) is the probability of observing data set ~x, which contributes only a normalisation.

P (~µ) is the prior distribution, which represents the experimenters degree of belief

that ~µ are the correct values before looking at the data. The use of a prior and the

form it takes are somewhat controversial topics. The analysis in this work follows
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the principle set out by Biller and Oser [191], setting flat priors on the observable

quantities of interest where other constraints are not available.

There are several popular choices for selecting a best fit from the posterior; the

study in chapter 8 chooses to use the most probable point, the set of parameters with

maximum posterior probability. This estimate is identical to the maximum likelihood

estimator for a flat prior. To calculate the most probable point in this work, it

was sufficient to select the highest probability point encountered when sampling the

posterior.

The posterior distribution has dimensionality equal to the number of fit parameters

np, including a potentially large number of nuisance parameters. In order to report on

just the parameters of interest, the others are typically integrated out in ‘marginal-

isation’. In a search for 0νββ, only the normalisation of the 0νββ signal is important,

P (c0ν), so all of the other parameters are integrated out to produce the marginalised

posterior:

P (c0ν) =

∫
dµnp−1 P (~µ|x) (7.5)

Experiments typically aim to measure, or limit, a quantity to some degree of cer-

tainty. A credible interval is a range of parameter values which is believed to contain

the true value at a reported degree of confidence. The degree of confidence is simply

determined by the integral of the posterior over that interval.

To set a 90% limit on the rate of 0νββ events, one simply needs to find the value

of c0ν for which
∫ c
−∞ P (c0ν) = 0.9. Measurements with error are constructed using

an interval around the most probable point, which contains 0.683 total probability,

equivalent to 1 standard deviation. There are an infinite number of these intervals

that may be drawn for any posterior, this week employs the shortest possible interval,

constructed by adding points to the interval in descending order of posterior density,

until the total probability is reached. Figure 7.7 shows P (c0ν), extracted from two

fits in section 8.6. The first has been used to construct a 90% limit, the second to

construct a measurement with 1σ error.

7.8.2 Markov Chain Monte Carlo

At any given point, it is trivial to calculate a quantity proportional to the posterior

L(~µ|x) ·P (~µ), but the normalisation P (~x) cannot be known without mapping out the

entire space. When fitting for tens to hundreds of parameters, the curse of dimension-

ality means that performing this mapping with a simple grid search is intractable.
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Figure 7.7: Credible intervals for limit setting and measurement. The posterior estimates are binned,
so linear interpolation is performed between bins where necessary.

One could produce samples from P by simply throwing random values of ~µ and

accepting them with probability P (~µ). However, this becomes extremely inefficient

in high dimensional spaces. Markov Chain Monte Carlo (MCMC) produces samples

from the posterior in a more efficient way, by algorithmically seeking out regions of

high posterior probability.

A Markov chain is a sequence of random events, where the probability of the next

event depends only on the current state, not the proceeding events. Provided the

chain satisfies certain conditions, it can be shown that the fraction of steps spent

in each state will converge on a unique ‘stationary’ distribution, regardless of the

starting point [192].

MCMC treats all of the possible vectors of parameter values, ~µ, as states of a

Markov chain. The transition probabilities between them, T (~µ → ~µ′), are chosen

such that the stationary distribution of the chain is the posterior under investigation.

In fact, there are infinite choices of T (~µ → ~µ′). To produce the correct stationary

distribution, T (~µ→ ~µ′) must only satisfy the detailed balance condition [192], shown

in equation 7.6.

T (~µ′ → ~µ)

T (~µ→ ~µ′)
=
P (µ′)

P (µ)
(7.6)

The transition probabilities, T , are typically factorised into proposal and acceptance

probabilities, R and S. The former is used to suggest state transitions, the latter to

accept them.

Posterior samples are produced by simulating a Markov Chain with the correct

stationary distribution, and recording its position as it explores the space of possible

~µ. Starting at a random state, ~µ0, the chain evolves according to:
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1. A proposed step µ′ is drawn from the proposal distribution, R(µ′|µ).

2. The step is accepted with acceptance probability, S(µ′|µ).

3. The current step is recorded as a sample whether a transition occurred or not.

The most common choice is the Metropolis-Hastings algorithm (MH). There, steps are

proposed according to a random walk R(~µ′|~µ) = R(~µ′− ~µ). If the posterior increases

over the step, it is accepted unconditionally; otherwise, there is a finite probability of

accepting the step anyway:

S(µ′|µ) = min

(
1,
P (µ′)

P (µ)

R(~µ|~µ′)
R(~µ′|~µ)

)
(7.7)

R is often chosen as a Gaussian of fixed width centred on µ. Unfortunately, the MH

algorithm becomes very inefficient in high dimensional space with strong correlations

between ~µ components [193]. Such strong correlations naturally arise where there

are ambiguities in the data. For example, the following chapter shows that 60Co and

0νββ are highly degenerate, because their energy spectra are very similar.

The Hamiltonian MCMC (HMC) method [193] improves on the poor performance

of MH on high dimensional posteriors. Rather than a random walk, it proposes new

steps using a simulation of Hamiltonian dynamics for a particle in a potential well

defined by the posterior.

A classical system with position coordinates qi and momentum coordinates pi will

evolve according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(7.8)

dpi
dt

= −∂H
∂qi

(7.9)

HMC applies this to the dynamics of a Markov chain, by treating the ~µ states as

the position coordinates of a Hamiltonian system. To produce dynamics, fictitious

‘momentum’ variables are randomly chosen and discarded at each MCMC step. The

motivation for this change of view point is that the Hamiltonian, H, is conserved

at every point in the trajectory. By treating the posterior as the system’s potential

energy (equation 7.10), a simulation of Hamiltonian dynamics can be used to propose

large transitions to points with comparable posterior probability.

H = − logP +
d∑

i=0

p2
i

2mi

(7.10)

here the ‘masses’, mi, are arbitrary parameters that are tuned for efficiency.

The HMC sampling algorithm may be summarised as follows:
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Figure 7.8: Metropolis Hastings vs. Hamiltonian Monte Carlo; figures taken from [193]. Each plot
shows 20 samples from a 2D Gaussian, with unit standard deviations and a correlation factor of
0.98.

1. The position coordinates are set to the current MCMC step parameters, qi = µi.

2. The momentum coordinates are randomly sampled from normal distributions

with mean = 0, standard deviation = mi.

3. Nsteps of time ε are used to simulate equations 7.9 using the leap frog discret-

isation method [193].

4. The final position and momenta of the trajectory ~q′, ~p′ of the trajectory are

proposed as the next step.

5. The step is accepted with probability min
(

1, H(~q′,~p′)
H(~q,~p)

)
.

6. The final ~q is recorded as a posterior sample.

Figure 7.8 shows the relative performance of HMC against MH for sampling from

a correlated 2D Gaussian. For MH, the proposal distribution R must be very narrow

in the x and y directions to produce a reasonable acceptance rate. This leads to

very slow exploration in the direction x = y, which is poorly constrained. On the

other hand, the HMC steps make use of the gradient in equation 7.9 to move quickly

along the poorly constrained direction, leading to much faster mixing. For very high

dimensional problems, this advantage can easily outweigh the additional calculations

required in each HMC step.
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Figure 7.9: RHMC samples from a (µ, σ) = (0, 2) Gaussian, with and without a boundary at 0.

Hard boundaries close to the best fit point can severely damage the efficiency of

both HMC and MH. For MH, a proposal distribution that is wide enough to efficiently

explore the allowed proportion of the space will frequently propose steps on the other

side of the boundary, that are rejected. Similarly, the HMC algorithm is designed

to propose new points a large distance away from the current point, but if these

trajectories frequently cross the boundary, the acceptance probability will be very

low. This is significant in a rare process experiment, which may estimate many

normalisations, each close to a physical boundary at 0.

The Reflective Refractive HMC (RHMC) method deals with this issue in the HMC

algorithm, by modelling reflections of the Hamiltonian trajectories at these boundaries

[194]. If a boundary will be crossed by a leap frog step, the step is shortened to take

the trajectory to the boundary, the associated momentum is flipped and the remainder

of the step is simulated.

OXO includes full implementations of the MH and RHMC samplers for use on any

test statistic. The RHMC sampler is used for 0νββ signal extraction in the second

half of this chapter. Figure 7.9 shows a demonstrates the quality of the samples it

produces from a 1D Gaussian with and without a hard boundary.

7.8.3 Convergence

The samples drawn from the RHMC algorithm are mathematically guaranteed to

converge to the target posterior in the limit nsamples → ∞. But, for small sample

sizes, the draws are strongly correlated because the chain takes a finite time to explore
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Figure 7.10: Posterior auto-correlation vs lag for the limit setting fit in section 8.6. There is evidence
of structure over 10s steps, the fit was run for 50,000 steps.

the space and reach its stationary distribution. To help asses this convergence, OXO

monitors the auto-correlations between samples, for each of the fit parameters and

the posterior, as a function of the number steps that separate them.

Figure 7.10 shows the estimated auto-correlations of the posterior for the chain

used to produce the 0νββ limit in section 8.6. To ensure good mixing, each of the

fits in the following chapter was run for at least 100x longer than the largest features

present in the auto-correlation curve.

The very first steps are particularly correlated, as the random initial position ~µ0

will not, in general, be a region of high probability. For this reason, OXO allows an

optional ‘burn-in’ phase during which the first nburn samples are discarded. In this

work, 1000 samples was found to be sufficient for the 0νββ fit.

The number of iterations required for convergence is acutely sensitive to free para-

meters in the RHMC proposal distribution. Larger ε are more efficient, in general,

because the same trajectory may be simulated with fewer steps. However, above a

critical value of ε, the leap frog discretisation becomes unstable [193]. This leads

to incorrect dynamics, biased sampling and very low acceptance probabilities. This

behaviour is illustrated in figure 7.11. For the smallest two values of ε, the dynamics

is correctly simulated, and the larger value simulates the trajectory more efficiently.

For ε = 1 and ε = 1.7 the dynamics first becomes oscillatory and then unstable. The

0νββ study of this work followed the guidance in [193], selecting the largest value of

ε that produced sensible acceptance ratios.
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2q

2 for a range of step sizes,
ε, starting at q = 1, p = 0. The correct trajectory is a circle of radius 1.

With stable dynamics established, Nsteps determines the length of the trajectory

in each iteration. Longer trajectories tend to lead to more independent samples, at

the cost of additional computation. Here Nsteps was chosen as the smallest value that

reduced the steady state auto-correlation at a lag of 100 to sub-percent level. The mi

were chosen as roughly the widths of the marginal posterior distributions, estimated

in preliminary runs.



Chapter 8

0νββ Extraction

The focus of this chapter is the application of the OXO framework to 0νββ extraction

in SNO+. Fake data sets with a range of assumed 0νββ rates are produced and

2D Bayesian fits, in event radius and energy, are used to estimate the expected mββ

90% limit and 3σ discovery level. In addition, the ∆ logL statistic, introduced in

chapter 5 to separate 0νββ from 60Co, is introduced as a third fit dimension to

drastically improve the 3σ SNO+ discovery potential.

8.1 Data Set Preparation

The work that follows uses the RAT 6.1.2, 6.1.6 and 6.3.2 Monte Carlo produc-

tion data sets. Between them, these include simulations of every expected SNO+

background.

These data were preprocessed to remove (α − n) and BiPo events that will be

tagged by the corresponding coincidence cuts. The (α − n) data sets were cleaned

using an implementation of the coincidence cut proposed by I. Coulter [195]. If any

two events were separated by less than 1ms and both reconstructed above 1MeV, both

events were removed1 The cut removes all (α−n) background events within the signal

window and fiducial volume. In addition, the 214/212BiPo coincidence cuts were applied

to each of the 214/212BiPo samples by R.Lane [196]. Events were rejected if they were

followed by a second trigger within 500ns, or another event 500 → 3936000ns later,

which reconstructs less than 1.5m away, with energy > 1MeV. Both of these cuts

were not applied to the other backgrounds or 0νββ, because mixed data sets with

more than one event type were not available when the study was conducted.

1The α decay itself is quenched down to below 1MeV. However, the prompt signal also contains
light produced by neutron elastic scattering on protons (chapter 4).

