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Abstract

Core collapse supernovae (CCSNe) are amongst the most powerful cosmic sources
of neutrinos. The extreme environment during the supernova evolution provides
opportunities to probe neutrino properties which are not accessible on Earth. In this
thesis, the response to supernova neutrinos of the SNO+ experiment is explored as
a representative case of neutrino detectors.

SNO+, the successor of the Sudbury Neutrino Observatory (SNO), is a 780-tonne
liquid scintillator detector located 2 km underground in Sudbury, Canada. The pri-
mary purpose of SNO+ is to detect the neutrinoless double beta (0νββ) in 130Te.
During the time period covered by this thesis, SNO+ has undergone the transition
from water phase to scintillator phase. By performing a bismuth-polonium (BiPo)
coincidence study throughout the period, the 238U and 232Th chain, which are im-
portant backgrounds to 0νββ, concentrations in the scintillator have been measured
to be (4.6± 1.2)×10−17 g/g and (4.8± 0.9)×10−17 g/g, respectively. With the mea-
sured radioactive background level and calibrated light yield level, a supernova burst
trigger was developed. The study showed that SNO+ has the potential of detecting
CCSNe at 100 kpc.

The experience with the coincidence study was also found to be useful in the iden-
tification of inverse beta decay (IBD) signals, which is an important supernova neu-
trino signal common amongst different detectors. One application of this shared neu-
trino signal is the positioning of supernovae via multi-detector triangulation, which
can serve as an alert to other channels of detection. This thesis presents a method
using the comparison of light curves to determine the signal arrival time difference
between pairs of detectors. The results outperformed existing methods by further
reducing the uncertainty by about 30%.

Finally, it was noticed during the triangulation study that the formation of black
holes could potentially introduce additional resolution power. Previous studies on
the black hole cut-off mostly focused on radial neutrino emissions. To investigate
the effect of the black hole, a ray-trace study was performed to give a comprehensive
account of the effects of including emissions from all angles upon black hole forma-
tion. Both the cases of non-rotating and rotating black holes were discussed. It was
discovered that the non-radial emissions contribute a softening to the profile in both
cases. Furthermore, extreme rotation introduces significant changes to the tail of the
profile, which may be observable with next-generation neutrino detectors.
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Chapter 1

Introduction

This thesis focuses on the features exhibited in the neutrino signals of core-collapse
supernovae (CCSNe). Detection of these neutrinos can provide essential information
about the evolution of the supernova. Two topics related to the supernova neutrino
signal are explored in this thesis: the directional information of the supernova using
multiple neutrino detectors and the abrupt termination of the signal associated with
the formation of a black hole.

The location of the supernova on the celestial sphere can be inferred by the
detection time difference between multiple neutrino detectors, which can be estimated
by comparing the features in the detected neutrino time profiles. This provides an
accurate and prompt early warning for the optical telescopes, which is one of the
major tasks of the upgraded supernova early warning system (SNEWS2.0) [1]. The
detection of the supernova neutrinos will be demonstrated with the setup of the SNO+
experiment [2], the successor experiment of the Sudbury neutrino observatory (SNO).
SNO+ has been connected to the SNEWS network by the end of 2021.

Amongst the features discussed for the multi-detector pointing, a particularly
interesting one is the expected sharp decline in neutrino luminosity when a black hole
is formed in the supernova. The large-time-derivative nature of the black hole cut-off
could provide strong resolution power in determining the detection time differences.
Nonetheless, it will be shown in the work of this thesis that the cut-off turns out to
be slightly softer than previous simulations based on radial emissions, and the effect
of rotation would further broaden the profile. The measurement of this cut-off could
also potentially provide valuable information of the formed black hole and the final
stages of the collapse of the stellar progenitor.

The content of the thesis will be arranged as follows: an introduction on the
general theoretical aspects of the neutrino is discussed in Chapter 2. Following that,
in Chapter 3, the background information regarding stellar evolution, classification
of supernovae and the core-collapse mechanism will be introduced.
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A description of the setup of the SNO+ detector together with a brief introduction
of the goals of the experiment will be given in Chapter 4. As SNO+ is a liquid
scintillator experiment, it will be important to study the radioactive backgrounds
in the scintillator to estimate the sensitivity to supernova neutrinos. Amongst the
backgrounds, the 238U and 232Th decay chains are studied and measured via the
identification of the Bismuth-Polonium (BiPo) coincidences, which will be discussed
in detail in Chapter 5. This study was carried out through the entire period of
transition from water phase to scintillator phase to monitor the background level of
the scintillator. It also turned out to be helpful in increasing our understanding on
the response of the scintillator. The study in this chapter is internally documented
in SNO+ and the results were quoted in various conferences by the collaboration.
Though the results are unlikely to appear in the final publications of the collaboration,
it is still a crucial intermediate step to establish a thorough understanding of the
detector.

Chapter 6 then discusses about two algorithms developed for SNO+ to recon-
struct high-level event information from PMT hit data and trigger read-outs in a
less time-consuming way. The first is the FastZ algorithm designed for rapid posi-
tion fitting in the transition phase configuration. Then, there is the TimeCentroid
for tagging spacial coincidences. It is not only useful for the BiPo studies, but also
valuable in tagging the inverse beta decay (IBD) signals from supernova neutrinos
which requires prompt response. Both of the methods have been incorporated into
the SNO+ software.

The detection of supernova neutrino signals will be discussed in Chapter 7. In this
chapter, the studies on supernova burst triggers for SNO+ and developments on the
multi-detector pointing will be described after a brief introduction on the interaction
channels associated to supernova neutrinos. Results presented in this chapter are
expected to be included into a later SNO+ publication on supernova detection.

In Chapter 8, a study on the luminosity cut-off associated with black hole forma-
tion during a supernova will be presented. The results of this study were published
in Phys. Rev. D [3]. There are certain overlaps between the content, including text
and figures, of the article and this chapter, but both are original works of the author.

Finally, this thesis concludes, in Chapter 9, with a brief summary of the main
results from the aforementioned studies.

The original contributions of the author presented in this thesis include: most
of Chapters 5 and 7, and all of Chapters 6 and 8. For Chapter 5, Section 5.3 con-
tains content based on the methods developed in [4] together with the improvements
designed by the author. In Chapter 7, Section 7.2.2 quotes the SNO+ supernova
trigger system designed in [5]. The remaining sections of the chapters are works of
the author.
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Chapter 2

Neutrino Physics

The idea of the neutrino was initially proposed to salvage the conservation of energy
and momentum in nuclear β decay, which exhibits a continuous β energy spectrum
yet was hitherto known as a two body decay [6]. In 1930, Pauli postulated an addi-
tional weakly interacting neutral fermion participating in the β decay to solve this
issue [7]. This idea was further explored by Fermi in 1934 when he described the
decay with a four-fermion vertex including the hypothetical neutral fermion to which
he assigned the name “neutrino” [8, 9], later known to be the electron anti-neutrino
in light of lepton number conservation [10]. Although Fermi’s theory was successful
in describing the β energy spectrum, it was not until 1956 when Reines and Cowan
first detected reactor electron anti-neutrinos via inverse beta decay that the existence
of the neutrino was confirmed [11].

Subsequently, neutrinos of different flavours were discovered. In 1962, the first
observation of neutrinos originating from π± decay giving rise to muons carried out by
Lederman, Schwartz and Steinberger demonstrated the existence of multiple neutrino
flavours [12]. Following the discovery of the tau lepton in 1975 [13], the tau neutrino
was observed by the DONUT experiment in 2000 [14].

Meanwhile, the properties of this phantom particle remains an active field of re-
search, amongst which the most intriguing is the mass of the neutrino. Pauli initially
made the guess of “same order of the electron mass, and in any event no larger than
0.01 of the proton mass” in his 1930 letter [7]. Later in 1957, following the observa-
tions of parity violation in the 60Co β decay [15] and in muon decay [16, 17] a model
of massless neutrinos with fixed helicities was proposed [18, 19, 20]. With subse-
quent observations consistent within experimental uncertainties [21], this model was
formulated into the Standard Model of particle physics (SM). The Standard Model
was successful in describing all experimental data on electro-weak and strong inter-
actions, until the observation of neutrino flavour oscillation which is direct evidence
of neutrino mass.

3



2.1. NEUTRINO OSCILLATION

Pontecorvo first proposed the concept of neutrino oscillations, in the sense of
particle/anti-particle transitions, in 1957, with insight gained from Kaon oscilla-
tion [22]. The idea was further generalised to neutrino flavour oscillations by Maki,
Nakagawa and Sakata in 1962, where the mixing of νe and νµ was studied [23]. The
more modern formulation of neutrino oscillation was established in 1976 by Eliezer
and Swift [24], Fritzsch and Minkowski [25], and Bilenky and Pontecorvo [26]. This
construction was soon invoked to solve the two famous perplexities in neutrino ob-
servation: the solar neutrino problem and the atmospheric neutrino anomaly, where
large deficits are observed in the νe and νµ fluxes, respectively. The theory of neu-
trino oscillations was eventually confirmed by solar neutrino measurements from the
Sudbury Neutrino Observatory (SNO) [27] and atmospheric neutrino measurements
from the Super-Kamioka Neutrino Detection Experiment (Super-Kamiokande) [28],
and, hence, implying the existence of non-zero neutrino mass.

An open question remaining is the fundamental nature of the neutrinos: Dirac
particle or Majorana particle. That is to say, whether the neutrino is its own anti-
particle (Majorana) or not (Dirac). The determination of this nature could shed
light to the generation and exact value of the neutrino mass. Detection of neutrinoless
double beta decay (0νββ) is considered the most promising way to determine whether
the neutrino is Majorana or not.

This chapter will discuss the neutrino properties that are relevant to the supernova
observations. Focus will be put on the neutrino flavour oscillation phenomena in both
vacuum and matter, especially in the extreme conditions that would be associated
with a collapsing stellar core. In addition, remarks on the neutrino mass and the 0νββ
process, which is the primary objective of the SNO+ experiment, will be presented.

2.1 Neutrino Oscillation
Neutrino flavour oscillation is a quantum mechanical effect originating from the fact
that the flavour eigenstates, associated to the weak interaction, do not coincide with
the mass eigenstates. Upon creation in a weak interaction, e.g., β decay, the neutrino
will be in a definite flavour eigenstate which is a mixed state of the mass eigenstates.
As it propagates, the neutrino will evolve in the mass eigenstates which results in
a flavour transition, from να to νβ, with probability Pνανβ . The preservation of the
original flavour is known as the survival probability Pνανα = 1 −

∑
β ̸=α Pνανβ . The

probabilities differ in vacuum and matter as the Hamiltonian will be modified by
the potential caused by the weak interaction with matter, known as the Mikheyev-
Smirnov-Wolfenstein (MSW) effect. Note that this matter effect is more important
at higher densities. For instance, when passing the Earth, the matter oscillation
pertains to the core, whereas the rest of the travel can be simply described by vacuum
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2.1. NEUTRINO OSCILLATION

oscillation.
For a complete and consistent derivation, the neutrino oscillations should be de-

rived in the wave packet description [9]. To simplify matters, nevertheless, the deriva-
tions in this section will be treated in the plane wave approximation, which is less
realistic yet leads to the same results. As shown most clearly in [29], the plane wave
approximation can be derived via the wave packet description in the limit of negligible
position uncertainty upon production and detection.

2.1.1 Neutrino Mixing
The flavour eigenstates do not have well-defined masses and thus do not coincide
with the mass eigenstates |νi⟩, where i = 1, 2, 3 is the index for the neutrino masses
mi. The two bases can be related by the unitary mixing matrix U ,

|να⟩ =
∑

i=1,2,3

U |νi⟩ =
∑

i=1,2,3

Uαi |νi⟩

|νi⟩ =
∑

α=e,µ,τ

U † |να⟩ =
∑

α=e,µ,τ

U∗
αi |να⟩.

(2.1)

where U is know as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and
is most typically parametrised by the parametrisation inherited from the Cabibbo-
Kobayashi-Maskawa (CKM) matrix in quark mixing [30, 31],

U =

 c12c13e
iϕ1 s12c13e

iϕ2 s13e
−iδCP

−s12c23eiϕ1 − c12s23s13e
iδCP eiϕ1 c12c23e

iϕ2 − s12s23s13e
iδCP eiϕ2 s23c13

s12s23e
iϕ1 − c12c23s13e

iδCP eiϕ1 −c12s23eiϕ2 − s12c23s13e
iδCP eiϕ2 c23c13



=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

eiϕ1 0 0
0 eiϕ2 0
0 0 1


= R23R13R12D

(2.2)

with the shorthands sij = sin θij and cij = cos θij. This parametrisation consists of
three mixing angles θ12, θ13 and θ23; and three CP symmetry-violating phases δCP , ϕ1

and ϕ2, where C stands for charge conjugation and P stands for parity. The values of
these parameters are estimated by performing a global analysis of all the oscillation
data, such as [32], where the values of each parameter depends on different measure-
ments. The mixing angles θ12, θ13 and θ23 are measured in solar, reactor/accelerator
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2.1. NEUTRINO OSCILLATION

and atmospheric neutrino experiments, respectively. The CP violating phase δCP is
measured along with θ13 in reactor/accelerator neutrino experiments. However, the
values are still not well-determined. Depending on the mass hierarchy, CP symmetry
can range from being conserved to being maximally violated [32]. Finally, the re-
maining CP violating phases ϕ1 and ϕ2, which were factored out as a diagonal matrix
D in Eq. 2.2, are associated with Majorana neutrinos and non-measurable in oscilla-
tion experiments since they cancel out in the probabilities. The diagonal matrix D
in Eq. 2.2 will, therefore, be ignored in the subsequent derivations.

2.1.2 Neutrino Oscillation in Vacuum
When a neutrino is created in a weak interaction process, it will initially be in a state
of definite flavour, for instance |να⟩, which is a coherent linear combination of the
mass eigenstates

|ν(0)⟩ = |να⟩ =
∑

i=1,2,3

Uαi |νi⟩. (2.3)

After creation, the neutrino will propagate in mass eigenstates which are the free
particle solutions to the time dependent Schrödinger equation i

i
d
dt |νi(t)⟩ = H0|νi(t)⟩ (2.4)

where H0 is the neutrino Hamiltonian in vacuum. By applying the plane wave ap-
proximation, the evolution of the mass eigenstates can be expressed as

|νi(t)⟩ = e−i(Eit−piL)|νi⟩ (2.5)

and, hence, the neutrino state

|ν(t)⟩ =
∑

i=1,2,3

Uαi e
−i(Eit−piL)|νi⟩ (2.6)

where Ei and pi are the energy and momentum of the given neutrino mass eigenstate,
and L is the propagation distance. The flavour composition of the neutrino state after
propagating for time t and distance L can be obtained by further decomposing the
mass eigenstates in flavour basis

|ν(t)⟩ =
∑

i=1,2,3

∑
β=e,µ,τ

UαiU
∗
βi e

−i(Eit−piL)|νβ⟩. (2.7)

iThe derivations in this chapter will be done in natural units, where c = h̄ = 1.
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2.1. NEUTRINO OSCILLATION

The oscillation amplitude of one flavour to another is then

⟨νγ|ν(t)⟩ = ⟨νγ|
∑

i=1,2,3

∑
β=e,µ,τ

UαiU
∗
βi e

−i(Eit−piL)|νβ⟩

=
∑

i=1,2,3

UαiU
∗
γi e

−i(Eit−piL)
(2.8)

and the corresponding oscillation probability Pνανγ is

Pνανγ = |⟨νγ|ν(t)⟩|2

= (
∑

i=1,2,3

UαiU
∗
γi e

−i(Eit−piL)) (
∑

j=1,2,3

U∗
αjUγj e

i(Ejt−pjL))

=
∑

i,j=1,2,3

UαiU
∗
γiU

∗
αjUγj e

−i((Ei−Ej)t−(pi−pj)L).

(2.9)

For nearly vanishing neutrino masses, the following quantities can be approximated,
to the order of O(m2/E2), as:

L ∼= t

pi =
√
E2

i −m2
i
∼= Ei −

m2
i

2Ei

.
(2.10)

With these approximations, the phase of the plane waves can be written as

Eit− piL ∼= Eit− (Ei −
m2

i

2Ei

)L

= Ei(t− L) +
m2

i

2Ei

L

∼=
m2

i

2Ei

L.

(2.11)

As a result of the different neutrino masses, the energies and momenta of each mass
eigenstate varies. Nonetheless, as argued in [33, 34, 35], the equal energy scenario is a
good approximation for practical considerations. Therefore, Eq. 2.9 can be expressed
as

Pνανγ =
∑

i,j=1,2,3

UαiU
∗
γiU

∗
αjUγj e

−i
m2

i−m2
j

2E
L

=
∑

i=1,2,3

|Uαi|2|Uγi|2 +
∑
i ̸=j

UαiU
∗
γiU

∗
αjUγj e

−i
m2

i−m2
j

2E
L

(2.12)
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2.1. NEUTRINO OSCILLATION

where E is the neutrino energy. The unitary condition (U †U = 1) of the mixing
matrix leads to the relation ∑

i

UαiU
∗
βi = δαβ (2.13)

which allows one to finally express the oscillation probability as

Pνανγ =

(
δαγ −

∑
i>j

(UαiU
∗
γiU

∗
αjUγj + UαjU

∗
γjU

∗
αiUγi)

)

+
∑
i>j

(UαiU
∗
γiU

∗
αjUγj e

−i
m2

i−m2
j

2E
L + UαjU

∗
γjU

∗
αiUγi e

i
m2

i−m2
j

2E
L)

=

(
δαγ − 2

∑
i>j

R(UαiU
∗
γiU

∗
αjUγj)

)

+
∑
i>j

R(UαiU
∗
γiU

∗
αjUγj) · 2 cos

(
m2

i −m2
j

2E
L

)

−
∑
i>j

iI(UαiU
∗
γiU

∗
αjUγj) · 2i sin

(
m2

i −m2
j

2E
L

)

= δαγ − 2
∑
i>j

R(UαiU
∗
γiU

∗
αjUγj)

(
1− cos

(
m2

i −m2
j

2E
L

))

+ 2
∑
i>j

I(UαiU
∗
γiU

∗
αjUγj) · sin

(
m2

i −m2
j

2E
L

)

= δαγ − 4
∑
i>j

R(UαiU
∗
γiU

∗
αjUγj) sin2

(
m2

i −m2
j

4E
L

)

+ 2
∑
i>j

I(UαiU
∗
γiU

∗
αjUγj) · sin

(
m2

i −m2
j

2E
L

)

(2.14)

where R and I stands for the real and imaginary parts of a complex number. It
is evident from the expression that flavour oscillation will only happen if neutrinos
have different masses, i.e., mi ̸= mj, which further excludes the possibility of massless
neutrinos.

Experimentally, detectors can be designed to exploit this L/E dependence of the
oscillation for sensitivity on the oscillation parameters ∆m2

ij = m2
i −m2

j , θij and δCP .
The experiments are sensitive to the mass-squared splittings only when

∆m2L

2E
∼ 1. (2.15)
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2.1. NEUTRINO OSCILLATION

On the contrary, if
∆m2L

2E
≪ 1 (2.16)

the transition probability will simply vanish, whereas in the case of

∆m2L

2E
≫ 1 (2.17)

only the average of probability will be observable, yielding information only on the
mixing angles θij.

As mentioned earlier, neutrino oscillations were first observed in solar and at-
mospheric neutrino experiments. The results of these measurements revealed the
neutrino mass hierarchy as

|∆m2
atm| ≫ ∆m2

solar > 0 (2.18)

where ∆m2
atm and ∆m2

solar are the mass-squared splittings measured from atmo-
spheric and solar neutrinos [36]. The numbering of the mass eigenstates are then
defined as ∆m2

solar ≡ ∆m2
21 with m2 > m1, and ∆m2

atm ≡ |∆m2
13| ≈ |∆m2

23| since
the atmospheric mass difference is far greater than that of solar [36]. Current ex-
periments are not yet able to determine the precise values of the neutrino masses or
the sign of ∆m2

13 or ∆m2
23

ii. This, in turn, leads to three possible ordering scenarios:
normal hierarchy (NH) (m3 ≫ m2 > m1), inverted hierarchy (IH) (m2 > m1 ≫ m3)
and quasi-degenerate (QD) [37]. The last scheme refers to the case when the lightest
neutrino mass is on the order of 0.1 eV or higher, in which case the neutrino masses
are much larger than the mass splittings and the mass ordering can be considered as
practically degenerate m1 ≈ m2 ≈ m3.

2.1.3 Neutrino Oscillation in Matter
In 1978, Wolfenstein discovered that the presence of matter would introduce a po-
tential to the neutrino due to coherent forward scattering with the particles in the
medium [38]. The neutrino Hamiltonian, and thus the oscillation probability, will be
modified by this potential.

The neutrino Hamiltonian can be expressed as the sum of the vacuum Hamiltonian
H0 and the interaction Hamiltonian, i.e., the potential, Hint

H = H0 +Hint. (2.19)
iiNote that the sign of ∆m2

21 has been determined via matter resonance measurements for solar
neutrinos, see the MSW effect part of Section 2.1.3 for a more detailed discussion.
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2.1. NEUTRINO OSCILLATION

W

e− νe

e−νe

Z

n, p, e− n, p, e−

νν

Figure 2.1: Feynman diagrams for the coherent forward scattering via charged current
interaction (left) and neutral current interaction (right).

Note that the mass eigenstates |νi⟩ are eigenstates of H0 and the flavour eigenstates
|να⟩ are eigenstates of Hint, since the scattering is via weak interaction. One can then
write down the eigenvalue equations

H0|νi⟩ = Ei|νi⟩
Hint|να⟩ = Vα|να⟩

(2.20)

where Ei is the sum of kinetic and rest mass energy of the neutrino mass state |νi⟩,
and Vα is the coherent scattering potential experienced by the flavour state |να⟩.

Weak Interaction Potential

The weak interaction potential Vα of a neutrino of flavour α arising from scatter-
ing comprises contributions from both charged-current (CC) scattering and neutral-
current (NC) scattering, as shown in Figure 2.1. In the low-energy regime, only
electron flavour neutrinos are able to undergo CC scattering, so the potential can be
expressed as

Vα = δeαV
e
CC + V e

NC + V n
NC + V p

NC (2.21)
where V e

CC is the potential of interacting with electrons via CC scattering; and V e
NC ,

V n
NC and V p

NC are the potentials arising from interaction with electrons, neutrons and
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2.1. NEUTRINO OSCILLATION

protons via NC scattering. For CC scattering, the resulting potential per neutrino is

V e
CC = ±

√
2GFne (2.22)

where GF is the Fermi constant, ne is the local electron number density, and the
“+” and “−” signs correspond to the cases of electron neutrinos and anti-neutrinos,
respectively. For NC scattering, on the other hand, the potential takes a rather
similar form

VNC = V e
NC + V p

NC + V n
NC = ∓

√
2

2
GFnn (2.23)

where nn is the neutron number density and the plus sign is, in this case, attributed
to the case of anti-neutrinos. Note that the NC potential only depends on neutron
density, as contributions from electrons and protons happen to cancel each other.

Flavour Evolution

In the same fashion as in the vacuum case, the evolution of the neutrino is described
by the Schrödinger equation

i
d
dt |ν(t)⟩ = H|ν(t)⟩ (2.24)

with
|ν(0)⟩ = |να⟩ (2.25)

where H is the Hamiltonian as in Eq. 2.19. One can then obtain the evolution
equation of the probability amplitude for a transition from να to νγ

i
d
dt⟨νγ|ν(t)⟩ = ⟨νγ|H0 +Hint|ν(t)⟩

=

(∑
i

U∗
γi⟨νi|

)
H0|ν(t)⟩+ ⟨νγ|Vγ|ν(t)⟩

=

(∑
i

U∗
γiEi

(∑
β

Uβi⟨νβ|

))
|ν(t)⟩+ Vγ⟨νγ|ν(t)⟩

=
∑
i

∑
β

U∗
γiEiUβi⟨νβ|ν(t)⟩+ Vγ⟨νγ|ν(t)⟩.