155
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Data Set T 0ν
1/2/1025yr

0νββ
Counts/yr before cuts

Azimov 0 ∞ 0
Azimov 1 17.4 24.87
Azimov 2 7.74 55.96
Azimov 3 4.35 99.48
Azimov 4 2.79 155.44
Azimov 5 1.94 223.83
Azimov 6 1.42 304.65
Azimov 7 1.09 397.91

Table 8.1: Assumed signals for Azimov data sets.

The data for 0νββ and each background was split into two independent data sets

of equal size. The first half, the PDF sample, was used to build the signal extraction

PDFs; the second, the test sample, was used to create fake data sets.

The test samples for 0νββ and each background were then used to create a series

of binned Azimov data sets, assuming 3 years live-time. In each data set, the back-

grounds were scaled to the current best estimates, but they differ in the assumed

0νββ normalisations, listed in table 8.1. Each was calculated according to:

0νββ Counts =
log(2)

T1/2

×Nββ × tlive (8.1)

where tlive is the experiment’s live-time and Nββ is the number of 130Te nuclei in the

detector, calculated using:

Nββ =
Mscintfload

mTe

× fab (8.2)

here fab is the natural abundance of 130Te, fload is the Te natural loading fraction by

mass, Mscint the scintillator mass and mTe is the average atomic mass of Te. Using

fab = 0.3408, fload = 0.005,Mscint = 782 tonnne and mTe = 127.60 × 1.67 × 10−27kg,

gives Nββ = 6.253× 1027.

This range of input signals is equivalent to the range mββ = 0 → 200meV, using

the IBM-2 prediction of the nuclear matrix element (section 8.8). This range covers

the worlds leading limit (100meV from Kamland-Zen [123]) and the current best limit

on tellurium (140-400meV from CUORE [129]).
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Name Variable Passing Values
ROI Reconstructed energy 1.8MeV - 3MeV
FV Reconstructed radius < 5.5m

FitValid Fit validity flag == 1
ITR ITR classification 0.33 - 0.45

BiPo Cumulative BiPo Cumul classification < 0.0003
BiPo LH BiPo Likelihood214 classification < 16

Table 8.2: Cuts applied in the 0νββ fit. The final two are classifiers output by RAT, designed to tag
one trigger BiPo events [165, 196]. The ITR classifier was described in section 3.2.1.

8.2 Cuts

In addition to the coincidence cuts, cuts were applied to several high level parameters

produced by RAT, listed in table 8.2.

The energy window employed is significantly wider than the one used in the count-

ing experiment, to incorporate the low energy data, which are useful for constraining

the 2νββ background. With this approach, 2νββ will be discriminated from 0νββ

using fine energy bins, rather than a hard cut.

Similarly, the fit extends out to 5.5m, far beyond the canonical fiducial volume of

3.3m. The high radius data will contain a large number of external background events

which mask any potential signal. However, the same data is useful for constraining

those external backgrounds which do make it into the detector centre and intermediate

bins will add to sensitivity. The region 5.5m→ 6m has been excluded, because events

in this part of the detector are subject to optical effects from the AV, which are

difficult to understand. In a similar way to the 2νββ background, external events

will be differentiated from 0νββ by fitting across several radial bins.

These cuts were applied to both the fake data sets and the PDF samples. Table 8.3

summaries the 0νββ efficiency to the cuts, applied sequentially. The total efficiency

is ε0ν = 74.03± 0.03%.

The overall signal sacrifice should also include the effect of the coincidence cuts. I.

Coulter estimated the 0νββ sacrifice from the (α− n) coincidence cut as < 0.1%. R.

Lane found that the signal sacrifice from the BiPo coincidence cut was negligible [196].

Conservatively assuming a 0.1% sacrifice from these cuts, the total efficiency is also

74.63±0.03% 2.

2the error on these cuts are not available.
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Cut Efficiency/%
FitValid 96.66

FV 75.12
ROI 74.64

Bipo LH 74.55
Bipo Cumulative 74.21

ITR 74.03
Total 74.03 ± 0.03

Table 8.3: 0νββ cut efficiencies estimated with the combined PDF and test samples.

8.3 Fit Parameters

Fitting all of the possible radioactive backgrounds in SNO+ would require 100s of fit

dimensions. This work took a pragmatic approach, by including only the most signi-

ficant backgrounds as free parameters. The number of counts that each background

would contribute to the signal region, after cuts, over a 3 year live-time was estimated

using:

Counts =
Npass

Ngen

· rexp · tlive (8.3)

where Npass is the number of events from entire PDF sample that fall into the signal

window defined in table 8.2, Ngen is the number of physics events simulated, rexp is

the expected background rate and tlive is the assumed live-time of 3 years. Every

background that contributed more than 0.1 counts to the signal window had its

normalisation floated in the fit. 60Co, 88Y and 22Na were also included because

they are expected to be degenerate with the 0νββ signal. In total there are 35 free

normalisations in the fit, each is labelled with a (∗) in appendix A.

8.4 PDFs

The observables selected for this study are the ScintFitter reconstructed energy

T ββeff and the volume corrected radius, rcorr, defined in equation 8.4. This parameter

has the advantage that constant width bins in rcorr contain equal detector volume.

rcorr =
( r

6m

)3

(8.4)

The binning in these two parameters is summarised in table 8.4. The first rcorr

bin describes the central 3m of the detector, which dominates the sensitivity of the

experiment. The energy binning is the same order as the expected detector resolution.
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Variable Minimum Maximum Number of bins

T ββeff 1.8 3 48

rcorr 0 0.77 6

Table 8.4: Binning of 0νββ signal extraction PDFs.
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Figure 8.1: Left: statistically limited PDF estimate for internal 208Tl. Right: the approximate PDF
produced to replace it.

One of these 2D PDFs was produced for each background and 0νββ using the PDF

data sets.

Six of the PDFs were limited by the available statistics. In particular, the energy

spectra inside the two inner most rcorr bins were poorly determined for each of the

external backgrounds, because so few of these events reach the detector centre. This

problem was also exhibited in the internal 208Tl PDF, where the low energy tail of

mis-reconstructed events is significant at high rcorr, but very small in the detector

centre. Statistical fluctuations in signal extraction PDFs lead to fit biases, because

combinations of the fluctuating PDFs can be selected by the fit to match fluctuations

in the data. To prevent this, approximate PDFs were produced in each case. For
214Bi from the hold up ropes, the PDF was approximated using the 214Bi hold down

rope data, of which there was much more available. These two background sources

differ only in their placement in z3 and their distributions were indistinguishable with

the available statistics. In addition, for every external background and internal 208Tl,

the energy spectra inside the central two rcorr bins were smoothed using one iteration

of the ROOT method TH1::Smooth; an example is shown in figure 8.1.

3the hold down ropes sit around the top of the AV, the hold down ropes around the bottom
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8.4.1 PSD PDFs

Fitting a positive 0νββ signal requires two things: first, the known background contri-

butions must be sufficiently constrained to demonstrate that a statistically significant

excess has been observed at Qββ; second, the excess must be positively identified as

0νββ. PDFs in T ββeff and rcorr are sufficient to constrain the major expected back-

grounds around Qββ. However, the decay of cosmogenic isotopes, particularly 60Co,

have identical rcorr distributions and very similar T effββ distributions to 0νββ. If an

excess of events is observed, the estimated 60Co and 0νββ normalisations will be

highly degenerate.

Chapter 5 demonstrated that the timing signatures of 60Co and 0νββ may be

used to differentiate between them. In particular, it showed that a ∆ logL statistic,

calculated using the time residual spectra of 60Co and 0νββ events, was powerful for

separating 0νββ from all γ dominated cosmogenic decays, and that it also had power

to separate 0νββ events from β+γ events (though it did not do so as well as a purpose

built statistic). For these reasons, the 60Co - 0νββ likelihood-ratio (PSD onwards)

was selected as a third fit dimension for the discovery potential study.

Section 5.3 showed that this PSD parameter changes significantly with both energy

and reconstructed radius. However, there was insufficient statistics to produce full 3D

PDFs in T ββeff , rcorr and PSD for the studies. Instead, PDFs of PSD were estimated

in each of the rcorr bins, P (PSD|rcorr), using events between 2.3 and 2.8 MeV. This is

the energy range that covers the 0νββ and 60Co energy windows, and the separation

between the two was demonstrated to be constant over this range in section 5.3. The

bin definitions are given in table 8.5. Running within this energy range was ignored

and bins outside the ROI were assumed to be flat in PSD. The factorisation can be

summarised as:

P (T ββeff , rcorr,PSD) =

{
P (T ββeff , rcorr) · P (PSD|rcorr) 2.3 < T ββeff/MeV < 2.8

P (T ββeff , rcorr)/NPSD otherwise
(8.5)

where NPSD is the number of PSD bins; this factor was included to ensure all events

have equal weighting. Factorising the PDFs in this way has the advantage that the

studies using them do not rely on knowledge of the (T ββeff , rcorr,PSD) correlations for

all 35 signals across the full energy range.

P (PSD|rcorr) was estimated directly for 0νββ, 88Y, 22Na and 60Co, as well as the

four dominant external backgrounds investigated in chapter 6. For the other back-

grounds, appropriate approximations were made. The 8B ν ES background was as-

sumed to look identical to 0νββ, this is justified by the discussion in section 3.2.2.
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Parameter Minimum Maximum Bin Count
PSD -14 8 11

Table 8.5: PSD bin definitions.
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Figure 8.2: P (PSD|rcorr) for 0νββ 60Co and 208Tl HDR. The first and final bins are overflows.

Sub-dominant external 208Tl backgrounds were assumed to have the same distribu-

tions as 208Tl AV. All other backgrounds were conservatively4 assumed to have the

same distribution as 0νββ. In addition, for the external backgrounds, there was

insufficient statistics to measure the PSD distributions in the inner most rcorr bin.

These were assumed to be the same as the the next bin out. This is an unimportant

assumption, as the inner most bin is the central 3m, where the expected external rate

is << 1 count.

Some examples of P (PSD|rcorr) are shown in figure 8.2. Interestingly, the PSD

parameter is able to discriminate between 0νββ and external background events,

even though it is tuned to spot internal 60Co events.

Exactly the same procedure was performed using the test data to add a PSD

dimension to each of the Azimov data sets.

8.5 Posterior

The likelihood in the fit was the standard binned extended maximum likelihood de-

scribed in section 7.6. The 8B flux at the detector is constrained to +3.62%
−4.00% by the

combined three phase SNO measurement [77]. This information was included in the

fit using a Gaussian prior, centred on the expected normalisation (calculated using

the procedure described in section 8.3) and a width equal to the average of the posit-

ive and negative constraints, σ = 3.8%. Note that the uncertainty on the 8B spectral

shape and the neutrino mixing parameters have been ignored. Studies by A. Mast-

4in particular, section 5.2 demonstrated that 214BiPo events in the ROI have a characteristic
PSD signature that has not been used here.
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baum suggest these factors contribute a comparable uncertainty to the number of

counts in the energy window [178]. All other parameters were given a flat prior,

requiring that the normalisation be positive:

Pflat(c) =

{
1 c ≥ 0

0 c < 0
(8.6)

8.6 Limit Setting

To estimate the expected SNO+ limit on T ββ1/2, the fit was performed on the Azimov

0 data set, which contains no 0νββ counts. Figure 8.3 shows the fake data alongside

the best fit in radial slices. Some of the data, particularly those at high Teff , near

the detector centre, show that the Azimov data set suffers from low statistics.

Figure 7.7 showed the 0νββ marginal posterior for this fit. At 90% confidence the

count limit is 52.6, the error on the total confidence limit from finite sample number

is 0.1%. The count limit may be converted to a half-life limit according to:

T 90%
1/2 =

log(2)

s90%
× ε×Nββ×tlive (8.7)

using signal efficiency ε = 0.7403, t = 3yr and Nββ = 6.253×1027 gives T 90%
1/2 = 1.76×

1026yr. This sensitivity is expected to scale proportionally to the square root of the

live-time so, after 5 years live-time, one would expect a limit of T 90%
1/2 = 2.27× 1026yr,

an improvement of 21% on the simple counting experiment5. The benefit comes from

the fact that the likelihood fit makes use of 4.6x times more detector volume and the

entire energy range of the 0νββ signal. It also takes into account the shape of each

of the signals in T ββeff and rcorr.

8.7 Discovery Potential

This section estimates the expected statistical significance of a 0νββ excess as a

function of signal size by fitting the 7 Azimov data sets containing non-zero 0νββ

signals. First 2D fits in T ββeff and rcorr are shown and then the PSD parameter is

introduced as a third PDF dimension, to break the degeneracy between 0νββ and

the cosmogenic decays 60Co, 88Y and 22Na.