(2.26)

In light of the ultra-relativistic nature of the neutrino, as in Eq. 2.10, and the fact
that the matter potential is nearly negligible compared to the neutrino kinetic energy,
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2.1. NEUTRINO OSCILLATION

Eq. 2.26 can be expressed as

i
d

dL⟨νγ|ν(L)⟩ =
∑
i

∑
β

U∗
γi

(
E +

m2
i

2E

)
Uβi⟨νβ|ν(L)⟩+ Vγ⟨νγ|ν(L)⟩

=

(∑
i

∑
β

U∗
γi

∆m2
i1

2E
Uβi⟨νβ|ν(L)⟩+ V e

CC⟨νe|ν(L)⟩

)

+

(
E +

m2
1

2E
+ VNC

)
⟨νγ|ν(L)⟩

(2.27)

where the terms E +m2
1/2E + VNC are swept aside as they simply cause a common

phase shift on all flavours and do not affect the transition probabilities. The reduced
equation can then be expressed in matrix form as

i
d

dLΨ =
1

2E

(
U †M2U + VCC

)
Ψ (2.28)

where

Ψ =

⟨νe|ν(L)⟩
⟨νµ|ν(L)⟩
⟨ντ |ν(L)⟩

 , M2 =

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

 , VCC =

2
√
2EGFne 0 0
0 0 0
0 0 0

 .

(2.29)

The MSW Effect

To simplify matters, the matter effects can be demonstrated most clearly in the two
neutrino case. Consider the case of a νe − νµ mixing iii, Eq. 2.28 becomes

i
d

dLΨ =

(
∆m2

21

4E
+

∆m2
21

4E

(
− cos 2θ12 sin 2θ12
sin 2θ12 cos 2θ12

)
+

(
V e
CC 0
0 0

))
Ψ

=

(
∆m2

21

4E
+
V e
CC

2
+

∆m2
21

4E

(
− cos 2θ12 + 2EV e

CC

∆m2
21

sin 2θ12

sin 2θ12 cos 2θ12 − 2EV e
CC

∆m2
21

))
Ψ

(2.30)

By neglecting the common phase of

exp
(
−i∆m

2
21

4E
L− i

2

∫ L

0

V e
CCdL′

)
, (2.31)

iiiThe case of νe − ντ is identical as the matter potentials for νµ and ντ are the same.
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Figure 2.2: Evolution of the effective mixing angle θM plotted against the electron
density ne over Avogadro’s constant NA, where ∆m2

21 = 7×10−5 eV2, sin2 2θ12 = 10−3

and E = 1 MeV, adapted from [9]. The dashed lines indicate the resonance.

Eq. 2.30 becomes

i
d

dLΨ =
∆m2

21

4E

(
− cos 2θ12 + 2EV e

CC

∆m2
21

sin 2θ12

sin 2θ12 cos 2θ12 − 2EV e
CC

∆m2
21

)
Ψ. (2.32)

One can then define the effective mixing angles

cos 2θM =
∆m2

21 cos 2θ12 − 2EV e
CC√

(∆m2
21 cos 2θ12 − 2EV e

CC)
2 + (∆m2

21 sin 2θ12)2

sin 2θM =
∆m2

21 sin 2θ12√
(∆m2

21 cos 2θ12 − 2EV e
CC)

2 + (∆m2
21 sin 2θ12)2

(2.33)

and the effective squared mass difference

∆m2
M =

√
(∆m2

21 cos 2θ12 − 2EV e
CC)

2 + (∆m2
21 sin 2θ12)2 (2.34)

by normalising the Hamiltonian entries. In terms of these effective variables, the
effective Hamiltonian can be re-written as

HM =
∆m2

M

4E

(
− cos 2θM sin 2θM
sin 2θM cos 2θM

)
, (2.35)
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2.1. NEUTRINO OSCILLATION

and this leads to the effective mixing matrix

UM =

(
cos θM sin θM
− sin θM cos θM

)
. (2.36)

Following from the definitions of the effective mixing angle, it can be observed
that a resonance of θM → π/4 can be achieved when

V e
CC |R =

∆m2
21 cos 2θ12
2E

ne |R =
∆m2

21 cos 2θ12
2
√
2EGF

(2.37)

where the subscript R is designated to indicate the resonant values. This shows that
with the presence of matter potentials, the mixing can become maximal even when
the mixing angle is small. This resonant effect is known as the Mikheyev-Smirnov-
Wolfenstein (MSW) effect [39, 40]. The behaviours of the effective mixing angle θM
and squared mass difference ∆m2

M plotted against the electron number density ne are
shown in Figure 2.2. In the case of ne ≫ ne |R, the effective mixing angle approaches
π/2 and an electron neutrino |νe⟩ = cos θM |ν1⟩+ sin θM |ν2⟩ will nearly coincide with
|ν2⟩.

It should be noted that the symmetry between the signs of the mass splittings iv is
broken by the presence of matter, and, hence, the determination of the mass ordering
becomes possible with such measurements. From Eq. 2.37, one can see that the sign
of the term ∆m2 cos 2θ dictates whether the resonance is crossed by neutrinos or
anti-neutrinos. In fact, this is how the ordering between m1 and m2 was resolved.
The solar neutrino measurements have constrained the value of ∆m2

21 cos 2θ12 to be
positive. As a convention, ∆m2

21 is set to be positive, designating the lighter electron-
flavour-dominant mass state as |ν1⟩.

Resonances in Supernovae

The matter density in a supernova [41] far exceeds the maximum solar density [42]
by several orders of magnitude, and thus allows the existence of an extra resonance
rising from the larger squared mass splitting ∆m2

31. The two resonances are referred
to as the High (H) and Low (L) resonances, which corresponds to the electron densi-
ties ne |R (θ13,∆m

2
31) and ne |R (θ12,∆m

2
21), respectively. The H-resonance is crossed

ivThis is, in fact, only true in the case of two-neutrino mixing. It is clear from Eq. 2.14 that for
the case of three-neutrino mixing, the oscillation probability will be affected by the change of sign of
∆m2. Nonetheless, due to the smallness of θ13 and ∆m2

solar/∆m
2
atm, the mixing can be described

by the two-neutrino form to leading order in most cases.
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2.2. NEUTRINO MASS

by neutrinos or anti-neutrinos, depending on the mass hierarchy, whereas the L-
resonance is crossed by neutrinos in both cases [43]. Supernova observations could,
therefore, lead to a potential measurement of the neutrino mass hierarchy.

2.2 Neutrino Mass
The discovery of neutrino mass is the only conclusive direct evidence of physics be-
yond the Standard Model (BSM), as massless neutrinos were postulated in the SM.
This mass can be incorporated into the theoretical framework describing the neutrino
via two possible scenarios: Dirac spinors and Majorana spinors. The section starts
with a review of the mass generation term and neutrino description in the Standard
Model. Brief introductions of the masses of Dirac and Majorana neutrinos will then
follow.

2.2.1 Standard Model Neutrino
As a fermion, the neutrino is described by the Dirac equation

(iγµ∂µ −m)ψ = 0 (2.38)

where ∂µ = ∂/∂xµ and γµ are the Dirac matrices. The Dirac matrices in the chiral
basis are defined as

γ0 =

(
0 I
I 0

)
, γk =

(
0 σk

−σk 0

)
(2.39)

where σk are the Pauli matrices. It is then useful to define a fifth matrix

γ5 ≡ iγ0γ1γ2γ3 =

(
−I 0
0 I

)
(2.40)

where chirality is defined upon its eigenvalues ±1. The chiral components of eigen-
values +1 and −1 are designated as right-handed and left-handed. These components
can then be projected by the pair of operators

PL =
1− γ5

2
, PR =

1 + γ5

2
(2.41)

where the labels L and R stands for left-handed and right-handed, respectively. The
Dirac equation Eq. 2.38 can, therefore, be written in the form of

(iγµ∂µ −m)

(
ϕL

ϕR

)
= 0, (2.42)
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2.2. NEUTRINO MASS

and leads to the system of equations

iσµ∂µϕL = mϕR

iσµ∂µϕR = mϕL

(2.43)

where σµ = {I, σk} and σµ = {I,−σk}; and ϕL and ϕR are the chiral components
of ψ, also known as Weyl spinors or bispinors v. Eq. 2.43 indicates that the chiral
components are coupled to each other for massive fermions. On the contrary, if the
fermion is massless, the two equations in Eq. 2.43 will become decoupled

iσµ∂µϕL = 0

iσµ∂µϕR = 0 .
(2.44)

The equations in Eq. 2.44 are known as the Weyl equations.
When Weyl initially proposed these equations in 1929 [44], they were soon re-

jected by Pauli on the basis of parity conservation [45]. However, this model was
later redeemed by the subsequent discovery of parity violation in 1957, which invali-
dated Pauli’s argument. Furthermore, since there were no evidence for the existence
of neutrino mass or right-hand neutrinos at the time, the Weyl description of the neu-
trino became particularly favourable for constructing the weak interaction model [18,
19, 20]. This framework later became the model for neutrinos that was incorporated
into the SM.

2.2.2 Dirac Neutrino
The most straightforward way to incorporate the neutrino mass is to take one step
back to Eq. 2.43, and treat it just as any other massive fermion in the SM. In this case,
the neutrino mass will be generated through the Dirac mass term in the Lagrangian

LD = −mDψψ = −mD(ψLψR + ψRψL) = −mD(ϕ
†
LϕR + ϕ†

RϕL) (2.45)

where mD is the mass of a Dirac neutrino and ψ is a shorthand for ψ†γ0. Eq. 2.45 also
indicates that both chiral components are needed to generate mass in this scenario.

The main issue with this scenario is that it requires the existence of two additional
particles which have not yet been observed: the right-hand neutrino and the left-hand
anti-neutrino. These particles are often referred to as “sterile” neutrinos as they do
not participate in Standard Model interactions. Note that, however, for massive

vTo avoid confusion in the notation, the four-dimensional Dirac spinors will always be represented
by ψ, whereas the two-dimensional bispinors will be represented by ϕ.
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2.2. NEUTRINO MASS

neutrinos, helicity vi states do not coincide with chiral states exactly. Therefore, the
neutrinos of left-hand helicity observed thus far will be a combination of mostly left-
chiral neutrinos and a small fraction of right-chiral sterile neutrinos in this scenario.

2.2.3 Majorana Neutrino
Another scenario was proposed by Majorana in 1937 [46], when he noticed that
Eq. 2.43 does not necessarily require two independent chiral components. It was
discovered that fermions can be described by one chiral component if one imposes
the Majorana condition

ψ = ψC (2.46)
where ψC ≡ iγ2ψ∗ is the charge conjugate spinor. This condition indicates the
equivalence between the particle and its anti-particle. It is not difficult to verify that
this condition is compatible with the Dirac equation Eq. 2.38

(iγµ∂µ −m)ψC = (iγµ∂µ −m)iγ2ψ∗

= i(iγµγ2∂µ − γ2m)ψ∗

= iγ2(−i(γµ)∗∂µ −m)ψ∗

= 0

(2.47)

where the last equality is simply the conjugate of Eq. 2.38. In terms of chiral com-
ponents, the Majorana condition Eq. 2.46 becomes(

ϕL

ϕR

)
= i

(
0 σ2

−σ2 0

)(
ϕ∗
L

ϕ∗
R

)
=

(
iσ2ϕ∗

R

−iσ2ϕ∗
L

)
(2.48)

and, hence, the Majorana spinor can be expressed as

ψ =

(
ϕL

−iσ2ϕ∗
L

)
(2.49)

which is determined by a single bispinor ϕL.

viHelicity is defined as the projection of the spin on the momentum direction Σ⃗ · p⃗, where Σ⃗ =(
σ⃗ 0
0 σ⃗

)
. Helicity coincides with chirality in the case of massless particles, and is what is measured

in experiments.
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2.2. NEUTRINO MASS

With this construct, the Dirac mass term will then become the Majorana mass
term

LM = −mM

2
(ψψ) = −mM

2
(ψC

LψL + ψLψ
C
L )

= −mM

2

(
ϕT
L · iσ2 · ϕL − (ϕ∗

L)
T · iσ2 · ϕ∗

L

) (2.50)

where the mM is the Majorana mass and the extra factor of 1/2 was introduced
to compensate double counting vii. Though the mass term is still composed of the
coupling of right and left-handed components, the right-handed component is now
ψC
L which behaves as the anti-particle of ψL. In this case, the Majorana neutrino will

be, in a sense, a mixture of particle and anti-particle in contrast to the neutrino and
sterile neutrino combination in the Dirac case.

See-saw Mechanism

The discussion of the Majorana neutrino has thus far focused on the left-hand com-
ponent ψL, because this is what has been observed and formulated in the Standard
Model. On the other hand, the Majorana construction leaves the right-hand compo-
nent ψR at liberty, for it is independent of ψL. Though the right-hand neutrino νR
has never been observed, it is, in principle, not forbidden. Many BSM theories have
postulated the existence of νR. One of them is the see-saw mechanism [47, 48, 49]
which is particularly interesting as it explains the almost vanishing neutrino mass in
a way that is theoretically attractive.

If νR also exists, the Lagrangian can contain both the Majorana mass terms

LM = −mL

2
(νCL νL + νLν

C
L )−

mR

2
(νCRνR + νRν

C
R ) (2.51)

and Dirac mass terms
LD = −mD(νLνR + νRνL) (2.52)

where mL and mR are the Majorana masses of left and right-handed neutrinos, re-
spectively. Note that ψ is now replaced by ν, for the discussion is now specifically
for neutrinos. It is then convenient to write the mass terms in a basis of left-handed
chiral fields and its Hermitian conjugate (H.c.)

LM+D = −1

2

(
νCL νR

)(mL mD

mD mR

)(
νL
νCR

)
+ H.c. (2.53)

viiSince the left-handed and right-handed components of a Majorana field ψ, as in Eq. 2.49, are
not independent, the Lagrangian will be quadratic in ψL. Therefore, a factor of 1/2 will be required
to generated the correct equation of motion, viz., the Dirac equation.
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2.2. NEUTRINO MASS

By diagonalising the mass matrix, one will then arrive at a basis formed by neutrino
states of definite mass. The diagonalisation can be achieved by orthogonal trans-
formations if the masses are real. The mixing of the left-handed chiral states can,
therefore, be characterised by a single mixing angle θ(

νLa
νLb

)
=

(
cos θ − sin θ
sin θ cos θ

)(
νL
νCR

)
(2.54)

and the resulting mass eigenvalues can be found to be

ma =
1

2
χ

(
mL +mR −

√
(mL −mR)2 + 4m2

D

)
mb =

1

2

(
mL +mR +

√
(mL −mR)2 + 4m2

D

) (2.55)

where ma ≤ mb by definition and χ = ±1 is a factor to keep ma positive viii.
The see-saw mechanism considers a particularly interesting case when mL = 0

and mR ≫ mD. This results in

ma
∼=
m2

D

mR

, mb
∼= mR (2.56)

in which case ma is tiny and mb is relatively heavy. Furthermore, the mixing angle θ
is small

tan 2θ =
2mD

mR

≪ 1 (2.57)

that is to say νLa is formed of nearly pure νL and νLb is composed mainly of the sterile
νR. In particular, by setting mL to zero, one recovers the Standard Model neutrino
with νL. Additionally, the Dirac mass mD can be generated by the Standard Model
Higgs mechanism. The only component involving BSM physics is the hypotheti-
cal sterile neutrino νR, whilst its mass mR is not forbidden by any SM symmetry.
This explains the smallness of the observed neutrino masses without assuming an
exceptionally small Yukawa coupling as in the case of pure Dirac mass [9].

viiiχ can arise from an appropriate choice of phase of νR and νL.
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E

ZZ-1Z-2 Z+1 Z+2

𝛽− 𝛽+

𝛽𝛽− 𝛽𝛽+

N, Z even

N, Z odd

Figure 2.3: Beta and double beta transitions for even mass number nuclei. Adapted
from [50].

2.3 Neutrinoless Double Beta Decay
Double beta decay (2νββ) is the process of the simultaneous occurrence of two beta
decays as some nuclei would reach a more stable state by maintaining an even proton
number (Z) and even neutron number (N), as shown in Figure 2.3. The possible
existence of such a process was first proposed in 1935 by Goeppert-Mayer [51]. As
depicted in Figure 2.4, double beta decay is a second order process and has a much
longer lifetime compared to single beta decays. It is, therefore, only observable when
the single beta decay is energetically unfavourable whilst the double beta decay is not.
In 1987, Elliot et al. carried out the first direct observation of 2νββ in 82Se decay [52].
Subsequently, it was discovered that there exists 35 naturally occurring nuclei which
could possibly undergo 2νββ, whereas only 20 have been directly measured [53].
Table 2.1 lists some of the naturally occurring 2νββ isotopes.
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W−
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νe

Figure 2.4: Feynman diagrams for ordinary double beta decay (left) and neutrinoless
double beta decay (right).

Following the initial proposal, Majorana [46] and Furry [54] suggested that were
the neutrino its own anti-particle, viz., a Majorana particle, the results of the process
would remain unchanged yet without neutrino emissions, linking Majorana neutrinos
to 0νββ. As it turns out, an observation of 0νββ is also a direct indication of the
existence of Majorana neutrinos as proved in the black-box theorem [55, 56], depicted
in Figure 2.5. The theorem states that if the 0νββ process exists, one will then arrive
at some vertex with the effect of 2d → 2u + 2e−, i.e., the “black box”. This “black
box” can then always be arranged to give rise to a ν → ν transition, and, hence, the
conclusion.

Besides the question of the Dirac or Majorana nature of the neutrino, the mea-
surement of 0νββ also addresses the issue regarding the absolute magnitude of the
neutrino masses. As described in the previous section, oscillation experiments are
able to measure the squared mass differences with increasing accuracy. The precise
values of the neutrino masses are, however, unresolvable in these experiments. It is
only the upper bound on the masses, of O(eV), that are currently attainable from
measurements in τ , π or tritium decays or cosmological observations [36].

Since the neutrino mass is beyond the scope of the SM, its origin might not
arise, or not solely arise, from the Standard Model Higgs mechanism. The see-saw
mechanism is currently the most favoured scheme amongst the plethora of proposed
mass generation mechanisms [47, 49]. In this scenario, the neutrino mass originates
from BSM physics and the violation of lepton number conservation from the Majo-
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Figure 2.5: Feynman diagram for a general neutrinoless double beta decay (the “black
box”) (left) and the ν → ν transition arising from the black box (right).

rana mass term happens at scales much higher than the electroweak energy scale.
Furthermore, this scheme strongly incline towards neutrinos of the Majorana type.
With the presence of the Majorana mass term, the neutrino masses relevant to the
measured O(0.1 eV) scales can arise without resorting to fine-tuned coupling to the
Higgs field. The fundamental nature, Dirac or Majorana, of the neutrino thus plays
a crucial role in the determination of the neutrino masses at extremely low energy
scales. SNO+ and other large experiments with low backgrounds are, therefore, set
in search of the 0νββ process to unravel the nature of the neutrino.

Though the Majorana mass is not directly measurable, it can be inferred from
the measured 0νββ half-life

1

T 0νββ
1/2

= G0νββ |M0νββ|2
(
|mββ|
me

)2

(2.58)

where G0νββ is the phase space factor of the decay, M0νββ is the nuclear interaction
matrix element, and mββ ≡

∑
i U

2
eimi is the effective Majorana mass which is then

normalised to the electron mass me [58, 59]. The phase space factor G0νββ is a known
integral dependent on the Q-value of the decay. On the other hand, the nuclear
matrix element M0νββ involves the non-trivial treatment of a many-body problem.
Methods include: the Energy Density Functional (EDF) method [60], the Quasi-
Particle Random Phase Approximation (QRPA) [61], the Interacting Boson Model-
2 (IBM-2) [62], the Large-Scale Shell Model (LSSM) [63] and the Projected Hartree-
Fock-Bogoliubov (PHFB) approach [64]. The results from these methods are depicted
in Figure 2.6. One immediately notices the large uncertainties it introduces to the
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ββ Decay G0ν (10−14y−1) Q (MeV) Nat. Abund. (%) T 2ν
1/2 (1021y)

48Ca→48Ti 6.4 4.27226(404) 0.187 0.044+0.005
−0.004 ± 0.004

76Ge→76Se 0.6 2.039061(7) 7.8 1.84+0.09+0.11
−0.08−0.06

82Se→82Kr 2.7 2.99512(201) 9.2 0.096± 0.003± 0.01

96Zr→96Mo 5.6 3.35037(289) 2.8 0.0235± 0.0014± 0.0016

100Mo→100Ru 4.4 3.03440(17) 9.6 0.00711± 0.00002± 0.00054

116Cd→116Sn 4.6 2.81350(13) 7.6 0.029+0.004
−0.003

128Te→128Xe 0.1 0.86587(131) 31.7 7200± 400

130Te→130Xe 4.1 2.52697(23) 34.5 0.7± 0.09± 0.11

136Xe→136Ba 4.3 2.45783(37) 8.9 2.165± 0.016± 0.059

150Nd→150Sm 19.2 3.37138(20) 5.6 0.00911+0.00025
−0.00022 ± 0.00063

238U→238Pu 3.4 1.14498(125) 99.3 2.0± 0.6

Table 2.1: List of naturally occurring isotopes that could undergo double beta decay
with the corresponding phase space factor G0νββ, Q-value, natural abundance and
0νββ half-life T 0νββ

1/2 . Table adapted from [57].

determination of the effective Majorana mass |mββ| due to the huge discrepancies
between different approaches.

In specific terms of T 0νββ
1/2 measurements, the present day experiments are only

able to provide lower bounds. Experimental indications on the existence of 0νββ
remain inconclusive. The results lead to an upper limit on the effective Majorana
mass with KamLAND-Zen currently laying down the most stringent limit of |mββ| <
61− 165 meV (T 0νββ

1/2 > 1.07× 1026 years) [65].
Owing to the expected rareness of the 0νββ process, approaches taken by exper-

iments can generally fall into two categories. The first is to minimise the sacrifice
on the signal by rendering the detector ultra-pure, with nearly no backgrounds, and
with particularly fine energy resolution. This includes NEMO-3 and its successor,
SuperNEMO, using 100Mo [66]; GERDA [67] using 76Ge; and CUORE [68] using
130Te. The other is to scale the signal up by pursuing a sizeable detector, though
inevitably with slightly enhanced backgrounds. Pioneered by KamLAND-Zen, which
uses 136Xe [65], this approach was adapted by SNO+. The SNO+ experiment will be
studying 0νββ in 130Te. 130Te was chosen for various reasons including the relatively
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high energy release in 0νββ, longer 2νββ lifetime and high natural abundance, which
makes it more affordable for kilotonne experiments [69]. Details of the SNO+ detec-
tor will be described in Chapter 4. In addition, backgrounds arising from bismuth-
polonium decays in the uranium and thorium decay chains that fall in the spectral
region of interest (ROI) (see Figure 4.5) will be studied in Chapter 5.
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Figure 2.6: Calculated nuclear matrix element M0νββ values, taken from [70].
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Chapter 3

Core-Collapse Supernovae

On the 24th of February, 1987, the blue supergiant Sanduleak -69 202, located in
the Large Magellanic Cloud about 50 kpc i from Earth, underwent a supernova ex-
plosion and became what is now known as SN1987A [73]. The signals of SN1987A
started out with bursts of neutrinos, and was soon followed by the optical signals
within 3 hours [73], which was consistent with the expectation for a core-collapse
supernova (CCSN). Further studies on the optical spectrum suggested that it was of
type II, a type that is believe to release 99% of its energy in the form of neutrino
emissions [74].

The neutrino signals of the event were observed in three detectors, one liquid
scintillator detector and two water Cherenkov detectors, on Earth: 5 events detected
by the Baksan detector [75]; 12 events, in which one of the events was identified as
background, detected by the Kamiokande-II experiment [76]; and 8 events observed
in the Irvine-Michigan-Brookhaven (IMB) detector [77]. All of these neutrino events
were inverse beta decays (IBD), arising from electron anti-neutrinos, though in gen-
eral all types and flavours of neutrinos are expected from a supernova burst. These
24 neutrino events observed in 13 seconds associated with this super-luminous event
were the first, and so far only, confirmed neutrino observations from celestial bodies
other than the Sun.

Even though the datasets, containing only a small number of events, were in-
sufficient to result in a measurement of the supernova or neutrino parameters, the
observation was still able to set constraints on neutrino properties under extreme
conditions and illuminate several aspects of the underlying mechanisms driving the
supernova. It clearly demonstrated the enormous potential of supernova neutrino
detections in astronomy and astro-particle physics. In this chapter, the evolution of

iA parsec (pc) is defined as 62800
π astronomical units (au) [71], where an astronomical unit is

defined to be exactly 149,597,870,700 metres [72]. Therefore, a kiloparsec (kpc) will be roughly
3260 light-years or 3.086× 1019 metres.
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the stellar progenitor and mechanisms leading to the various types of supernovae will
be briefly outlined, in which attention will be put on the CCSN. Furthermore, due
to the small cross-sections of neutrino interactions, supernova neutrino detection is
practically confined to Galactic supernovae. The occurrence of such events will also
be discussed. Finally, the neutrino spectrum will be examined analytically together
with a brief review of the numerical simulation of the neutrino luminosity curves
obtained from the Garching group [78].