5this improvement is there despite the fact that, without systematic errors, the counting experi-
ment assumes that all of the backgrounds are exactly constrained.
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Figure 8.3: 0νββ fit for limit setting, in 7 equal volume radial slices. The data points show the
3-year Azimov data set, assuming no 0νββ signal; the stacked distributions show the best fit.
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Figure 8.4: Posterior probabilities extracted using fits in T ββeff and rcorr to a series of 3 year Azimov
data sets. The 0νββ signal increases from 0 counts to 397.91 counts from Azimov 0 to Azimov 7
(see table 8.1).

Figure 8.4 shows the marginal posterior distributions of the 0νββ normalisation, c0ν

for each of the Azimov data sets, only fit in T ββeff and rcorr (without PSD). The most

probable 0νββ signal increases as the true number of events in the sample increases,

as it should. However, the two data sets with the smallest signals are consistent with

0 signal, and, for each of the other datasets, there is a significant non-Gaussian tail,

indicating that even a large 0νββ signal is somewhat consistent with c0ν = 0.

Both of these effects are caused by degeneracy between 0νββ and the three cos-

mogenic decays included in the fit. Figure 8.5 shows this explicitly in 2D projections

of the posterior for the Azimov 7 data set, which compare 0νββ and each of the

cosmogenics. The correlation is most significant for 60Co, which shows near maximal

correlation, but there is also significant non-Gaussian structure in the 22Na - 0νββ

plane, which indicates higher order correlations. This pattern was to be expected,

because the energy spectrum of 60Co is most similar to 0νββ.

To break these correlations, each fit was repeated using datasets and PDFs that also

contained a PSD dimension. Figure 8.6 shows the same posterior correlations for the

with-PSD fit to data set Azimov 7. They explicitly demonstrate that PSD information

breaks the degeneracy between 0νββ and the cosmogenics. Figure 8.7 shows the c0ν
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Figure 8.5: 0νββ - comogenic posterior correlations without PSD for the fit to the Azimov 7 data
set.
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Figure 8.6: 0νββ - comogenic posterior correlations with PSD for the fit to the Azimov 7 data set.

posteriors for the with-PSD fits to Azimov data sets 1 - 7, it demonstrates that

the breaking the degeneracy does indeed remove the non-Gaussian tails visible in

figure 8.4.

8.7.1 Bias

Figure 8.8 shows the most probable c0ν and 1σ credible intervals for each of the

Azimov data sets, fit with and without PSD, and for fits with a 0% constraint on

each of the cosmogenics (i.e. the case that their normalisations are known exactly).

With a perfect constraint, the fit extracts the correct signal to within error. The

small deviations from the ‘unbiased’ line arise from the finite statistics used to build

the Azimov datasets and the PDFs. If the cosmogenics are completely unconstrained,

the fit is biased to extract a 0νββ lower than truth by around 200 counts, and signals

of less than 200 counts are indistinguishable from zero signal. This is because the

fit attributes some of the 0νββ bump to cosmogenics. Finally, with PSD, the bias

is reduced to around 20 counts, and each point is consistent with the correct 0νββ

signal to within error. However, the error for the ‘with PSD’ fits are greater, because

the PSD parameter still leaves some ambiguity between 0νββ and the cosmogenics.
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Figure 8.7: Posterior probabilities for the fits to Azimov data sets 1 - 7 in Teff , rcorr and PSD. The
0νββ signal increases from 0 counts to 397.91 counts from Azimov 0 to Azimov 7 (see table 8.1).
The statistical fluctuations are the result of finite Markov Chain length.
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Figure 8.8: Extracted 0νββ signal vs. true signal. The three lines show fits in different observables
with different contraints. ‘Without PSD’ was fit in T ββeff and rcorr alone, floating the normalisations

of 60Co, 88Y and 22Na. ‘0% Cosmogenic constraint’ was produced in the same way, but with the
60Co, 88Y and 22Na normalisations fixed at their true values. Finally, ‘With PSD’ was produced
using fits in T ββeff , rcorr and PSD, floating the cosmogenic normalisations. The line labelled ‘unbiased’
was calculated using the total signal efficiency from table 8.2.

In summary, degeneracies between cosmogenic decays and the 0νββ signal prevent

SNO+ from extracting all but the largest signals, unless PSD information is employed,

in which case the experiment can measure 0νββ signals without systematic bias.

8.7.2 Signal Significance

To claim a discovery of 0νββ, the no-0νββ null hypothesis must be ruled out to some

significance, by asking how inconsistent the 0νββ bump is with c0ν = 0. In Bayesian

statistics, this question may be answered with the Bayes Factor, but the likelihood-

ratio test of classical statistics is equally appropriate and easier to interpret. The

likelihood-ratio comparing the two is:

∆ logL = log

( L(c0ν = 0)

L(c0ν = ĉ0ν)

)
(8.8)

where L(c0ν = ĉ0ν) and L(c0ν = 0) are the likelihoods using the best fit and null

hypotheses. Wilk’s theorem states that, if the null hypothesis is true, −2∆ logL
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will be χ2 distributed with 1 degree of freedom in the large sample limit. This

distribution can be used to infer the probability of observing a result as, or more,

inconsistent with c0ν = 0 as the data set actually observed. The χ2
1 distribution is

equivalent to a Gaussian for x > 0 so the statistical significance in standard deviations

is simply nσ =
√−2∆ logL. The fits employed flat priors, so the likelihood-ratio in

equation 8.8 is exactly the ratio of posterior probabilities between the most probable

c0ν and c0ν = 0. Therefore, for each of the curves in figure 8.7 the signal significance

is equal to the ratio of the modal posterior probability and the probability of c0ν = 0.

Figure 8.9 shows nσ for each of the Azimov data sets, against T 0ν
1/2. Where the

statistics were insufficient to evaluate P (c0ν = 0) directly, a Gaussian fit was used

to estimate its value. The PSD fit significantly out-performs the no PSD fit and,

for small signals, performs only slightly worse than if the cosmogenics were perfectly

constrained. There is a hint that, for very large signals, the with PSD might actually

out-perform the perfectly constrained fit. Though counter intuitive, this feature arises

because the PSD statistic also has power to discriminate between 0νββ and external

background events, which additionally constrains the background normalisation.

Without PSD, one would expect to observe 0νββ at 3σ significance if the true

half-life is T ββ1/2 = 1.2 × 1025yr. Including PSD, this number is improved by a factor

of 4.3 to T ββ1/2 = 5.2× 1025yr.

8.8 Effective Majorana Mass

T ββ1/2 is related to the effective Majorana mass by:

1

T1/2

= G0ν ||M0ν ||2
( |mββ|

me

)2

(8.9)

Table 8.6 shows the nuclear matrix element for 0νββ in 130Te, M0ν , as calculated in

5 popular nuclear models. Their combined maximum range is 2.06 - 4.98. Kotila and

Iachello calculated the equivalent phase space factor, G0ν , as 3.688× 10−14yr−1 with

gA = 1.269 [197].

Table 8.7 shows mass limits, calculated according to equation 8.9 for the fits previ-

ously described. The ranges have been calculated according to the maximum model

range and the central values use the lower limit of the IBM-2 prediction. Including the

cosmogenic PSD parameter developed in this work improves the 3σ mββ sensitivity

by 100meV. Without PSD, the 3σ discovery level is 191meV, which is already ruled

out by the Kamland-ZEN result [123] and some of the range published by CUORE
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Figure 8.9: The expected significance with which SNO+ could rule out a 0νββ rate of 0, in standard
deviation equivalents, as a function of true 0νββ half-life. A 3 year live-time is assumed. ‘Without
PSD’ was fit in T ββeff and rcorr alone, floating the normalisations of 60Co, 88Y and 22Na. ‘0% Cos-

mogenic constraint’ was produced in the same way, but with the 60Co, 88Y and 22Na normalisations
fixed at their true values. Finally, ‘With PSD’ was produced using fits in T ββeff , rcorr and PSD,
floating the cosmogenic normalisations.

Model ‖M0ν‖
IBM-2 4.03 - 4.61

QRPA-RU 3.89 - 4.81
ISM 2.06 - 2.57

pnQRPA 3.94
EDF 4.98

Table 8.6: Range in model predictions for the 130Te dimensionless nuclear matrix element for gA =
1.269 [198–203], taken from [204].
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- T ββ1/2/(1026yr) Central mββ/meV mββ Range/meV

90% confidence limit 1.76 49.8 40.3 - 97.4
3σ Discovery 0.12 191 154 - 372

3σ Discovery with cosmogenic PSD 0.52 91.5 74.1 - 179

Table 8.7: Expected SNO+ mββ limits, assuming a three year live-time. The central values are
calculated using the IBM-2 model; the range is calculated using the maximum spread from the
predictions of the IBM-2, QRPA-RU, ISM, pnQRPA and EDF models. The first two rows were
calculated using fits in T ββeff and rcorr only, the final column was produced using a fit in Teff , rcorr
and PSD.

in 130Te, whereas, with PSD information, this is reduced by 100meV, to 91.5meV, a

signal which is still allowed by all contemporary experiments.



Chapter 9

Neutrinoless Double Beta Decay
with Slow Scintillator

A strength of water Cherenkov detectors is that the direction, quantity and isotropy of

Cherenkov radiation produced in physics events encodes information about the type

and direction of the particle(s) that produced it. In particular, solar neutrino events

which produce electrons may be identified using the angle the electron subtends with

the solar direction. If a 0νββ search was performed in a water Cherenkov detector, this

technique could be used to reduce the 8B ν ES background that limits the sensitivity

of SNO+. Moreover, if the directionality and energy split of the two electrons emitted

in 0νββ could be estimated from their Cherenkov signals, this information could be

used to determine the underlying 0νββ mechanism. However, the relatively modest

Cherenkov yield prohibits a 130Te 0νββ search in water: the O(1MeV) events of

interest are poorly reconstructed or below detector threshold altogether in modern

water Cherenkov detectors.

On the other hand, liquid scintillator detectors have far greater light yields, which

allow for the low thresholds and good energy resolution demanded by a 0νββ search.

However, the emitted light is isotropic and distributed in time, so particle type can

only be inferred from the scintillation pulse shape. This is the technique explored

in the early chapters of this work. Critically, it has no discrimination power for the

limiting 8B ν ES background, nor for distinguishing between 0νββ mechanisms.

Of course, in a liquid scintillator detector, both emission mechanisms are at work

and, in principle, the Cherenkov and scintillation signals are separable in time. Cher-

enkov emission is near instantaneous, whereas scintillation photons are emitted only

after the decay of excited molecular states with lifetimes of 10s - 100s of ns.

The problem is that contemporary scintillation detectors are unable to resolve this

time difference. Current liquid scintillation detectors have rise and fall times of < 1ns
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and 3-5s ns respectively, so the two signals are typically separated by just a couple of

ns. This time difference is washed out by dispersion, timing uncertainties from finite

vertex resolution, and the TTS of large area PMTs. The result is that the Cherenkov

signal is buried under the much larger scintillation pulse.

Water based liquid scintillators (WbLS) propose to enhance the Cherenkov signal

by diluting liquid scintillator with UPW (e.g. [205]). This reduces the overall scintil-

lation yield so that the Cherenkov signal may be more easily identified. For a 0νββ

experiment, this comes with two major drawbacks. First, by reducing the light yield,

one necessarily admits more 2νββ background into the 0νββ signal window. Second,

UPW has 100x the uranium and thorium chain contamination of purified liquid scin-

tillator, so a WbLS 0νββ experiment will have to deal with orders of magnitude more

internal radioactivity than a pure scintillator detector.

An alternative solution, explored here, is to enhance the timing separation between

the two signals instead, using a slow scintillator and a high coverage of fast, high

quantum efficiency PMTs. Increasing the scintillator’s rise time increases the time

difference between the two signals, and increasing its fall time1 reduces the size of the

scintillation peak relative to the Cherenkov pulse. State of the art PMTs with sub-ns

timing resolution could better resolve the Cherenkov-scintillation time difference and

a larger coverage of high quantum efficiency PMTs would increase collection of the

scarce Cherenkov signal. If achieved, one could have liquid scintillator light yields

and purifications, as well as particle ID using Cherenkov light, in the same detector.

So far, the stumbling block with this approach has been discovering a scintillator

with slow timing and a sufficient light output. However, recently several such organic

scintillators have been found by S. Biller, with rise times of 1.5 - 15ns and fall times

of 10 - 50ns [206].

This final chapter discusses the capabilities of a SNO+ like detector, filled with one

of these scintillators and equipped with a dense coverage of high quantum efficiency,

fast PMTs. The scintillator with the longest rise and fall time was selected as a

proof of principle. Its exact formula will be named in a separate publication, so here

it is referred to as simply ‘slow-scintillator’. The reader should be aware that the

techniques under current investigation for loading these scintillators with tellurium

strongly quench the scintillator light output. Therefore, the work that follows depends

on a future solution to this problem.

After describing a RAT simulation of the proposed detector, it is shown that the

detector can separate the scintillation and Cherenkov signals in time, and that 0νββ

1this is determined by the life-time of the scintillating excited molecular states.
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Scintillator 
+ AV

UPW

Figure 9.1: Schematic of the detector geometry. AV �8.8m, front faces of the 21873 PMTs lie on a
23.68m �sphere. Not to scale.

and 8B ν ES events may be fully reconstructed. Differences in the isotropy, direction-

ality and quantity of Cherenkov light produced in these event types are exploited to

distinguish them statistically and the possibility of determining the 0νββ mechanism

is investigated.

9.1 Detector Model

Figure 9.1 shows a schematic of the detector considered. At its centre sits a perfectly

spherical acrylic vessel (AV) of 8.8m radius, 5cm thickness and filled with liquid

scintillator. 11840mm from the centre of the AV, sit the front faces of 21873 identical

PMTs pointing radially inwards. UPW fills the space from the AV to the PMTs and

the space behind them.

To more realistically model a future experiment, the SNO+ PMTs have been re-

placed with the current state of the art technology and the reflectivity of the concen-

trators has been adjusted so they behave as new.

The detector was simulated using a modified version of SNO+ RAT. This required

a new GEANT4 geometry, a full scintillator model informed by measurements of slow-

scintillator in Oxford and modifications to the behaviour of the concentrators, PMTs

and DAQ system. Each assumption is stated and justified in the following sections.
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9.1.1 Scintillator

The AV is filled with LAB, doped with 10g/L of slow-scintillator. LABSS will

be used to refer to these two components together. At this concentration, there

is non-radiative transfer of excitations between the LAB and the slow-scintillator.

This means that primary scintillation light is emitted from slow-scintillator and that

photons absorbed by either LAB or slow-scintillator are re-emitted from the slow-

scintillator.

The primary advantage of the slow-scintillator is, of course, its timing; it has a rise

time of 16ns and a single fall time of 50ns. A comparison of the scintillator emission

times of LABSS and LABPPO is shown in figure 9.4. The prompt peak is > 10x

smaller with slow-scintillator, so it produces much less scintillation background to

the Cherenkov signal emitted in the first 60ps (figure 2.8).

Figure 9.2 shows the emission and absorption curves for LAB and slow-scintillator

alongside the PMT efficiency curve employed in the simulation. The slow-scintillator’s

emission peak is at 490nm, the emission distribution matches the PMT efficiency

reasonably well and the cocktail displays a large Stokes’ shift.

The absorption lengths for the detector’s major optical components are shown in

figure 9.3. Slow-scintillator strongly absorbs in the 290-390nm region. The PMTs are

sensitive in this region so there is significant absorption of Cherenkov photons that

would be otherwise detected. These photons are re-emitted from slow-scintillator,

mixing them in with the scintillation signal. The scattering of LABSS was assumed

to be the same as LABPPO, because both will be dominated by LAB.

The intrinsic light yield of LABSS is different from LABPPO for two reasons.

First, non-radiative transfer from LAB to slow-scintillator is more efficient than LAB

to PPO case (0.835 vs. 0.75). Second, the quantum yield is lower for slow-scintillator

than PPO (0.75 vs. 0.8). Overall, the intrinsic light yield of LABSS is 10765γ/MeV,

10% lower than LABPPO but 60% higher than the quenched 0.5% TeDiol cocktail

to be deployed in SNO+ phase I.

The optical effects of the loaded 0νββ isotope, assumed to be tellurium, have

been neglected. Absorption from tellurium itself is very small even at percent level

loadings [141], but the chemistry required to load the tellurium is highly uncertain.

9.1.2 PMTs

The detector is equipped with fast high quantum efficiency PMTs. The exact spe-

cifications were chosen to represent roughly the best 8” PMTs on the market. The
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Figure 9.2: Optical profiles for the slow-scintillator detector components. Solid lines show emission
spectra, dotted lines show inverse absorption lengths and the dashed line shows the Hamamatsu
r5912 PMT combined efficiency curve.

Figure 9.3: Absorption lengths for slow-scintillator detector components.
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Figure 9.4: Scintillation photon emission time distributions for LABPPO [156] and LABSS on linear
and logarithmic scales.

charge response and dark current of the fast PMTs was assumed to be the same as

the SNO+ PMTs (figure 2.5). This is a conservative assumption as modern PMTs

have a far better ratio between charge pedestal and single p.e. response (e.g. [207]).

Using the same front end electronics, as much as 10% more p.e. could be without

admitting additional noise hits [208].

Modern PMTs have much better detection efficiencies than the SNO PMTs. In

particular, HQE (high quantum efficiency) PMTs are equipped with super bialkali

photo-cathodes that increase their quantum efficiency by around 35% relative to those

without (e.g. [209]). The PMTs considered here were assumed to have the same

efficiency as the Hamamatsu r5912 8’ HQE. A trace of its combined efficiency as a

function of wavelength is shown in figure 9.5, alongside the SNO+ r1408 PMT. In

the studies that follow, the r5912 is used to detect light emitted by slow-scintillator

with λ ≈ 470mm, whereas, in SNO+, the r1408 will be used to detect light emitted

by bisMSB λ ≈ 420nm. Integrated over the relevant emission curves in figures 9.2

and 2.10, the r5912 is 62% more efficient than the r1408.

The PMT TTS was assumed to be the same as the r1408, but with a prompt peak of

1ns FWHM. Under this assumption the pre-pulsing and after-pulsing behaviour is the

same as the r1408. The assumed transit time distribution is shown in figure 9.6, it was

created by modifying the r1408 distribution. A Gaussian was fit to the r1408 prompt

peak, this Gaussian was then subtracted and replaced by a 1ns FWHM Gaussian

of the same mean and normalisation. Large area PMTs with close to this timing

performance are already available. For example, the r5912-MOD has a measured

TTS of 1.5ns [207]. This PMT could also be made into a HQE PMT if equipped with

a super bialkali [207].
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Figure 9.5: Comparing the combined (quantum and collection) efficiencies of the Hamamatsu r5912
and r1408 PMTs [148, 207].

Figure 9.6: PMT transit time distribution used for the slow-scintillator studies, compared with the
transit time distribution of the Hamamatsu r1408.
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Figure 9.7: Left: approximation to the sphere using icosahedron division. Right: nearest neighbour
distances for the final PMT geometry.

Figure 9.8: cos θ and φ of the PMTs relative to the z-axis.

9.1.3 Photo-cathode Coverage

The geometry of the PMTs was assumed to be identical to the SNO+ PMTs and

each one was simulated with a SNO+ concentrator. However, relative to SNO+, the

reflectivity of the concentrators was increased from 83% to 91%. This improvement

could be achieved by simply replacing the SNO+ concentrators with new ones of the

same design. More reflective materials and tessellating concentrators could increase

the light collection even further [210].

The centre of each of the 21,873 PMT front faces sits on a sphere of radius

11,840mm. Their positions were chosen to maximise the number on the sphere

without the PMT concentrators overlapping. To achieve this, first a sphere of radius

11840mm was pixelised using icosahedron subdivision (see figure 9.7) and a PMT was

placed at the centre of each pixel. Second, any two PMTs lying closer than twice the
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concentrator radius (28cm) were removed and mutual repulsion between all of the

PMT centres was simulated to close the ‘hole’ created and preserve the symmetry2.

This process was repeated until no two PMTs were separated by less than 28cm. Fig-

ure 9.7 shows the final distribution of nearest neighbour separations; the symmetry

of the arrangement is clear from the cos θ and φ distributions in figure 9.8.

In this configuration, the physical coverage is 76.5%. To account for the imperfect

reflectivity of the concentrators, it is more useful to estimate the effective coverage:

Ceff = Cphys · ((1− f) + fR) (9.1)

where f is the fraction of the concentrator opening area covered by reflectors, 1− f
is the fraction covered by photo-cathode and R is the concentrator reflectivity.

f = 0.5, R = 0.91 gives Ceff = 73%, an improvement of 37% on the SNO+

detector [59].

9.1.4 Front End and Trigger

In order to collect all of the light generated by LABSS, the trigger gate was extended

from the SNO+ value of 400ns to 600ns, and the trigger lock out to 610ns. Each

channel discriminator threshold was set to a typical value for the SNO+ detector, 9

DAC counts [59].

The trigger thresholds were left unchanged from the SNO+ values. A real detector

would likely raise these thresholds to compensate for greater light collection, but 0νββ

events will be well above threshold, so the exact value is unimportant here.

In the SNO+ RAT simulation, the true discriminator crossing times of hits are

artificially smeared, and then calibrated using PCA/ECA constants measured on the

real detector. These calibrations do not extend past the channel reset time of 410ns,

so it is impossible to simulate later hits with this method. In order to simulate later

hits, the truth discriminator crossing time was used instead of the calibrated hit time.

This is a reasonable approximation because timing uncertainty is dominated by the

TTS, even for fast PMTs.

More modern DAQ systems employ waveform digitizers to record the PMT charge

pulses in full. If equipped with a similar system, the detector could also distinguish

individual p.e. piling up on a single PMT (e.g. [211]).

2the sphere pixelisation was the work of the author, the mutual repulsion code was developed by
E.Leming.
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Figure 9.9: Hit count for 0νββ events inside the central 1m of the detector.

9.1.5 Detector Performance

In this section we briefly highlight the light collection capability of the detector and

its ability to separate Cherenkov and scintillation hits in time.

Figure 9.9 shows a breakdown of the signal collection statistics for 0νββ events in

the central 1m of the detector; the results are summarised in table 9.1. On average,

3299 hits are collected in each event, equivalent to 1319h/MeV. 9.5% of the p.e. are

lost to multi-hits. A further 19.8% are lost at the front end, with charges too small

to trigger the discriminators. Only a very small fraction of hits are not collected by

the trigger gate.

The light collection should be contrasted with the expected 350h/MeV in SNO+

phase I for r < 1m. The factor of 3.76 more hits can understood as:
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Description Mean Standard Deviation
Photo-electrons 4563 71

PMTs with 1 or more p.e. 4126 61
Discriminators firing 3307 55

Collected by trigger gates 3299 55
Collected by 1st trigger gate 3299 55

Table 9.1: Hit breakdown for 0νββ events filling the central 1m of the detector. No cuts applied.

1.37

1
× 1.62

1
(Effective Coverage) · (PMT efficiency)

×1.6× 1

0.96
× 0.905

0.91
×(Light yield)× (Secondary fluor efficiency)× (Multihit effect)

= 3.68

the secondary fluor efficiency term arises from the re-emission probability of bisMSB

in the SNO+ scintillator cocktail. 0.91 is the single p.e. fraction for 0νββ events with

r < 1m as measured in RAT 6.1.6 (section 3.1.2).

Simply counting hits in this detector, one would achieve a 1.7% energy resolution,

equivalent to 42.5keV, for 0νββ at the centre, ignoring systematic effects. Note that

the distributions are in general slightly broader than the Poisson limit σ =
√
Nhit.

The additional width is likely due to variation in solid angle and attenuation as a

function of position, which, to some extent, can be corrected for with knowledge of

the vertex position.

Figure 9.10 shows the creation time of p.e. produced by the average 2.5MeV elec-

tron event that occurs the central 1m of the detector. Even without correcting for

time of flight, there is clear timing separation between the Cherenkov, scintillation

and re-emission components.