3.1 Stellar Evolution
The formation of stars begins from the condensation of interstellar matter in molec-
ular clouds forming relatively dense proto-stellar cores. As ambient matter continues
to accrete onto the proto-stellar core, gravity eventually overcomes the supporting
thermal pressure leading to gravitational collapse. The compression from gravity
causes the core to further condense and rise in temperature until reaching the point,
roughly 107 K [79], at which hydrogen fusion ignites. With the energy released from
hydrogen fusion balancing gravity, hydrostatic equilibrium is restored. At this stage,
the star can be said to have formed. Such a star is known as a “Zero Age Main
Sequence” (ZAMS) star, which is when the star first joins the Main Sequence. The
Main Sequence is a band of stars on the Hertzsprung-Russell diagram [80, 81] where
the majority of stars are to be found in, as shown in Figure 3.1. Stellar masses quoted
hereafter will be the ZAMS mass of the stars. A star will leave the Main Sequence
once its core is depleted of hydrogen. In general, massive stars tend to exhaust their
hydrogen deposits faster and, hence, have shorter Main Sequence lifetimes.

When intermediate-mass stars, of comparable mass to the Sun (0.5 − 8M⊙) [79,
82], reach their end in the Main Sequence, the hydrogen in their cores will be replaced
by the helium produced from hydrogen fusion, terminating the nuclear fusion in
the stellar core. The core then cools down leading to gravitational contraction of
the core, causing the core temperature to rise again from the gravitational energy
release. As the heat diffuses, the hydrogen shell adjacent to the helium core will
reach the critical temperature initiating hydrogen fusion. The hydrogen shell is then
“deflagrated”, that is, the burning shell gradually ignites the surrounding hydrogen,
which is known as “shell hydrogen burning”. The helium product from shell burning
accumulates onto the core, leading to further core contraction. With these additional
sources of thermal energy and, hence, increase in internal pressure, one will see a
substantial expansion in the outer hydrogen envelope. Along with the expansion, the
outer layers will simultaneously cool down, shifting the colour of the star towards the
red spectrum. At the end of this process, viz., when the expansion has ceased, the
star enters the “red giant phase”.
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Figure 3.1: Hertzsprung-Russell diagram of the stars catalogued by the Hipparcos
satellite. The colour index is a measure of the stellar surface temperature, where
smaller indices refer to bluer (hotter) objects and larger indices redder (cooler) [83].
Depending on the mass, stars can enter the Main Sequence at any part of the band.
As the stars evolve, they tend to drift towards the top right of the plot, whereas
dwarf stars and neutron stars tend to fall below the main sequence. Figure adapted
from [84].
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Figure 3.2: Schematic representation of the double shell burning phase, or asymptotic
giant branch phase. Figure adapted from [79].

Once the core reaches a temperature of 108 K [79], the helium core ignites. Helium
fusion produces carbon and oxygen in the core, whilst shell burning is still generating
helium that builds on top of the core, creating a layered structure. Note that the
ignition of helium would only happen when the star mass is greater than 0.5M⊙,
below which the core will reach the electron degeneracy density 106 g/cm3 before the
helium ignition temperature is reached, prohibiting the core temperature from rising
further and eventually leading to the formation of a helium white dwarf [79].

For stars of mass greater than 0.5M⊙, the helium in the core will eventually be
depleted, leaving inert ii carbon and oxygen. Unsurprisingly, a process similar to what
happened during the end of the Main Sequence takes place: shell helium burning,
core contraction and envelope expansion. As it is reminiscent of the red giant phase,
stars in this phase are known as the “asymptotic giant branch” (AGB) stars iii. This
phase is sometimes referred to as the “double shell burning phase” for obvious reasons
depicted in Figure 3.2.

The evolution of an intermediate sized star terminates with the end of the AGB
iiInert in the sense of nuclear fusion being energetically unfavourable.

iiiThe term asymptotic is used in the sense that for lighter stars, of mass less than 2.5M⊙, the
temperature-luminosity relation resembles that of the red giants [85].
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Fusion Fuel Ignition Temperature Duration Main Products

Carbon 5× 108K 103 − 104yr Ne, Na

Neon 8× 108K 102 − 103yr Mg, O

Oxygen 1× 109K < 1yr Si, S

Silicon 3× 109K days 56Ni

Table 3.1: List of nuclear fusion channels past hydrogen and helium. The product
of silicon burning is 56Ni, of which part will further decay to 56Fe via beta decays,
forming the nickel-iron core. Table adapted from [79].

phase. During this stage, AGB stars will develop strong stellar winds due to the
expansion and cooling of the outer envelope. As the envelope cools down, gas in
the envelope condenses into dust which absorbs radiation more efficiently. These
accelerated dust grains will then collide and drag the gas particles in the outer layers
along as they escape the relatively weak gravity, creating a stellar wind. Note that
although this stellar wind is also present in some red giants, the AGB wind is about
1,000 times greater than that of red giants, earning the AGB phase the name “su-
perwind phase” [86]. This strong stellar wind leads to significant mass loss, which
eventually dissipates all outer layers beyond the core. The star, therefore, ends up as
a carbon-oxygen white dwarf. It should be noted that the white dwarf, supported by
electron degeneracy pressure, is bounded by the Chandrasekhar mass limit of about
1.4M⊙, corresponding to a ZAMS star mass of roughly 8M⊙ [87, 88].

Massive stars with masses greater than 8M⊙, on the other hand, will have core
temperatures rising beyond the ignition temperatures for further nuclear reactions,
as listed in Table 3.1. Each burning stage is essentially a repetition of what has
occurred in the hydrogen and helium burning phases. Note that the ZAMS mass
of the star determines which burning phase it reaches. For stars in the mass range
8 − 10M⊙, the evolution terminates at the stage of neon burning, resulting in an
oxygen-neon-magnesium (ONeMg) core. Stars of even higher masses, in the range of
10−40M⊙, will proceed all the way to silicon burning, which ends up with an iron (Fe)
core, as depicted in Figure 3.3. Stars with ONeMg cores are designated “super-AGB
stars”, whereas the ones that reach silicon burning are known as “supergiants” [89].
In both cases, the stellar cores exceed the Chandrasekhar limit and are expected to
undergo a final “core collapse” upon the end of evolution, leading to a core-collapse
supernova (CCSN), which will be discussed in more detail in Section 3.3.
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Fe, Ni core

16O, 24Mg, 28Si rich

16O, 20Ne, 24Mg rich

12C, 16O rich

4He rich

H, He envelope

To stellar surface

Silicon burning

Neon/Oxygen burning

Carbon burning

Helium burning

Hydrogen burning

Figure 3.3: Schematic view of the layered structure of stellar progenitors that reach
silicon burning. Figure adapted from [95].

Finally, there is the case of stars with masses beyond 40M⊙, for which the eventual
fate is uncertain. Possibilities include CCSN, pair-instability supernova [90, 91, 92]
or direct collapse to a black hole without a supernova-like explosion [93, 94]. Details
of these scenarios will also be briefly discussed in Section 3.3.

3.2 Supernova Classification
The astronomical classification for supernovae is summarised and depicted in Fig-
ure 3.4. This classification of supernovae is largely based on the absorption lines
and further subdivided according to the features of the light curve profiles due to
historical reasons. Note that such a division of the supernovae is not necessarily the
most suitable for the discussion of neutrino physics. This section shall start with a
brief historical review of the classification to introduce the terminology, and conclude
in a classification that is more relevant to the discussion of neutrino physics. More
detailed information can be found in [96, 97, 98].

The primary division was first established by Minkowski in 1941 [99], when he
noticed there are two types of supernovae: the ones lacking hydrogen lines in their
spectrum (type I) and the ones with it (type II). The type I could be further cat-
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3.2. SUPERNOVA CLASSIFICATION

Figure 3.4: Classification scheme of supernovae using spectral line features, luminos-
ity profiles and the corresponding spectral evolution. Figure originally from [9].

egorised into three cases depending on the presence of strong silicon and helium
absorption features in the near maximum spectrum iv. This primitive classification
remained as the main spectral division, even though it was discovered as early as
the 1960s that there are spectral variations within type I. In 1963, McLaughlin [100]
observed particularly strong helium absorption in the spectrum of SN1954A upon
near maximum luminosity, which was different from what was regarded as a classical
type I, now type Ia, and was later categorised as type Ib. It was not until the 1980s
that the necessity to further specify the subdivisions in type I became apparent. With
an increasing number of type I supernovae exhibiting spectral features deviating from
that of “classical” type I, Elias et al., in 1985, were the first to introduce the des-
ignation of sub-types Ia/Ib using broad-band infrared photometry [101]. The more
well-known criterion of type Ia showing strong silicon absorption in the near maxi-
mum spectrum was proposed slightly later by Branch [102]. Following that, Wheeler
and Harkness [103] proposed another division within the non-Ia type according to
the helium absorption features, strong in type Ib and weak or none in type Ic.

On the other hand, there is as yet no consensus on spectroscopic sub-classifications
of type II. The first attempt to categorise the type II supernovae was by Barbon et al.

ivThis is the spectrum of the supernova when maximum luminosity is reached.
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3.2. SUPERNOVA CLASSIFICATION

in 1979 using the light curve shapes [104]. Depending on whether the behaviour of
the luminosity profile after maximum is characterised by a plateau or linear decline,
the type II supernovae are subdivided into type IIP for the former case and type IIL
for the latter. Note that this division is not strict and there are indeed intermediate
cases, e.g., see [105]. Furthermore, there is a more recent suggestion of the subclass
IIF for supernovae with an overall substantially fainter light curve [106]. In 1988,
Filippenko discovered the supernova SN1987K showing strong hydrogen absorption
in early stages and starting to resemble the helium-dominated spectral features of
type Ib as it evolves, which was then designated as type IIb [107]. Amongst the more
regular type II supernovae not displaying obvious helium features, another subclass
IIn was proposed by Schlegel for cases when the spectrum exhibits particularly narrow
hydrogen lines [108]. Finally, for the type II supernovae that do not exactly fit any
of the aforementioned criteria was suggested to be conveniently referred to as IIpec
in [109].

Having introduced all the classes outlined in Figure 3.4, there is then the issue
of how they affect the detection of the neutrino signal, in other words, how it affects
the neutrino flux. The behaviour of the supernova neutrino flux is more related to
the structure and final stages of the stellar progenitor, which will eventually lead
to different explosion mechanisms. A more suitable distinction should, therefore,
be drawn between the thermonuclear supernovae (type Ia), ignited on binary white
dwarfs of zero-age masses presumably around 8M⊙ [110], and CCSNe (type Ib/c,
II), for relatively more massive progenitors of masses roughly above 8M⊙. Herein
the focus will be put on CCSNe for the reason that the thermonuclear supernovae
would have most of its energy released via heavy element nucleosynthesis, whereas
the CCSNe are expected to transfer 99% of its energy in the form of neutrinos [74].
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3.3 Core-Collapse Mechanisms
The evolution of massive stars with ZAMS mass greater than 8M⊙ is expected to
end in core collapse. There are several mechanisms that could lead to this eventual
implosion of the progenitor core: electron capture instability, iron core disintegra-
tion, pair instability and photodisintegration. The stellar progenitor dependence,
mainly on mass and metallicity v, of these scenarios and their corresponding super-
nova/remnant types are discussed in detail in [93, 111], and concisely summarised
in Figure 3.5. It is worth noting, though, that it was pointed out in [112], the com-
pactness vi of the stellar structure serves as a robust parameter in predicting the fate
of the supernova remnant. In this section, each of the mechanisms listed above will
be briefly outlined, amongst which the case of iron core collapse will be examined
in a slightly more thorough manner for it is considered as the classical scenario for
CCSNe.

3.3.1 Iron Core Disintegration
To start with, consider the case of the heavier stellar progenitors in the mass range
10 − 100M⊙. As described in Section 3.1, these progenitors are able to proceed up
to silicon burning in their evolution, resulting in a core formed by inert iron-group
elements, viz., iron (Fe), cobalt (Co) and nickel (Ni) vii, as in Figure 3.3. In the
end, the progenitor is expected to undergo a CCSN, which can be of type II or
Ib/Ic. Note the latter case occurs when the star is sufficiently massive and with high
enough metallicity, inducing strong stellar winds that dissipates the hydrogen and
helium envelopes. Furthermore, depending on the progenitor, the final remnant of
the supernova can be either a neutron star or a black hole, where the mass division
is usually drawn around 40M⊙ for solar metallicities.