9.2 Reconstruction

Cherenkov photons are emitted before scintillation photons, but this difference is only

useful if the detection time can be related to the emission time by correcting for time

of flight, which requires reconstruction of the event vertex.
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Figure 9.10: Photo-electron detection times for 2.5MeV electrons in the central 1m of the detector.
The bumps in the region 150 - 200ns are multiple reflections from the PMTs and AV.
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Although an overall advantage, sensitivity to Cherenkov light complicates recon-

struction, relative to SNO+, in three ways. First, the event position, time and direc-

tion(s) are all degenerate, so all three must be estimated together. Second, the light

emitted is no longer isotropic and the angular distribution depends on the emission

time. This necessitates 2D PDFs in time residual and detector angle. Third, the in-

ferred vertex depends strongly on the event type because the amount and distribution

of Cherenkov light depends on the number, energy and type of particles emitted.

This section describes reconstruction algorithms used to reconstruct the position,

time and direction of point-like events using the maximum likelihood method.

9.2.1 Likelihood

The goal of the maximum likelihood method is to find the values of several fit para-

meters that maximise the probability of the observation made. Each event contains

a set of time, position pairs {~xhit, thit}, with one entry for each hit. For point-like

events, the time of the event tv and its position ~xv must be estimated, along with a

set of other parameters {α} that depend on the specific hypothesis considered3. The

likelihood is therefore:

L = P ({~xihit, tihit}|~xv, tv, {α}) (9.2)

The probability in equation 9.2 contains an enormous amount of detail. In prin-

ciple, P depends on the physics that produced the primary particle, the emission and

propagation physics of optical photons and the response of every PMT. To break this

down into something more tractable, the first key assumption is that the hits are

independent4:

L = ΠNhits
i=0 P (~xihit, t

i
hit|~xv, tv, {α}) (9.3)

Next it is assumed that hits are dominated by photons that followed straight line

paths. Then, the propagation time of each photon can be corrected for using time

residuals:

tires = thit − tv − tt.o.f (9.4)

Rewriting the likelihood in terms of time residuals absorbs the dominant dependence

on ~xv, tv:

L = ΠNhits
i=0 P (tires(~xv, tv), ~x

i
hit|~xv, tv, {α}) (9.5)

3e.g. for reconstructing electron events we will want to estimate the electron direction so {α} =
{θe, φe}.

4The photons propagate independently and they are emitted independently provided the hypo-
thesis considered is approximately simple.
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One factor that is useful to isolate is the solid angle of the PMT as viewed from

the vertex position. For the same emission time and direction, PMTs further away

or at more oblique angles are less likely to be hit. With this correction the likelihood

reads:

L = ΠNhits
i=0

Ωi

4π
P (tires(~xv, tv), ~x

i
hit|~xv, tv, {α}) (9.6)

where

Ωi = ~xpmt ·
~xpmt − ~xv

‖ ~xpmt‖‖ ~xpmt − ~xv‖3
(9.7)

A similar term can be included to represent the optical absorption of LABSS:

photons taking longer paths through the scintillator are attenuated more than those

taking short paths. With this term, the final likelihood is:

L = ΠNhits
i=0

Ωi

4π
P (tires(~xv, tv), ~x

i
hit|~xv, tv, {α}) exp

(−∆l

labs

)
(9.8)

where ∆l is the photon’s path length in scintillator and labs is the total absorption

length of LABSS at a representative wavelength.

The justification for explicitly including these terms is explored in detail in ap-

pendix B. With them explicitly factored out, P (tires, ~x
i
hit|~xv, tv, {α}) is the probability

of observing a hit at position ~xpmt with time residual tires, corrected for solid angle

and attenuation effects. It is dominated by variations in photon emission, but it also

includes the PMT transit time smearing and the effect of non-straight line paths.

Critically, if a symmetry can be exploited to reduce its dimensionality further, it can

be estimated using a large number Monte Carlo events for which the truth values of

~xv, tv and {α} are known.

The choice of attenuation length labs and the light velocity used to calculate tt.o.f

is non-trivial because both are wavelength dependent. Hand tuning for optimal re-

constructed resolution on 2.5MeV electron events gives:

λabs = 50 m ceff = 197 mmns−1 (9.9)

this procedure is described in appendix C.

9.2.2 Optimisation

Point estimates for ~xv, tv, {α} were calculated by maximising the likelihood in equa-

tion 9.8 with respect to those 4 + |{α}| parameters. In practice, it is numerically
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expedient to maximise the natural logarithm of the likelihood. Dropping insignific-

ant constant factors, the log-likelihood is:

logL =

Nhit∑

0

(
logP (tires(~xv, tv), ~x

i
hit|~xv, tv, {α}) + log Ωi − ∆l

labs

)
(9.10)

A simplex simulated annealing algorithm from numerical recipes [169] was used to

maximise equation 9.10 with respect to the Cartesian coordinates of the vertex posi-

tion xv, yv, zv, the vertex time tv and the hypothesis dependent {α}. For each event

the annealing algorithm was run 4 times, and the fit with the greatest likelihood was

selected.

The optimisation routine is seeded with estimates {xs, ys, zs, ts} and errors {σxs ...}
for the position and time from the standard ScintFitter described in chapter 3.

The PDF and effective speed for this fitter were tuned for the LABSS cocktail by

E.Leming.

9.2.3 Electron Reconstruction

Rejecting the 8B ν ES background requires reconstruction of electrons at around

2.5MeV. For such events, the direction of the scattered electron is defined by d̂v =

(1, θv, φv), in detector coordinates.

P (tires, ~x
i
hit|~xv, tv, {α}) = P (tires, ~x

i
hit|~xv, tv, θv, φv) (9.11)

Note that the the explicit dependence of tires on the vertex time and position has

been dropped for brevity. By symmetry, the directional variation in probability should

depend primarily on the angle, θ, made between the electron direction and the line

pointing from the vertex to the hit PMT:

cos θi = d̂v ·
~xpmt − ~xv

‖ ~xpmt − ~xv‖
(9.12)

then

P (tires, ~x
i
hit|~xv, tv, θv, φv) = P (tires, cos θi) (9.13)

Now the hit probability is a 2D distribution of variables tires, cos θi that depend

only on the parameters of interest: ~xt, tv, θv, φv.

A binned estimate of the PDF P (tires, cos θi) was calculated using 124500 2.5MeV

Monte Carlo electron events, generated in the central 1m of the detector. For each

hit in the first triggered event of each simulated electron, the time residual was calcu-

lated according to equation 9.4, the angle with respect to the electron direction was
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Figure 9.11: 2D PDFs in time residual and cos θ for 2.5MeV electron events within the central 1m
of the detector. Bin widths are 770ps in time residual and 0.04 in cos θ.

Figure 9.12: 1D PDF projections of the PDF used to fit electron events.
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Parameter Value
Iterations 100
Tolerance 10−4

Schedule Steps 10
Schedule Power 4

xinit xs
yinit ys
zinit zs
σx σxs
σy σys
σz σzs
θinit θs
φinit φs
σθ 0.5
σφ 0.5
tinit tseed
σt σts

Table 9.2: Simulated annealing parameters for the electron fit.

calculated according to equation 9.12 and these values were filled into a 2D histo-

gram. 2D visualisations of the PDF are shown in figure 9.11 and its 1D projections

are shown in figure 9.12. The cut off at around 500ns is the edge of the trigger gate;

noise hits can sit outside this window after time of flight correction. Events falling

after 540ns were assigned a probability at the noise level of 10−8, to which no solid

angle or attenuation length correction was made. The binned PDF was splined in

both directions using linear interpolation to prevent discontinuities in the PDF that

can cause problems in optimisation.

In addition to the position and time seed described in section 9.2.2, a direction seed

{θs, φs} was calculated by taking the average of the unit vectors that point from the

seed position to each hit (equation 9.14). Only hits within a coarse Cherenkov time

cut of 55 < thit/ns < 65 were included. A fixed error of 0.5 was assumed for σφ, σθ.

Table 9.2 shows the full annealing parameter set used to fit events under the electron

hypothesis.

d̂s =
~dseed

‖~ds‖
ds =

Nearly∑

i=0

~xipmt − ~xs
‖~xipmt − ~xs‖

(9.14)
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Performance

Figure 9.13 shows the performance of the fitter in reconstructing the time, position

and direction of 2.5MeV electrons. Table 9.3 summaries these plots using fits to func-

tional forms. The error on the reconstructed position is mostly Gaussian distributed,

but there is a clear non-Gaussian tail. The resolution in x and y is 11cm whereas the

resolution in the z direction is closer to 10cm. 85% of events reconstruct to within

60◦ of the true direction.

There are three measurable biases. The first is a shift along the direction of motion

of the electron, and a shift to later times. Shown in figure 9.13(e), the drive is defined

as the displacement from the truth to the reconstructed vertex, projected onto the

true electron direction:

Drive = (~xfit − ~xtruth) · d̂v (9.15)

On average, the algorithm reconstructs events with positive drive. The effect is

strongly correlated with over-estimates of the event time and to poor estimations

of the electron direction, as shown in figure 9.14. The effect can be understood as

follows: multiple scattering of the primary electron and Rayleigh scattering of the

photons it produces tends to push Cherenkov hits to angles outside the Cherenkov

cone, whereas scatters into the cone are less likely. On average, this widens the

emission cone. Pulling along the direction of motion makes this cone seem the correct

width again, and the time of the event can be moved forward to compensate.

The second bias is a pull to lower z-values. This is caused by a tendency for the

fitter to choose directions close to the poles at θ = 0, π shown in figure 9.15. This is

likely caused by a slight asymmetry in the PMT placement (figure 9.8) that produces

a local minimum there. This is also the cause of the smaller resolution in the z

direction.

Finally, on average, cos θ < 1. This effect is caused by the hard boundary at

cos θ = 1, which introduces a bias into the maximum likelihood method itself.

Sources of Error

Figure 9.16 shows the CDF for the cos θ distribution in figure 9.13 including a break-

down of the effects that contribute to its width. The plot shows that the majority

of the width comes from electron multiple scattering (an irreducible effect) and mis-

reconstruction of the vertex position. On the other hand, background scintillation

hits have next to no effect.
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Figure 9.13: Fit performance for 2.5MeV electrons in the central 1m of the detector. Each plot
contains 9647 entries. ‘Drive’ shows the position resolution along the direction of the true electron
momentum.
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Figure 9.14: The drive reconstruction bias for 2.5MeV electrons. Positive drive values are correlated
with late time estimates (tfit− ttrue > 0), and poor estimates of the electron direction (d̂fit · d̂true <
0.)
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Figure 9.15: Pull of the fit direction towards the poles for 2.5MeV electrons. θ is the polar angle
about the z-axis.

Distribution Unit Model Fit Parameters
xfit − xtruth mm Gaussian µ = 1.74± 0.02, σ = 114
yfit − ytruth mm Gaussian µ = −0.29± 0.03, σ = 115
zfit − ztruth mm Gaussian µ = −10.1± 0.1, σ = 102
rfit − rtruth mm Gaussian µ = 0.304± 0.003, σ = 116

Drive mm Gaussian µ = 49.2± 0.5, σ = 109
tfit − ttruth ns Gaussian µ = 0.219± 0.002, σ = 0.3

d̂true · d̂fit - Double Exponential
N1 = 2.86× 10−3, N2 = 8.17× 10−8

τ1 = 0.44, τ2 = 0.068

Table 9.3: Electron reconstruction summary. Each parameter was estimated using a sample of 9647
events.



9.2. Reconstruction 192

1.0 0.5 0.0 0.5 1.0
cosθ

0.2

0.4

0.6

0.8

1.0

P
(d̂
fi
t
·d̂
tr
u
th
>

co
sθ

)

2.5MeV e−

Fit direction
Fit direction MC pos
e−  multiple scattered

Rayleigh Scattered
tres<4ns

Figure 9.16: Breakdown of effects creating width in the reconstructed direction. The ‘e− multiple
scattered’ line shows the distribution in the angle between the true electron direction, and the average
emission direction of the Cherenkov photons it produces. The ‘Rayleigh Scattered’ line shows the
mean direction of the Cherenkov hits w.r.t to the true vertex position and the ‘tres < 4ns’ curve
shows the mean direction of all hits in the first 4ns (i.e. including background scintillation hits).
Also shown is the performance of the fitter when the true vertex position is known exactly : ‘Fit
direction MC pos’.

Slowing down the the scintillation light reduces the scintillation background inside

the Cherenkov window, but it also hurts the detector’s position resolution, which relies

on the prompt peak. The scintillator considered here is in the extreme regime where

the scintillation background is irrelevant, and the direction uncertainty is dominated

by vertex error. This suggests the interesting possibility that a somewhat faster

scintillator could perform better.

9.2.4 0νββ Reconstruction

Reconstructing the time and position of electrons required the estimation of two in-

ternal degrees of freedom for each event: the θ, φ coordinates of the electron direction.

Unfortunately, 0νββ events are much more complex. There are two electrons, emitted
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in two directions d̂1, d̂2 with a variable split of energy between them. In total there

are 4 + 1 = 5 internal degrees of freedom. Worse still, the energy split and angu-

lar correlation of the electrons are strongly model dependent (section 1.7.4). This

section describes three models of 0νββ of increasing complexity used to reconstruct

0νββ events. The first two models assume the light neutrino exchange mechanism

(LNE), whereas the third is model independent.

Isotropic Model

To zeroth order, the Cherenkov light produced in 0νββ events is isotropic. For LNE

events, the electrons tend to separate back-to-back, both undergo multiple scatter-

ing and the photons they produce are scatted, absorbed and re-emitted. Thus, the

simplest treatment of these events is to ignore angular information altogether. Then

the hit probability is:

P (tires, ~x
i
hit|~xv, tv, ~α) = P (tires) (9.16)

The corresponding PDF can be built in the same way as the electron PDF (sec-

tion 9.2.3) except calculating cos θ for each hit using a random direction. The sim-

ulated annealing parameters used to optimise this likelihood are the same as for

electrons.

Unidirectional Model

Of course, any given event does actually have two associated directions, so a first

order extension is to fit for the direction of the highest energy electron and to treat

the contribution from the second electron as isotropic. In this description, 0νββ

events look similar to electron events but with less light in the Cherenkov cone and

an extra isotropic contribution from the second electron. The hit probability is:

P (tires, ~x
i
hit|~xv, tv, ~α) = P (tires, ~x

i
hit|~xv, tv, θv, φv) (9.17)

where θv, φv are the polar coordinates of the direction of most energetic electron.

The corresponding PDF can be built using the procedure described in section 9.2.3

calculating cos θi with respect to the initial direction of the highest energy electron.

The simulated annealing parameters used to optimise this likelihood are the same

as for electrons and the direction seed is the same.
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Bidirectional Model

The third and most complex hypothesis considered here includes the direction of both

electrons. In this case, the 0νββ event is described by two electrons, emitted in two

different directions but at the same time and position. The hit probability is:

P (tires, ~x
i
hit|~xv, tv, ~α) = f · P (tires, ~x

i
hit|~xv, tv, θ1, φ1)

+(1− f) · P (tires, ~x
i
hit|~xv, tv, θ2, φ2)

(9.18)

where f is a weighting between the contribution of the two electrons, loosely related

to the energy divide between them. θ1, φ1, θ2, φ2 are the spherical coordinates of the

two directions.

Equation 9.18 contains two copies of the following probability distribution, one for

each electron:

P (tires, ~x
i
hit|~xv, tv, θ, φ) (9.19)

which is the probability of observing a hit at ~xi with residual tires after a single electron

event at ~xv, tv with direction θ, φ. The energy of the electron events used to build

this PDF sets the overall Cherenkov to scintillation ratio of the model; 1.25MeV was

chosen here because this is the expectation value of the electron energies under LNE.

The PDF in equation 9.19 was built in exactly the same way as the single electron

PDF, but using 1.25MeV electrons.

f has hard boundaries at 0 and 1 which can cause problems for optimisation al-

gorithms. To remedy this, f is transformed to a cyclic parameter χ defined by:

sin2 χ = f cos2 χ = 1− f (9.20)

In total, there are 3 + 1 + 4 + 1 = 9 free parameters in the bidirectional fit.

Table 9.4 summarises their annealing parameters. The direction of electron 1 (arbit-

rarily) was seeded using using the procedure described in section 9.2.3. The second

direction was seeded randomly. θ, φ have a fixed errors of π/2 and π respectively for

both electrons. The χ seed is a random number between 0 and π/2 with an assumed

error of 0.07.

PDFs for these three hypotheses are shown in figure 9.17, all three were splined in

the fit using linear interpolation.
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Parameter Value
Iterations 100
Tolerance 1×10−4

Schedule Steps 10
Schedule Power 4

xinit xs
yinit ys
zinit zs
σx σxs
σy σys
σz σzs
θ1init θs
φ1init φs
θ2init ∼ U(0, π)
φ2init ∼ U(−π, π)
σθ1 π/2
σφ1 π
σθ2 π/2
σφ2 π
χinit ∼ U(0, π/2)
σχ 0.07
tinit tseed
σt σts

Table 9.4: Simulated annealing parameters for the bidirectional fit.
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Figure 9.17: 0νββ PDFs. Left to right: Isotropic, unidirectional and bidirectional models.
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Figure 9.18: Position fit performance for 0νββ in the central 1m of the detector. Each plot contains
2924 entries. Drive1 and Drive2 show the resolution along in the direction of the momenta of
electrons 1 and 2.
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Figure 9.19: Direction fit performance for 0νββ in the central 1m of the detector. Each plot contains
2924 entries. The (1, 2) label is meaningful because electron1 is associated with the seed direction.

Distribution Unit Model Parameters Isotropic Unidirectional Bidirectional

xfit − xtruth mm Gaussian
µ
σ

0.76 ± 0.01
157.2

0.08 ± 0.002
135.3

1.21± 0.02
128.5

yfit − ytruth mm Gaussian
µ
σ

-0.67 ± 0.01
160.1

0.98± 0.02
134.7

-2.8 ± 0.1
126.4

zfit − ztruth mm Gaussian
µ
σ

-6.0 ± 0.1
154.7

-6.3 ± 0.1
127.0

-8.8±0.2
118.0

rfit − rtruth mm Gaussian
µ
σ

36.9 ± 0.7
153.8

7.0±0.1
132.3

-4.5±0.08
128.2

tfit − ttruth ns Gaussian
µ
σ

0.35± 0.01
0.41

0.33±0.01
0.39

-0.046±0.001
0.37

Drive1 mm Gaussian
µ
σ

71.8±1.3
152.8

54.9±1.0
127.6

21.9±0.4
124.1

Drive2 mm Gaussian
µ
σ

69.3±1.2
154.5

49.0±0.9
128.2

20.1±0.4
120.0

Table 9.5: 0νββ fit summary, each parameter was estimated using a sample of 2924 events.
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Performance

Figure 9.18 shows the x, y, z, r, t distributions for 0νββ events reconstructed under

each of the three hypotheses described above. The drive distributions with respect

to both electrons are also shown. Figure 9.19 shows the performance of the direction

reconstruction for both electrons. Table 9.5 shows fit parameters derived from these

distributions.

The fit resolution in x, y, z, r and t improves with model complexity. All three

models exhibit the drive effect discussed in section 9.2.3 for both electron directions,

but the size of the effect is reduced with increased model complexity. The bidirectional

fit has x and y resolutions of 13cm, a z resolution of 12cm and an average drive of

2cm along the direction of both electrons.

Electron 1 is, on average, fit better than electron 2 because direction 1 is (arbitrar-

ily) the one that receives the calculated seed. The drive is larger for electron 1 because

the seed will tend to point towards the electron that produces most Cherenkov light.

9.3 8B ν ES Rejection

With the ability to reconstruct event vertices, one can exploit differences in the Cher-

enkov signals produced by 0νββ and 8B ν ES events. There are three: first, for

events of the same overall energy, there are more Cherenkov photons for single elec-

trons than for two electron 0νββ events, therefore, the 8B ν ES events should have

a larger ratio of Cherenkov hits to scintillation hits; second, the Cherenkov light is

more isotropic for 0νββ events than electron events, because the two electrons are

emitted in different directions; finally, the direction of Cherenkov photons produced

in 8B ν ES events is strongly correlated with the direction to the sun, whereas 0νββ

events have no correlation with the sun’s position.

The first half of this section discusses each of these handles in turn, devises simple

cuts and combines them. The second half applies a likelihood-ratio method that

makes use of the same information indirectly. The two approaches are compared

and an estimate of the sensitivity improvement for SNO+ style 0νββ searches is

calculated.

Throughout this chapter, events referred to as 8B only include those events depos-

iting 2.4MeV to 2.6MeV in the scintillator, because these are the events that produce

a 0νββ background.



9.3. 8B ν ES Rejection 199

Figure 9.20: 8B ν-e scattering angles. θ is the smallest angle that separates the incoming neutrino
direction and the out-going electron direction.

9.3.1 Solar Direction

The electrons produced in 8B events tend to point away from the sun, because the

neutrinos travel in straight lines, and because the neutrino-electron interaction is

forward pointing. However, the reconstructed solar angle, cos θ�, of these events will

have a finite width, because not all scatters are forward, the electron multiple scatters,

and because of the finite direction resolution of the detector.

The first factor is particularly important at 2.5MeV. Figure 9.20 shows the distri-

bution of the angle made between 8B solar neutrinos and the electrons they produce

in elastic scattering events. Counter-intuitively, it shows that the electron scatters at

25 degrees from the neutrino on average. This can be understood from the kinematics

of the neutrino-electron interaction. 2.5MeV electrons may be produced by neutrinos

with close to 2.5MeV in energy, producing a co-linear electron, or by a higher energy

neutrino passing on a small fraction of its energy in a wide angle scatter. Because

most of the 8B flux is above 2.5MeV, the latter type of interaction is more common.

Figure 9.21 shows cos θ� for 8B and 0νββ events alongside the fit resolution, d̂fit ·
d̂true for 8B events; it shows that neutrino-electron scattering adds significant width

to the cos θ� distribution and that, as expected, there is no correlation between the

sun’s direction and the reconstructed direction of 0νββ events. To estimate the power

of these distributions, an arbitrary cut of cos θ� < 0.2 was applied; it rejects 90% of
8B events with a 0νββ sacrifice of 43%.
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Figure 9.21: Reconstructed solar angles for 0νββ and 8B ν ES events. θ is the angle between the fit
direction and the true direction, d̂e, or the solar direction, d̂�. r <1m.
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Figure 9.22: Time residuals and early hit fraction for 2924 0νββ events and 1938 8B ν ES events,
r < 1m. Error bars on the left hand plot are too small to be seen. r <1m.

9.3.2 Early Hit Fraction

Figure 2.8 in chapter 2 showed that the number of Cherenkov photons emitted by

an electron is approximately linear with energy, above a threshold of 0.39MeV. From

this plot, two 1.25MeV electrons should create approximately 80% of the Cherenkov

photons produced by a single electrons. This difference should be reflected in the

number of hits with early time residuals.

Figure 9.22 shows the time residuals for 8B ν ES and 0νββ events with respect to

a vertex reconstructed under the hypothesis that both are single electrons. There is a

small excess for electron events between time residuals of -1ns and 3ns.

An early hit fraction parameter was defined to exploit this difference. fearly is the

the fraction of hits that have time residuals between -1ns and 3ns:

fearly =
Nhit(−1ns < tres < 3ns)

Nhit

(9.21)

Figure 9.22 shows the distributions of fearly for 0νββ and 8B ν ES events in the

central 1m. On average, the early hit fraction is 20% larger for 8B ν ES but the

breadth of the two distributions means that they overlap significantly. This parameter

has only weak statistical power for discriminating between 0νββ and 8B ν ES events.

9.3.3 Isotropy

The final handle is the isotropy of the Cherenkov light. If reconstructed as electron,

0νββ events should have more hits outside the apparent Cherenkov cone than single

electron events. To exploit this difference, events were reconstructed as electrons, the
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Figure 9.23: Left: PDF of cos θem. Right: Fraction of early hits with cos θem > 0.54 for 2924 0νββ
events and 1938 8B ν ES events, r < 1m.

Cherenkov signal was isolated using a time cut of −1 < tres/ns < 3, and the apparent

emission angle for each hit cos θem was calculated using

cos θem = d̂fit ·
~xpmt − ~xfit
|~xpmt − ~xfit|

(9.22)

These emission angles were then used to calculate the forward fraction, fforward,

defined by:

fforward =
Nhit(−1 < tres/ns < 3 and cos θem > 0.54)

Nhit(−1 < tres/ns < 3)
(9.23)

Figure 9.23 shows the distributions in cos θem and fforward for 8B ν ES and 0νββ

events; the fforward distributions have been fitted to Gaussian distributions. On

average, fforward is larger for 8B ν ES events but the width of the two distributions

is again broad. The two peaks are separated by approximately half of their width.