The CCSNe evolving via the iron core collapse scenario are the most common type
of CCSNe, constituting up 60% of the total CCSNe [57], and are, therefore, usually
taken as the typical scheme for CCSNe. The development of such supernovae, and
in general any CCSNe, can roughly be divided into four stages: core collapse, core
bounce, accretion and cooling. The details of each stage and the corresponding
neutrino emissions will be described in this section.

vMetallicity is the mass fraction of elements present in the star that are heavier than hydrogen
and helium. The term stems from the astronomical convention of referring to any element besides
hydrogen and helium as “metal”.

viCompactness is defined as ξM = (M/M⊙)
R , where M is a fiducial baryonic mass chosen to be

2.5M⊙ in [112], and R is the radius enclosing the chosen fiducial mass in units of 1,000 km.
viiThese three elements are also known as the “iron triad” [113].
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Fig. 2.— Supernovae types of non-rotating massive single stars as a function of initial metallicity and initial
mass. The lines have the same meaning as in Fig. 1. Green horizontal hatching indicates the domain where
Type IIp supernovae occur. At the high-mass end of the regime they may be weak and observationally faint
due to fallback of 56Ni. These weak SN Type IIp should preferentially occur at low metallicity. At the
upper right edge of the SN Type II regime, close to the green line of loss of the hydrogen envelope, Type
IIL/b supernovae that have a hydrogen envelope of . 2 M⊙ are made (purple cross hatching). In the upper
right quarter of the figure, above both the lines of hydrogen envelope loss and direct black hole formation,
Type Ib/c supernovae occur; in the lower part of their regime (middle of the right half of the figure) they
may be weak and observationally faint due to fallback of 56Ni, similar to the weak Type IIp SNe. In the
direct black hole regime no “normal” (non-jet powered) supernovae occur since no SN shock is launched.
An exception are pulsational pair-instability supernovae (lower right corner; brown diagonal hatching) that
launch their ejection before the core collapses. Below and to the right of this we find the (non-pulsational)
pair-instability supernovae (red cross hatching), making no remnant, and finally another domain where black
hole are formed promptly at the lowest metallicities and highest masses (while) where nor SNe are made.
White dwarfs also do not make supernovae (white strip at the very left).
.

17

neutron star

neutron star

direct black hole

Figure 3.5: Types of supernovae according to the ZAMS mass and metallicity of the
stellar progenitors. The white regions on the right of the dotted blue lines indicate the
region where no outward shock wave is launched, and, hence, no supernova. Figure
adapted from [57], which was originally from [93].

34



3.3. CORE-COLLAPSE MECHANISMS

3

FIG. 1: Stellar death regions with schematic stellar evolution tracks in the plane of central density (ρc) and central temperature
(Tc). Colored death regions are labeled by the instability process causing the collapse of the stellar core, and the blue tracks are
labeled by the corresponding rough birth-mass range of objects reaching the different stages of central burning (indicated by
red dashed lines). Yellow diagonal lines mark the beginning of degeneracy (short-dashed) and strong degeneracy (long-dashed)
of the electron plasma. Note that realistic stellar tracks exhibit wiggles and loops when the ignition of the next burning stage
is reached and the stellar core adjusts to the new energy source (see Ref. [20].)

elements in their inner core. If, however, the stellar interior enters the regime of electron degeneracy before2 (yellow,
short-dashed line in Fig. 1) it ends as a white dwarf, being stabilized by lepton degeneracy pressure and cooling at
essentially fixed density.
Stars beyond certain birth-mass limits can reach the “death zones” in the upper and right parts of Fig. 1, where

the stellar core becomes gravitationally unstable. Contraction, and in the case of a runaway process finally collapse,
sets in when the effective adiabatic index drops below the critical value of 4/3 for mechanical stability (the actual
value is slightly decreased by rotation and increased by general relativistic gravity).
Three different processes can initiate the implosion of stellar cores in three areas of the ρc-Tc-plane indicated by

different colors in Fig. 1, playing a role in different kinds of CC events.

2 Fermions approach the degeneracy when their Fermi energy begins to exceed the thermal energy kBT , i.e. at T8 ∼ 4ρ
2/3
5 for nonrelativistic

electrons and at T10 ∼ ρ
1/3
8 for relativistic ones with Tx ≡ T/(10x K) and ρy ≡ ρ/(10y g cm−3).

Figure 3.6: Relations between the evolution stages and stellar core configuration as a
function of central temperature Tc and central density ρc. Coloured regions indicate
where the evolution terminates. Blue lines are the evolution paths of the progenitors.
Red lines show the boundaries of different fusion phases. Yellow lines mark the ini-
tiation of electron degeneracy (short-dashed) and neutron degeneracy (long-dashed).
Figure taken from [111].
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Core Collapse

As the stellar core enters the phase of silicon burning, the iron-group elements accu-
mulate in the centre of the core, leading to a decrease in thermal pressure support.
The core then contracts until electron degeneracy pressure comes into play, halting
the collapse temporarily. When the mass exceeds the Chandrasekhar limit, typically
when the iron core is of radius near 3,000 km [114], the core once again becomes grav-
itationally unstable. At this stage, the temperature and density reaches the point
to initiate two reactions that would further destabilise the core: photodisintegration
and electron capture.

The core temperature now approaches 1010 K, at which a state of nuclear statisti-
cal equilibrium (NSE) viii is established, favouring free nucleons and alpha nuclei. To
disintegrate nuclei as stable as the iron triad, the process must be strongly endother-
mic, which, in turn, dissipates the thermal pressure further. On the other hand, the
rise in density eventually renders electron capture on 56Fe energetically favourable, as
indicated in Figure 3.6. In addition, the free protons from NSE in the core accelerates
the decline in electron density. At the end, with the two major sources of support
diminishing, core collapse begins.

During this process, the neutrinos produced via electron capture will be allowed
to freely escape as long as the core density is below 1011 − 1012 g/cm3. This critical
density is achieved in the inner regions of the iron core, at radii less than about
100 km, roughly 0.1 s after the outbreak of the instability [114]. The neutrinos will
then be concealed until nuclear densities on the order of 1014 g/cm3 are reached,
which leads to the next phase.

Core Bounce and the Neutronisation Burst

After the onset of the collapse, with little resistance compared to gravity, the core
rapidly shrinks to a size of less than 10 km, hitting nuclear densities [114]. The
collapse is then suddenly halted by repulsion from the nuclear strong force, and the
rebounded material forms a shock front clashing upon the infalling material. The
remnant behind the shockwave develops into a proto-neutron star (PNS) with a
compact core and growing mantle of material traversing through the shock front.
The still collapsing iron-group elements of the outer core will be disintegrated into
free nucleons as the shockwave emanates through. The elevated number of liberated
protons will induce rapid electron captures creating a copious amount of electron
neutrinos trapped behind the shockwave.

The shock front remains opaque to the neutrinos until the shockwave reaches a
viiiNuclear statistical equilibrium is the state at which the rate of photodisintegration and heavy-

nuclei synthesis reach equilibrium [115, 116].
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Fig. 4 Sketch of the transport properties of electron-flavor neutrinos and antineutrinos (upper part)
compared to heavy-lepton neutrinos (lower part). In the supernova core νe and ν̄e interact with
the stellar medium by charged-current absorption and emission reactions, which provide a major
contribution to their opacities and lead to a strong energetic coupling up to the location of their
neutrinospheres, outside of which both chemical equilibrium between neutrinos and stellar matter
(indicated by the black region) and diffusion cannot be maintained. In contrast, heavy-lepton neu-
trinos are energetically less tightly coupled to the stellar plasma, mainly by pair creation reactions
like nucleon bremsstrahlung, electron-position annihilation and νeν̄e annihilation. The total opac-
ity, however, is determined mostly by neutrino-nucleon scatterings, whose small energy exchange
per scattering does not allow for an efficient energetic coupling. Therefore heavy-lepton neutrinos
fall out of thermal equilibrium at an energy sphere that is considerably deeper inside the nascent
neutron star than the transport sphere, where the transition from diffusion to free streaming sets in.
The blue band indicates the scattering atmosphere where the heavy-lepton neutrinos still collide
frequently with neutron and protons and lose some of their energy, but cannot reach equilibrium
with the background medium any longer. (Figure adapted from Raffelt, 2012, courtesy of Georg
Raffelt)

tion to free streaming at their corresponding energy-averaged neutrinosphere. This
sphere is also called transport sphere (sometimes also “scattering sphere”), whose
radius Rν ,t is determined by solving Eq. (9) with a suitable spectral average of the
total opacity κtot ≡ κabs+κscatt, which includes all contributions from scattering and
absorption processes. Equilibration between neutrinos and the stellar background is
possible up to the so-called average energy sphere (also termed “number sphere”,
because outside of this location the number of neutrinos of a certain species is es-
sentially fixed). When scatterings increase the zig-zag path of neutrinos diffusing
through the medium and thus increase the probability of neutrinos to be absorbed,
the radius Rν ,e of the energy sphere is given by the condition

τeff =
∫

∞

Rν ,e
dr ρκeff =

2
3

(20)

Figure 3.7: Schematic view of the transport properties of electron flavour (top) and
non-electron flavour (bottom) neutrinos with corresponding production channels in-
cluded. Unlike the case of electron flavour neutrinos, where the energy and transport
spheres coincide, the energy sphere radius of the non-electron neutrinos are consid-
erably smaller than that of the transport sphere. This is a result of the fact that the
main source of opacity for non-electron neutrinos originates from neutrino-nucleon
scattering, which is of relatively limited energy exchange. Therefore, the non-electron
neutrinos fall out of thermal equilibrium with the stellar material at a much smaller
radius. Figure originally from [117].

region of density of about 1011 g/cm3, which is expected to happen within 10 ms
after the bounce [114]. This surface, beyond which neutrinos are set to stream out
unhindered, is named the “neutrinosphere” ix, in analogy to the photosphere in the
case of a stellar surface [119]. Upon arrival at the neutrinosphere, the neutrinos
confined behind the shock front will suddenly be released creating the most prominent
feature in the light curve of supernova neutrinos, the “neutronisation burst”. During
the few milliseconds of the burst, the neutrino luminosity is expected to be on the

ixUsually defined as the point where the optical depth of neutrinos reaches unity [117]. The optical
depth is defined as the number of mean free paths travelled along a trajectory (see Section 3.5.2).
This definition of the neutrinosphere is also often referred to as the “transport sphere” [117, 118].
Another common definition known as the “energy sphere” is defined to be the surface where neutrinos
cease to be in thermal equilibrium with the stellar matter [117, 118]. Note that these two definitions
do not necessarily coincide, as shown in Figure 3.7.
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Figure 3.8: Luminosity evolution of νe (solid), νe (dashed) and νx (non-electron
flavour neutrinos) (dotted) from simulation of a 15M⊙ progenitor. Figure adapted
from [57], which was originally from [120].

order of 1053 erg/s [120]. Note that the burst does not have strong dependence on the
progenitor mass, as a result of the universality in the characteristics of the subsonic
collapse and bounce dynamics [121].

The transmission of the shockwave sees severe energy dissipation from the dis-
integration of iron-group elements, consequently stalling the shock. The shock is
expected to stall at the radius between 100− 200 km, which happens about 100 ms
after the core bounce [114, 117]. In the past, it was thought that the core bounce
shock would be able to instantly launch a supernova within several hundred millisec-
onds. More recent simulations appear to be in agreement with models from the 1980s
and 1990s, which disfavours such prompt explosions [114].

Accretion Phase and Shock Revival

As the shock dissipates, the supernova enters the accretion phase. At this stage of the
evolution, infalling matter continues to accrete onto the PNS. The amount of mass
accreted onto the PNS determines the eventual fate of the remnant. If the PNS, or
the later-formed neutron star (NS), mass were to exceed the Tolman-Oppenheimer-
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Volkoff limit [122, 123], the analogy of the Chandrasekhar limit, the PNS will implode
into a black hole. For progenitors of mass above 40M⊙, the black hole is expected
to form promptly from the core collapse with a core bounce too weak to induce a
supernova; whereas in the case of relatively lighter progenitors in the mass range of
20 − 40M⊙, the black hole might be formed subsequent to a weak supernova from
the aggregation of the remnants [124]. In the case of black hole formation, the light
curve is expected to terminate abruptly due to the engulfment of the neutrino-rich
core together with the strong gravitational redshift. This intriguing phenomenon will
be discussed in more detail in Chapter 8.