9.3.4 Combining Discriminants

Figure 9.24 shows the correlations between the three discriminants described so far,

cos θ�, fearly and ffront for the two event classes. The correlations are weak, so there

is merit to combining them into a single discriminant. Of the many ways of doing

this, only a simple Fisher discriminant is investigated here, its distribution for both

event types is shown in figure 9.25.

Figure 9.26 shows the background rejection as a function of the signal efficiency that

can be achieved by cutting on each of the discriminants described above. Of the three

primary cuts, the solar direction is by far the most powerful. The Fisher discriminant

improves on the solar direction cut for 0νββ efficiencies> 0.9 by including information

from fearly and fforward (though the improvement is slight), but it does not add any

power for smaller efficiencies. This can be understood from the sub- population
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Figure 9.24: Correlations between discriminants for 8B ν ES background events (above) and 0νββ
events (below). r <1m.

of events that mimic the incorrect event class in each case. The 0νββ events which

mimic 8B are those that reconstruct along the solar direction by chance, so, on average,

they still look different from 8B in the other two discriminants. On the other hand,

those 8B events which mimic 0νββ will be those undergoing hard electron scatters or

those reconstructed poorly; both cases make the events more 0νββ-like in all three

discriminants.

9.3.5 Likelihood-Ratio

An alternative approach is to reconstruct each event under both 0νββ and 8B ν ES

hypotheses and form a likelihood-ratio using the best fit likelihoods from each. The

fit procedures described in sections 9.2.3 and 9.2.4 that fit for electrons and 0νββ

events respectively produce an electron likelihood, Le− , and a 0νββ likelihood, L0ν .

The log-likelihood-ratio is:

∆ logL = log

(Lmax0ν

Lmaxe−

)
(9.24)

This method comes with a couple of key advantages over the cut based approach.

First, to apply the cuts all events were reconstructed under a single reconstruction

hypothesis, i.e. both 8B ν ES and 0νββ events were reconstructed as electrons. This

produces reconstruction biases that reduce the differences between the two event
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Figure 9.25: Fisher discriminant for 2924 0νββ events and 1938 8B ν ES events, r < 1m.
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classes, because the maximum likelihood fit chooses the vertex for which events best

match the target PDF. In other words, 0νββ events were reconstructed to look most

electron-like. Instead reconstructing twice allows each event a chance to match both

hypotheses, and the degree of agreement with each is estimated naturally from the

likelihood-ratio.

Second, if the PDF includes sufficient detail that the hypotheses are approxim-

ately simple, the Neyman-Pearson lemma guarantees that the likelihood will give an

optimal test statistic.

Figure 9.27 shows the log-likelihood-ratios for 0νββ and 8B ν ES events for each of

the 0νββ hypotheses explored in section 9.2.4. Positive values of ∆ logL indicate that

the event looks more 0νββ-like, whereas negative values indicate that event appears

more 8B ν ES-like. Figure 9.28 shows the background rejections and signal efficiencies

that can be achieved cutting on these ratios. The unidirectional fit produces the

best discrimination: 90% of 8B ν ES events can be rejected with a 65% sacrifice of

0νββ. Note that this is significantly worse than the cut based approach, because the

likelihood does not yet include any information about the solar direction, the most

powerful handle for identifying these events.

9.3.6 Including Prior Information

The solar direction information can be naturally included in to the likelihood method

using a constraint on the reconstructed direction in the electron hypothesis, added as

a pre-factor to the likelihood in equation 9.8:

Le → Le · P (cos θ�) (9.25)

where cos θ� is the angle between the proposed electron direction d̂e and the direction

that points to the sun d̂�:

cos θ� = d̂e · d̂� (9.26)

P (cos θ�) is the probability of producing an electron at an angle of cos θ� in a 8B ν

ES event. At first glance figure 9.20 describes just that: the PDF of the cosine of the

angle between the scattered electron direction and the parent neutrino, which points

to the sun. However, electron multiple scattering means that an electron may emit

many of its Cherenkov photons at large angles from its initial direction (figure 9.16);

these events can have an apparent direction with cos θ� < 0.85. If figure 9.20 was

used as a constraint, it would assign these wide angles a probability of 0, which is
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Figure 9.27: ∆ logL for 0νββ and 8B ν ES events. Positive ∆ logL values indicate more 0νββ-like
events. r <1m.
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Figure 9.29: PDF of cos θ� where θ� is the smallest angle between the fit direction and the solar
direction, when the vertex position is fixed to its true value. The fit shown is used as a contraint on
θ� for the likelihood-ratio discriminant.

clearly inconsistent. A better constraint should describe the apparent direction of

the electron rather than the true direction. It should help to resolve the ambiguities

created by vertex uncertainty, without over-correcting for effects that will always be

apparent in the data.

The approach followed here was to estimate the PDF of the apparent solar angle

in Monte Carlo. Figure 9.2.3 showed that the performance of the electron fit on

2.5MeV electrons is limited by uncertainty on the vertex position. To estimate what

the angular distribution would look like without this uncertainty, a large number of
8B ν ES events were fit as electrons, with the vertex time and position fixed at their

truth values. Figure 9.29 shows the solar angles produced by this fit. The following

function is a good fit to the distribution:

{
a1 exp(cos θ�/τ1) + a2 exp(cos θ�/τ2) cos θ� < 0.87

b cos θ� > 0.87
(9.27)

with a1 = 6.7 · 10−6, a2 = 1.1 · 10−3, τ1 = 0.11, τ2 = 0.35 and b = 0.04. The true

vertex for real events is, of course, unknown, but this distribution can be estimated

in Monte Carlo and applied as a constraint in equation 9.25.

Figure 9.30 shows likelihood-ratios calculated for 0νββ and 8B ν ES with this con-

straint applied. As expected, the solar constraint drastically improves the separation

of the two distributions. For the likelihood-ratio without the solar constraint, the

0νββ events that look most electron-like are those that look, by chance, most direc-
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Figure 9.30: Likelihood-ratios for 0νββ and 8B ν ES events for the three 0νββ hypotheses using the
solar constraint. Positive values indicate more 0νββ-like events. r < 1m.

tional, but, more often than not, their apparent direction is not in the direction of

the sun. The solar constraint uses this to better distinguish the two event types.

Figure 9.31 shows the background rejection factors and signal efficiencies that may

be achieved using the likelihood-ratios with the solar constraint. The unidirectional

and bidirectional fits both out-perform the combined cuts method. A cut used to

eliminate 90% of 8B ν ES events has a 5% greater signal efficiency for the likelihood

methods than the combined cuts method.

9.3.7 Significance

Assuming a 0νββ search is completely dominated by the 8B ν ES background, the

sensitivity improvement from a 8B cut is approximately5:

R =
T c1/2
T u1/2

=
εββ√

1− r�
(9.28)

5assuming the number of background rate after cuts is Gaussian distributed.
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Figure 9.31: 8B ν ES rejection as a function of 0νββ efficiency for cuts on the likelihood-ratios with
solar constraint. A straightforward cut on cos θ� is also shown for comparison.

where T c1/2, T
u
1/2 are the confidence limits on the 0νββ half-life with and without the

cut, εββ is the fraction of 0νββ events passing the cut and r� is the fraction of solar

neutrino events rejected by the cut. Figure 9.32 shows R as a function of 0νββ

efficiency for the most effective cuts explored so far. It shows that the techniques

developed here could improve the sensitivity of a future 0νββ experiment, dominated

by 8B ν ES, by a factor of 2.2 in T1/2, or 1.5 in mββ.

9.4 Determining the 0νββ mechanism

This final section discusses the possibility of distinguishing the underlying physics

mechanism of 0νββ using the light neutrino exchange (LNE) and right handed cur-

rent (RHC) mechanisms as examples. The two mechanisms differ in the angular

separation and energy split of the electrons they produce, shown again in figure 9.33.

In LNE, the two electrons tend to separate back to back with similar energies. In the

RHC mechanism, the electrons tend to be emitted in parallel, with the majority of

the energy going to a single electron. However, the two distributions overlap signific-

antly, so any test of the mechanism, using any technology, will rely on statistically

distinguishing between them.

The bidirectional fit estimates the directions of both electrons d̂1,2. The apparent

separation angle of the two electrons can be calculated using the dot product of these
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two directions:

cos θsep = d̂1 · d̂2 (9.29)

this should be sensitive to differences in the angular separation. The fit also estimates

sin2 χ, which is equal to the conditional probability that any given photon came from

electron 1 (roughly the fraction of Cherenkov photons produced by electron 1). This

should be sensitive to the differences in the energy split.

Because cos θsep is poorly constrained when sin2 χ is close to 0 or 1, and sin2 χ

is poorly constrained close to cos θsep = 1, it is more useful to look at an apparent

momentum imbalance. The two electrons have estimated kinetic energies of:

T1 = sin2 χ ·Qββ (9.30)

T2 = cos2 χ ·Qββ (9.31)

(9.32)

where Qββ is 2.5MeV. This is related to the momentum by:

p =
√
T (T + 2me) (9.33)

in natural units, where me is the electron mass. The momentum imbalance of the

electron pair is E , calculated as:

E = |p1d̂1 + p2d̂2| (9.34)

Figure 9.34 shows cos θsep, sin2 χ and E for 0νββ events for the RHC and LNE

mechanisms, 2.5MeV e− are also shown for reference. The fits on the left were per-

formed by fixing the vertex position and time to their truth values, those on the right

floated these four parameters.

The sin2 χ and cos θ look quite different to what one might naively expected from

the theoretical distributions in figure 9.33. In particular, there is a strong tendency

for both LNE and RHC to fit at sin2 χ = 0, 1 where one electron appears to take

all the energy. This is the result of the Cherenkov threshold and fluctuations in the

number of hits from each electron: both mechanisms sometimes emit electrons that

produce few Cherenkov hits or are below threshold altogether.

Using the truth vertex, the E distributions are as expected. Single electrons produce

the most imbalanced E , followed by RHC events followed by LNE. However, using the
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Figure 9.34: sin2 χ, cos θsep and E for 2.5MeV electrons, alongside LNE and RHC events. Left:
fixing truth vertex time and position. Right: floating the vertex time and position. Calculated using
2924 LNE, 5123 RHC, and 1800 electrons.
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reconstructed position, the differences between the distributions are largely washed

out.

Supposing a number of 0νββ events were observed, one could, for example, try

to rule out the RHC mechanism in favour of LNE by comparing the observed E
distribution against those in figure 9.34. If there are nobs observed 0νββ events with

E values of {E i} the log-likelihood-ratio comparing the LNE and RHC hypotheses is:

R =

nobs∑

i=0

log

(
PLNE(E i)
PRHC(E i)

)
(9.35)

Each hypothetical experiment will observe a different {E i}, so the distribution of

R must be estimated with toy Monte Carlo. This was performed at a variety of nobs

for both mechanisms as follows:

1. Draw nobs values from the LNE E distribution in figure 9.34.

2. Calculate the R of these observations according to equation 9.35.

3. Fill a histogram with the R value.

4. Repeat steps 1 to 3 a large number of times.

5. Repeat steps 1 to 4 for the RHC mechanism.

Figure 9.35 shows these R distributions at a variety of nobs. The reconstructed

distribution is only a very weak discriminator of the mechanism, even if 50 events are

observed.

The expected significance of any result can be estimated by calculating the p-value

of the expected LNE signal under the RHC hypothesis. This is calculated according

to:

p = PRHC(R < RLNE|nobs) (9.36)

where RLNE is the expected value for LNE events given nobs and PRHC gives the

probability of observing that value or smaller for RHC events.

RLNE was estimated from the means of the LNE distributions in figure 9.35 and

PRHC was estimated using the fraction of events in the RHC distributions in fig-

ure 9.35 that were smaller than that critical value.

Finally, the p-values were converted to an equivalent number of standard deviations

using:
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Figure 9.35: R distributions for LNE and RHC mechanisms. Left: vertex time and position fixed
to their truth values. Right: floating the vertex time and position. Each curve is built from 106 toy
Monte Carlo experiments.
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Figure 9.36: p-values for out the RHC mechanism if a LNE bump is observed, in standard deviation
equivalent, as a function of nobs.

nσ =
√

2 Erf−1(2p− 1) (9.37)

the result is shown in figure 9.36. It shows that you would need 50 events to favour

LNE at 1σ, if instead the vertex position could be exactly determined, one could

reach 3σ with a pure signal of around 35 events.