Alongside the accreting matter, the increasing density and temperature allows
thermal generation of neutrinos of all flavours. Moreover, the decrease in electron
lepton number caused by the neutronisation burst gives rise to higher concentrations
of positrons created from pair production [117], which, in turn, leads to the production
of electron anti-neutrinos from positron capture. The channels for the production
of different flavours of neutrinos are summarised in Figure 3.7. Since the electron
flavour neutrinos can interact via the charged current channels, the luminosity of
these neutrinos tend to be higher than that of the non-electron flavours, which is also
clear from Figure 3.8.

To successfully launch a supernova, the standing shockwave will have to be
revived. The exact mechanism for shockwave revival, possibly a combination of
neutrino-heating, convection and magnetic fields, is still unclear and under intensive
discussion [111]. At present, the scenario considered most likely is neutrino heating
from the nascent PNS. Neutrinos emitted from the PNS are expected to heat up
the stalled shockwave by νe and νe captures on nucleons, as well as neutral current
scatterings of all flavours. There is, however, the competing effect of neutrino cooling
via neutrino losses from the aforementioned channels listed in Figure 3.7. Since the
cooling rate along the radius falls more quickly than that of the heating rate x, there
will be a region in the shockwave of net gain in energy, called the “gain layer”. With
sufficient energy deposited, on the order of 1050 − 1051 erg [126], the shockwave will
be revived, initiating the final supernova explosion.

Cooling Phase

As the supernova explodes, expelling all the outer envelopes, the accretion phase
comes to an end. The remnant PNS is left to collect what was left behind the

xEnergy gain in the standing shock region is proportional to the inverse of the total area, assuming
an isotropic distribution, ∝ R−2. The cooling rate, on the other hand, is proportional to T 6 (the
luminosity ∝ T 4 and the emission cross section ∝ T 2), whereas the temperature of the atmosphere
of a PNS falls with radius T ∝ R−1, the “shallow” case in [125]. Therefore, the cooling rate follows
∝ R−6.
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shockwave and cool down. At this phase, the neutrino luminosity is expected to
decrease almost exponentially. When the nascent NS becomes transparent to the
neutrinos, tens of seconds after the explosion, the luminosity will see an even steeper
decline [114]. Luminosities and energies amongst the different flavours are nearly
uniform for the entire cooling phase. There are, in general, no further notable features
to be expected past this point. Nonetheless, there are speculations that under certain
circumstances things such as black hole formation can be postponed to as late as the
cooling phase, for instance, see [127].

3.3.2 Electron Capture Instability
Stellar progenitors on the lighter end, 8 − 10M⊙, form an ONeMg core eventually
sustained by the electron degeneracy pressure, as discussed in Section 3.1 and plotted
in Figure 3.6. With the core elements remaining inert and shell burning carrying on,
the core density, and thus the Fermi energy, continues to increase until the point where
electron captures on neon and magnesium become energetically favourable [111]. This
capture greatly reduces the degeneracy pressure from the electrons leading to an
eventual collapse. Along with the core contraction, the central temperature of the
core soon meets the oxygen ignition temperature, initiating oxygen deflagration [128,
129]. The infalling matter is then incinerated at the oxygen deflagration front into a
state of NSE. The rate of electron capture will be accelerated in NSE regions, i.e., the
core, due to the rapid captures on free protons, which, in turn, further accelerates the
process of the core collapse. Finally, a proto-neutron star (PNS) will be formed in
the core once it reaches nuclear densities, at which point the collapse is halted by the
nuclear strong force. The subsequent evolution, and consequent supernova, proceeds
in a similar fashion as in the iron CCSN case described in Section 3.3.1.

This supernova, type II in fact [128], is most commonly known as the “electron-
capture supernova”, and it is estimated to constitute around 20 − 30% of the total
CCSN rate [111, 130, 131]. It is accompanied by copious neutrino emissions, yet of
relatively lower energies compared to that of the iron CCSN, due to the comparatively
cooler core [119, 132].

3.3.3 Pulsational Pair Instability
Supermassive stellar progenitors, of masses about 100− 260M⊙ and with low metal-
licity, destabilise via another route. These supermassive stars are able to reach tem-
peratures sufficiently high for electron-positron pair production at relatively lower
densities, and thus lower degeneracy suppression on pair production [133]. Typically,
when the core temperature reaches 109 K, i.e., soon after carbon burning, the pair pro-
duction sees a strong onset [90, 92]. The conversion of photons into electron/positron
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pairs dissipates a significant amount of energy leading to instant destabilisation of
the core, followed by gravitational collapse. As the core contracts, similar to the
case of the electron-capture supernova in Section 3.3.2, the core temperature rises
to the ignition temperature for oxygen. Nonetheless, for such massive stars with
extraordinary gravitational pressure, the exothermic oxygen fusion does not lead to
immediate expansion of the core, and, hence, further accelerates the fusion by the
increased temperature, creating a self-reinforcing loop. This will eventually lead to
oxygen “detonation”, viz., an oxygen-induced thermonuclear runaway explosion.

For stars of mass 100 − 140M⊙, this primary explosion is expected to be merely
able to expel some outer layers [92, 93]. After the primary explosion, the remnant core
contracts again to resume hydrostatic equilibrium, commencing a new cycle. When
pair instability onsets once more, a secondary detonation occurs, ejecting another few
solar masses of matter. This repeating process continues until the progenitor mass
drops below 100M⊙, at which point it is expected to either evolve along the normal
CCSN route, as described in Section 3.3.1, or be completely unbound by the last
thermonuclear runaway explosion [93]. Owing to the repetitive pulsational feature,
it has earned the name “pulsational pair-instability supernova”.

On the even heavier side of these stars, 140 − 260M⊙, it is expected that the
progenitor will be obliterated in the first round of thermonuclear explosions, which
makes it a pure “pair-instability supernova” [92, 93]. Additionally, metallicity shifts
the mass threshold upwards to compensate for the mass loss from stellar wind, as
shown in Figure 3.5. The occurrences of pair-instability supernovae are, in fact,
quite scarce, only about 2% of CCSNe by including both the pulsational and non-
pulsational cases [93].

3.3.4 Photodisintegration
Finally, for stellar progenitors of the absolute highest masses, > 260M⊙, the thermally
produced photons near the end of carbon burning can become sufficiently energetic to
disintegrate the nuclei, strongly endothermic, in the core, inducing an implosion [93,
134]. Due to the exceptionally high mass of the progenitor, the ignition of any fusion
will not help in disrupting the collapse. In the end, the star simply collapses into a
massive black hole during the first instance of core collapse without any sign of core
bounce or supernova explosion.
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3.4 Galactic Supernova
Supernovae, in general, are quite common in the universe. In fact, a few hundred
such events are catalogued every year using current optical telescopes [135]. Next
generation telescopes such as LSST is expecting roughly a million supernova obser-
vations per year [136]. A galactic supernova, however, is extremely rare, or at least
the observations of such an incident are exceptionally rare. The previous directly
observed supernova in our galaxy was in 1604, also commonly known as “Kepler’s su-
pernova”, which was roughly 6.1 kpc from Earth in the constellation Ophiuchus [137].
No further trace, besides remnants, of galactic supernovae have been observed since
then.

The rate of galactic CCSN was estimated to be 3.2+7.3
−2.6 per century in [138]. Fur-

thermore, in [138], a modelled probability distribution of galactic supernovae against
distance from Earth was carried out. The result is shown in Figure 3.9. The resulting
differential distribution peaks at 9 kpc, indicating that it is the most likely distance
of the next galactice supernova, and roughly half of the galactic supernovae are ex-
pected to occur within that distance. It is, therefore, common practice to set the
distance at 10 kpc for supernova sensitivity studies [139, 140, 141]. For the studies
conducted in this thesis, the supernova distance is also set at 10 kpc by default unless
otherwise specified.
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Figure 3.9: The differential (top) and cumulative (bottom) probability distribution
of galactic CCSNe (black) and Type Ia supernovae (red) as a function of distance
from Earth. Figure adapted from [138].
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3.5 Supernova Neutrino Spectrum
This section will discuss the neutrino spectrum upon a supernova burst. A brief
overview will be given on the Garching group simulations, which are the supernova
models invoked in the studies in this thesis. Following that will be an analytical
demonstration of how the neutrino spectrum can be estimated.

3.5.1 Supernova Simulations by the Garching Group
In this thesis, four sets of supernova light curves have been kindly provided by the
Garching group at the Max Plank Institute for Astrophysics (MPA). These supernova
light curves were simulated using the PROMETHEUS-VERTEX code [142, 143]. The
flux simulation covers almost the full neutrino burst, and spherical symmetry is as-
sumed for the entire process. In other words, these are one-dimensional simulations.
The light curves are labelled as: ls220-s40.0c-bh, ls220-s40s7b2c-bh, ls220-s27.0co,
shen-s8.8. The first two flux models are based on black-hole-forming models, hence
the suffix, with progenitors of 40M⊙ from Woosley and Weaver [144], s40s7b2c, and
from Woosley, Heger and Weaver [91], s40.0c. Additionally, the third light curve is
based on a 27M⊙ standard iron core collapse model also from Woosley, Heger and
Weaver [91]. All three of these models were carried out using the ls220 equation of
state by Lattimer and Swesty with nuclear incompressibility xi set at 220 MeV [147].
The fourth model, on the other hand, is for an electron-capture supernova of progen-
itor mass 8.8M⊙ from Hüdepohl et al. [132], which uses a relatively stiffer equation of
state labelled shen from Shen et al. [148]. Details of these models are summarised in
Table 3.2. However, it should be noted that these one-dimensional simulations do not
in general explode in a spontaneous manner, except for the 8.8M⊙ electron-capture
supernova model. The iron core-collapse supernovae are launched artificially xii at
around 0.5 s post bounce.

xiNuclear incompressibility characterises the energy required per nucleon to compress the nu-
clear matter from a state of minimum binding energy, known as “saturation”, and is defined as
9n20

∂2(E/A)
∂n2 |n=n0

, where n is the nucleon number density and n0 = 0.16 fm−3 is that upon satura-
tion [145, 146].

xiiPopular methods include: the internal energy bomb, the piston-driven explosion and enhanced
neutrino heating. The internal energy bomb approach injects significant amounts of heat to certain
regions in the star, increasing its thermal pressure [149]. The piston-driven explosion inserts mass
points, “pistons”, that follow specified trajectories into the star, which will push and accelerate the
stellar material driving an explosion [144]. Finally, there is the enhanced neutrino heating method,
where the neutrino opacity of the star is manually reinforced to increase the energy gain from
neutrino heating [150].

43



3.5. SUPERNOVA NEUTRINO SPECTRUM

Model Label Equation of State Progenitor Mass Remnant Reference

ls220-s40s7b2c-bh ls220 [147] 40M⊙ BH [144]

ls220-s40.0c-bh ls220 [147] 40M⊙ BH [91]

ls220-s27.0co ls220 [147] 27M⊙ NS [91]

shen-s8.8 shen [148] 8M⊙ NS [132]

Table 3.2: List of Garching model light curves studied in this thesis. The remnant
neutron stars and black holes are abbreviated as NS and BH, respectively.

3.5.2 Supernova Neutrino Energy Spectrum
Consider the case of neutrinos of flavour α emitted from a hot PNS. At a given
luminosity Lα and mean energy ⟨Eα⟩, the rate of neutrinos emitted can be roughly
estimated by

dNα

dt (t) =
Lα(t)

⟨Eα⟩(t)
. (3.1)

Multiplied by the normalised energy distribution function, one arrives at the differ-
ential neutrino flux with respect to time t and energy E

d2Φ

dEdt =
dNα

dt × fα(E, t)∫∞
0
fα(E, t)dE

(3.2)

where fα(E, t) is the energy distribution function of να. Though it was predicted
in [151] that the neutrino spectrum is likely to deviate from that of a thermal distri-
bution, it was thought that the deviation is not large. The energy distribution can,
therefore, still be parametrised in a form based on the Fermi-Dirac distribution [152]

fα(E, t) =
E2

1 + exp (E/T (t)− ηα(t))
(3.3)

where T is the temperature and ηα is the so-called degeneracy parameter, accounting
for the deviation from the thermal distribution.