This is the first demonstration that the 0νββ mechanism can, in principle, be

determined in liquid scintillator. The current model is severely limited by uncertainty

on the vertex position. Again, this hints that a somewhat faster scintillator could

perform better. A real implementation would also need to deal with a contamination

of single electron 8B events; figure 9.34 demonstrates that this could be achieved with

the same E statistic.



Chapter 10

Conclusions

This thesis has explored the use of PMT hit patterns in time and space for recon-

struction and particle identification in liquid scintillator, as well as the application of

Bayesian methods to 0νββ signal extraction.

Using Hamiltonian Markov chain Monte Carlo, two dimensional fits in event energy

and radius were employed, to predict a SNO+ 0νββ half-life sensitivity of T ββ1/2 >

1.76× 1026yr, at 90% confidence, after a three year live-time.

β±γ events produced by radioactive decay in the scintillator were shown to have

non-point-like timing distributions, produced by the multi-site deposition of Compton

scattering γ and the time delay caused by ortho-positronium formation. This charac-

teristic signature was used to differentiate internal backgrounds from point-like 0νββ

events, using pulse shape discrimination (PSD) parameters. In particular, a PSD

parameter, designed to separate 0νββ from poorly constrained 60Co decay, was used

to improve the 3σ mββ discovery level from 191meV, which is already ruled out by

Kamland-Zen, to 90.5meV, which is allowed by all experiments.

Similarly, 40-60% rejection of each of the dominant external backgrounds inside

r < 4.2m was demonstrated using PSD, without sacrifice. For these backgrounds,

improved rejection was achieved by accounting for the timing correlations and the

angular hit distribution of the external backgrounds.

Finally, using a simulation of a next-generation slow-scintillator detector, equipped

with a high coverage of high quantum efficiency, fast PMTs, it was shown that the

angular distribution of Cherenkov light and the timing distribution of scintillation

light can be used to reconstruct the position, time and direction of electrons. This

information can be used to reject the 8B elastic scattering background, improving the

mββ sensitivity of a 8B dominated experiment by 50%, and, in principle, to determine

the underlying mechanism of 0νββ.
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Appendix A

Background Data

This chapter contains the supplementary data for chapter 4 including the background

rates assumed for the sensitivity studies in 8. Entries marked with a ∗ were included

in the 0νββ fit.

Isotope Events/t
110Ag 401.17

110(m)Ag 2.98 ×104

60Co 2.95 ×103 ∗
22Na 6.54 ×103 ∗

106Rh 655.58
124Sb 1.34 ×106

44Sc 42.56
42K 241.36
88Y 1.67 ×105 ∗

Table A.1: Expected cosmogenic decay rates for problem isotopes created in tellurium after one
year’s surface exposure [178].
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Isotope Decay cTeA g/g cLAB g/g cBD g/g Rate /yr
238U α 1× 10−13 1.6× 10−17 3.5× 10−14 390314

234Th β 1× 10−13 1.6× 10−17 3.5× 10−14 390314
234Pa(m) β 1× 10−13 1.6× 10−17 3.5× 10−14 390314 ∗

234U α 1× 10−13 1.6× 10−17 3.5× 10−14 390314
230Th α 1× 10−13 1.6× 10−17 3.5× 10−14 390314
226Ra α 1× 10−13 1.6× 10−17 3.5× 10−14 390314
222Rn α 1× 10−13 1.6× 10−17 3.5× 10−14 390314
218Po α 1× 10−13 1.6× 10−17 3.5× 10−14 390314
214Pb β 1× 10−13 1.6× 10−17 3.5× 10−14 390314

214Bi
β
α

1× 10−13 1.6× 10−17 3.5× 10−14 390232
82

∗
214Po α 1× 10−13 1.6× 10−17 3.5× 10−14 390232 ∗
210Tl β 1× 10−13 1.6× 10−17 3.5× 10−14 82 ∗
210Pb β 1× 10−13 6.11× 10−25 3.5× 10−14 427368
210Bi β 1× 10−13 3.78× 10−28 3.5× 10−14 427368
210Po α 1× 10−13 4.15× 10−24 3.5× 10−14 1.74× 107

Table A.2: Expected Uranium chain radioactivity levels in the SNO+ tellurium phase scintillator
cocktail [174].

Isotope Decay cTeA g/g cLAB g/g cBD g/g Rate /yr
232Th α 5× 10−14 6.8× 10−18 3.5× 10−15 49190
228Ra β 5× 10−14 6.8× 10−18 3.5× 10−15 49190
228Ac β 5× 10−14 6.8× 10−18 3.5× 10−15 49190 ∗
228Th α 5× 10−14 6.8× 10−18 3.5× 10−15 49190
224Ra α 5× 10−14 6.8× 10−18 3.5× 10−15 49190
220Rn α 5× 10−14 6.8× 10−18 3.5× 10−15 49190
216Po α 5× 10−14 6.8× 10−18 3.5× 10−15 49190
212Pb α 5× 10−14 6.8× 10−18 3.5× 10−15 49190

212Bi
β
α

5× 10−14 6.8× 10−18 3.5× 10−15 31482
17708

∗
212Po α 5× 10−14 6.8× 10−18 3.5× 10−15 31482 ∗
208Tl β 5× 10−14 6.8× 10−18 3.5× 10−15 17780 ∗

Table A.3: Expected Thorium chain radioactivity levels in the SNO+ tellurium phase scintillator
cocktail [174].
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Origin Contamination g/g Isotope Rate /yr

Internal Calibration Ropes
2.8×10−10 g238U/g
2.0×10−10 g232Th/g

637.06×10−10 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

4966
1.04
418
743

2.8× 104

Hold Down Ropes
4.7×10−11 g238U/g
2.27×10−10 g232Th/g
871.9×10−9 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

4.06× 106 ∗
853

2.32 ×106 ∗
4.13 ×107

1.89× 108

Hold Up Ropes
4.7×10−11 g238U/g
2.27×10−10 g232Th/g
871.9×10−9 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

8.34×105 ∗
175

4.78×105 ∗
8.5×105 ∗
3.9× 107

AV inner dust
1.0×10−12 g238U/g
1.0×10−12 g232Th/g
7.32 ×107 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

4.15×104 ∗
8.7

2.48×104 ∗
4.41×104 ∗
9.4×105

AV
1.1×10−6 g238U/g
5.6×10−6 g232Th/g

0.01 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

1.28×107 ∗
2682

1.50×106 ∗
2.67×106 ∗
7.32×107

AV outer dust
1.0×10−12 g238U/g
1.0×10−12 g232Th/g
7.32 ×107 gK/g

214Bi
210Tl
208Tl

212BiPo
40K

7.75×106 ∗
163

4.6×105 ∗
8.2×105 ∗
1.76×107

External UPW
2.06 ×10−13 g238U/g
5.2×10−14 g232Th/g

214Bi
210Tl
208Tl

212BiPo

1.32×108 ∗
2.77×104

3.92×106 ∗
6.96×106

PMT
100×10−6 g238U/g
100×10−6 g232Th/g

214Bi
210Tl
208Tl

212BiPo

3.7×1011

7.87×107

4.4×1010 ∗
7.8×1010

Table A.4: Expected external radioactivity levels in the SNO+ tellurium phase [174]. The rate for
the external UPW includes events up to 8.5m from the detector centre.
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Name α Emitting Material Absorbing Isotope Absorbing Material
Telab 13c Scintillator 13C Scintillator ∗

Alphan Telab Avin Av 13c AV inner surface 13C AV bulk ∗
Alphan Telab Avin Ls 13c AV inner surface 13C Scint cocktail ∗

Alphan Telab Avout Av 13c AV outer surface 13C AV bulk ∗
Alphan Telab Avin Av 18o AV inner surface 18O AV bulk ∗

Alphan Telab Avout Av 18o AV inner surface 18O AV bulk ∗

Table A.5: Expected α− n backgrounds in SNO+ tellurium phase [174].

Emission intensities per 100 disintegrationsγ

1

-3 ; 2614,552

2
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3
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4
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Figure A.1: 208Tl decay scheme.



Appendix B

The Solid Angle Correction for
Vertex Reconstruction

This appendix discusses the subtleties of including explicit solid angle and attenuation

corrections in the reconstruction likelihood for the slow-scintillator detector outlined

in section 9.2.

The likelihood presented there included a solid angle correction of the form:

Ωi

4π
(B.1)

where Ωi was the solid angle of the front face of PMT i viewed from the vertex

position. Later, we built the PDFs (e.g. figure 9.11) for the likelihood using the time

residuals and cos θi of hits produced in MC events. Hits with smaller solid angles are

less likely to make it into that PDF and so the shape of the PDF already contains

information about solid angle effects. The reason these factors require further thought

is that it seems as though the correction has been double counted: once through the

PDF shape and once through the explicit correction.

To remedy this, one could weight each entry in the PDF, P , by the inverse of its

solid angle. This ensures that the PDF will converge on the undistorted PDF, Pem,

in the limit of a large number of events.

However, it is simple to show that solid angle corrections have negligible effect on

the shape of the PDFs, i.e. Pem and P are the same, provided the PDF from MC

events where direction of the events is independent of their positions.

To see this, suppose the PDF generated is fromNevents labelled {i = 0, 1, 2.., Nevents}
each with hits labelled {j = 0, 1, 2, 3..., N i

hits}. If the solid angle of hit j in event i is

Ωij then the expected content of any given PDF bin α is:
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Figure B.1: Effect of the solid angle correction on 2.5MeV electron direction fits.

Cα =
ΣNevents
i=0 Σ

j=N i
hits

j=0 Pα
em

Ωij

4π

ΣNevents
i=0 N i

hits

(B.2)

which is just Pα
em adjusted by a scale factor Sα

Sα =
1

4π

ΣNevents
i=0 Σ

j=N i
hits

j=0 Ωij

ΣNevents
i=0 N i

hits

(B.3)

If the directions of the generated particles are not correlated with event position,

photon emission time or photon direction, Sα is, on average, the same for all bins so

it creates no shape distortion. This justifies its explicit inclusion in equation ??.

Indeed, switching off the explicit solid angle correction notably widens the recon-

structed direction distribution; this is shown in figure B.1. Exactly the same argument

can be made for the attenuation length term.



Appendix C

Tuning the electron reconstruction
algorithm

This appendix describes the method used to select the optimal effective velocity and

absorption length for the slow-scintillator detector electron reconstruction algorithm.

C.1 Effective Speed

The effective speed used to calculate the time residuals was tuned for optimal fit

performance on 2.5MeV electrons. Figure C.1 shows that an effective velocity of

197mm/ns gives radially unbiased fits, minimal position resolution and a maximum

probability of reconstructing a direction in the forward hemisphere defined by the

true direction.

Note that this is considerably faster the ScintFitter value for LABPPO of ≈
185mmns-1. To better understand this, figure C.2 shows an analytical calculation

of the group velocity of LAB, the light velocity is a weakly increasing function of

wavelength. This explains the unusually fast effective speed selected for LABSS,

because the slow-scintillator emission peak is at 470nm, compared with 360nm for

PPO. 197mm/ns is equivalent to all of the light having wavelength 560nm.

C.2 Attenutation Length

The total attenuation length for LABSS in the slow-scintillator emission range is 20 -

100m (figure 9.3) so it is not clear what absorption length should be selected for the

likelihood in equation 9.8.

In direction reconstruction, attenuation is most important when the Cherenkov

photons have to take long paths to cause a hit, i.e. when the direction of a primary
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Figure C.1: Radial bias (br), x position resolution (σx), and the probability of reconstructing above
values of cos θ against effective velocity. θ is the angle between the fit direction and the true direction.
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Figure C.2: Refractive indices and analytically calculated group velocities vg for optical photons in
water and LAB. Calculated according to vg/c = (n− λdndλ )−1.
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Figure C.3: 2.5MeV electron fit performance vs. effective attenuation length.

electron d̂e is anti-parallel to the vertex position x̂v:

d̂e · x̂v < −1 (C.1)

Figure C.3 shows the average cos θ = d̂fit · d̂true for several bins of d̂e · x̂v at a range of

attenuation lengths. It is clear that an attenuation length of 50 - 200m improves the

reconstruction accuracy for events with large negative d̂e · x̂v. An attenuation length

of 50m was selected for the algorithm.
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