Indeed, it was then demonstrated in [153] that the neutrino luminosity spectrum is
“pinched”, viz., the high and low energy ends are relatively suppressed whilst holding
the mean energy constant. This is due to contributions from neutrinospheres asso-
ciated with different neutrino energies, which are of varying temperatures. Consider
the mean free path λ of the neutrino

λ ∝ ρ−1σ−1 ∝ ρ−1E−2 (3.4)
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Figure 3.10: Spectrum pinching ⟨E2⟩/⟨E⟩2 versus the degeneracy parameter η (left)
and shape parameter β (right). Figure adapted from [57].

where ρ is the density, σ is the cross section, and the relation σ ∝ E2 comes from
ν-nucleon scattering (see Section 7.1.3). By the definition of the neutrinosphere, one
then arrives at the expression ∫ ∞

r∗(E)

λ−1dr = 1 (3.5)

where r∗ is the radius of the neutrinosphere corresponding to the neutrino of energy
E, i.e., the emission radius of the given neutrino. Suppose the matter profiles are of
the form ρ ∝ r−δ and T ∝ r−γ, Eq. 3.5 suggests the following relations

r∗ ∝ E
2

δ−1 , T∗ ∝ E
−2γ
δ−1 . (3.6)

This leads to the spectral luminosity distribution

dLα

dE ∝ 4πr2∗ ×
E3

1 + exp (E/T∗)
∝ E3+ 4

δ−1

1 + exp
(
C · E1+ 2γ

δ−1

) (3.7)

where C is some proportionality constant. Given that δ > 1 and γ > 0 [154], it is
then clear from Eq. 3.7 that the luminosity of higher and lower energy neutrinos are
relatively suppressed.

The degree of pinching in the distribution can be characterised by the pinching
parameter pα, proposed in [155],

pα =
⟨E2⟩/⟨E⟩2

⟨E2⟩/⟨E⟩2|η=0

(3.8)
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where the denominator can be calculated without much difficulty [125]

⟨E2⟩
⟨E⟩2

∣∣∣∣
η=0

≈ 1.3029. (3.9)

From the expression of Eq. 3.8, it is obvious that the extremities of the spectrum will
be pinched for pα < 1, and enhanced (the so-called “anti-pinch”) if pα > 1.

As it turns out, the thermal picture does not fit the supernova core conditions.
The basis for describing the spectrum with a Fermi-Dirac-like form does not stand out
as convincing as it initially appeared to be. Therefore, another parametrisation of the
energy distribution function, proposed in [125] on the basis of analytical simplicity,
is frequently quoted in later studies

fα(E, t) =

(
E

⟨E⟩(t)

)βα(t)

exp
(
−(1 + βα(t))

E

⟨E⟩(t)

)
(3.10)

where βα is called the shape parameter defined by the relation

⟨E2⟩
⟨E⟩2

=
2 + βα
1 + βα

, (3.11)

and thus
βα =

2⟨E⟩2 − ⟨E2⟩
⟨E2⟩ − ⟨E⟩2

. (3.12)

The energy distribution in this form is now simply characterised by the shape pa-
rameter βα and mean energy ⟨E⟩. Furthermore, the advantage of parametrising
the distribution in the form of Eq. 3.10 is best exhibited in the reproduction of the
anti-pinched spectrum. It is evident from Figure 3.10 that ⟨E2⟩/⟨E⟩2 approaches a
specific value for ηα < 0, i.e., the ⟨E2⟩/⟨E⟩2 value becomes practically degenerate.
The distribution with respect to βα, on the other hand, increases without limit.

Finally, by working out the normalisation of Eq. 3.10, the differential flux at the
source can be written as

d2Φ

dEdt =
(1 + βα)

1+βα

Γ(1 + βα) · E

(
E

⟨E⟩(t)

)1+βα(t)

exp
(
−(1 + βα(t))

E

⟨E⟩(t)

)
× dNα

dt . (3.13)

The flux information can then be carried out via integration. Note that the neutrino
oscillations discussed in Chapter 2 would alter the fluxes observed on Earth.
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Chapter 4

The SNO+ Detector

The Sudbury Neutrino Observatory (SNO) located in the underground laboratory of
SNOLab in Sudbury, Canada, was the deepest underground neutrino detector of its
time [156]. SNO+ is the successor of SNO, re-utilising the existing infrastructure of
SNO and replacing the heavy water with 780 tonnes of liquid scintillator [2]. Both the
hardware and software were upgraded to handle the transition to liquid scintillator.
The ultra-pure water, filled by May 2017 [157], was completely removed by April
2021, and the SNO+ target volume is now filled with liquid scintillator, undergoing
in-situ inspections of the configuration in order to proceed. For the primary physics
goal of SNO+, to detect potential 0νββ events from 130Te, tellurium will be loaded
into the scintillator soon after the temporary pure-scintillator data-taking phase.

Details of the SNO+ experiment will be briefly outlined in this chapter. It will
start with the hardware setup of the SNO+ detector, followed by an introduction
to the three phases of data acquisition and the corresponding detection material.
Finally, the electronics and software will also be explained.

4.1 Detector Hardware
The SNO+ detector is situated at the Vale Creighton mine 2,092 m below surface,
providing 6,010 m.w.e i shielding from cosmic radiations [2]. This results in a muon
rate of 63 per day for a circular area of 8.3 m radius, which can be converted to nearly
3 per hour in the SNO+ detector. Within the mine, a cavity of approximately 34 m
height and 22 m width was excavated to install the detector. This cavity is filled
with roughly 7 kilotonnes of ultra-pure water, which shields the target volume from
possible backgrounds emanating from the walls of the cavity.

iMetre water equivalent is a measure of effective attenuation of cosmic rays [158].

47



4.1. DETECTOR HARDWARE
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Figure 4.1: Schematic view of the SNO+ detector.

With the infrastructure originally employed in SNO, the detection material is
loaded into the target volume isolated within an acrylic vessel (AV). The AV consists
of a sphere of 6 m radius and a neck of 6.8 m height, and 1.5 m diameter attached to
the top of the sphere. To maintain the entire structure at a fixed position, hold-up
and hold-down ropes were installed. Hold-up ropes are a legacy from SNO to keep
the AV from sinking, given that it was filled with heavy water. Hold-down ropes, on
the contrary, were prepared for SNO+ for the liquid scintillator of about 0.86 g/cm3

density [159]. The schematic overview of the detector is sketched in Figure 4.1.
The AV is surrounded by 9,455 Hamamatsu R1408 photomultiplier tubes (PMT),

of 8-inch diameter, to capture the photon signals of the interactions [156, 157]. These
PMTs are attached to the PMT support structure (PSUP), which is a hollow geodesic
sphere of 8.9 m radius constructed in stainless steel. According to the way they are
mounted, the tubes can be categorised into three classes. First of all, there are the
normal PMTs, taking up the majority with 9,362 tubes, that are directed towards
the AV covering 54% of the solid angle [157, 160]. There are then 91 PMTs oriented
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outwards, often referred to as OWL (outward-looking) tubes, to veto background
events emerging from the exterior. Finally, there are the 4 neck PMTs mounted on
the AV neck to monitor scintillation light from events within the neck.

4.2 Phases of SNO+
The SNO+ experiment is scheduled to undergo three phases of data taking, each
with a different type of detection material loaded into the target volume: ultra-pure
water, pure liquid scintillator and tellurium-loaded scintillator. An overview of each
phase together with the physical purposes will be described in this section.

4.2.1 Water Phase
Between May 2017 and July 2019, SNO+ started as a water Cherenkov detector in
order to re-commission the detector and mitigate radon ingress from the mine air.
During this phase, the AV was filled with 905 tonnes of ultra-pure water.

Though it was not the main target of the experiment, physics analyses can still
be carried out with the data collected in water phase. The physics goals for water
phase were the search for invisible nucleon decays and the measurement of the 8B solar
neutrino flux [161]. In addition, various checks on the performance and response of the
PMT and data acquisition system together with external background ii measurements
were also performed during this period.

4.2.2 Pure-Scintillator Phase
SNO+ started its transition to scintillator phase on the 19th of July, 2019. The bulk
fill of the 780 tonnes of liquid scintillator was completed by the 26th of March, 2021, as
shown in Figure 4.2, with some ultra-pure water remaining in the bottom of the AV,
which was finally removed by the 8th of April, 2021. The liquid scintillator adopted by
SNO+ is a linear alkylbenzene (LAB) based solution with 2,5-diphenyloxazole (PPO)
as the solute [2]. PPO serves as the primary fluor which suppresses the self-absorption
by LAB and shifts higher energy LAB fluorescence to wavelengths where the SNO+
PMTs are more sensitive, and thus directly affects the light yield. In order to gain
maximum light yield, a target PPO concentration of 2 g/L was determined empirically
as a compromise between the self-absorption of PPO and its light yield enhancement.
This concentration level is expected to produce a light yield of 11, 900± 632 photons
per MeV [157]. By the time writing, the PPO level is about 1.1 g/L.

iiThe backgrounds external to the AV. Main sources include the 208Tl and 214Bi in the ropes,
shielding water, AV shell and PMT glass.
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Figure 4.2: Photo of SNO+ taken on the 26th of March, 2021.

One of the main purposes for keeping the detector in a configuration of pure scin-
tillator is to measure the radioactive purity of the scintillator. Amongst the internal
backgrounds, i.e., the backgrounds within the target volume, the 238U and 232Th de-
cay chains are two prominent sources of radioactivity. As Borexino has demonstrated,
the 238U and 232Th levels in liquid scintillator can be brought to concentrations as
low as 10−17 − 10−18 g/g [162, 163]. The measurements of the 238U and 232Th chains
are studied in Chapter 5.

On top of that, various physics analyses are planned to be conducted in this phase,
taking advantage of the substantially lower energy threshold and low background,
including the measurements of reactor anti-neutrinos, geo-neutrinos and low energy
solar neutrinos; and the search of supernova neutrinos. Relevant studies are discussed
in Chapters 6 and 7 of this thesis.
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Figure 4.3: Sensitivity of 0νββ half-life as a function of the length of data-taking
time in SNO+. Figure from [164, 165].

4.2.3 Tellurium-Loaded Phase
Finally, once the relevant planned checks and adjustments are completed, SNO+ will
proceed to its major scientific stage — the tellurium-loaded phase. At this stage, the
target is to load the scintillator with natural tellurium to the mass concentration of
0.5%.

As mentioned in Section 2.3, the physics goal of this phase, as well as the experi-
ment, is to detect 0νββ from 130Te. There are several reasons why 130Te is adopted, as
listed in [2]. Firstly, 130Te has a relatively long 2νββ half-life, of 8.2×1020 years [166],
which would help in mitigating this background. In comparison, the other can-
didate that was initially considered was 150Nd, which also has a 2νββ half-life of
9.11× 1018 years [167]. Following that, 130Te is also a naturally abundant isotope, of
34.08%, allowing loading without enrichment. Finally, the Q-value of the 130Te 0νββ
process is above 2 MeV, which makes the signal relatively easier to separate from
most of the radioactive backgrounds. All of these values for 130Te and other possible
candidate isotopes are listed in Table 2.1.

For a data collection period of five years with 0.5% of tellurium load, SNO+ is
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4.3. Cosmology and Neutrino Masses

4.3.1. The Parameter Σ. The three-light neutrino scenario is
consistent with all known facts in particle physics including
the new measurements by Planck [34]. In this assumption,
the physical quantity probed by cosmological surveys, Σ, is
the sum of the masses of the three light neutrinos:

Σ ≡ 𝑚
1

+ 𝑚
2

+ 𝑚
3

. (37)

Depending on the mass hierarchy, is it possible to express
Σ as a function of the lightest neutrino mass 𝑚 and of the
oscillation mass splittings. In particular, in the case of NH,
one gets

𝑚
1

= 𝑚,

𝑚
2

= √𝑚2 + 𝛿𝑚2,

𝑚
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2
,
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while, in the case ofIH,
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2

2
,

𝑚
2
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2
,

𝑚
3

= 𝑚.

(39)

It can be useful to compute the mass of the lightest
neutrino, given a value ofΣ.This can be convenient in order to
compute𝑚

𝛽𝛽

as a function of Σ instead of𝑚 (in Appendix C,
an approximate (but accurate) alternative method for the
numerical calculation needed to make this conversion is
given). In this way,𝑚

𝛽𝛽

is expressed as a function of a directly
observable parameter.

The close connection between the neutrino mass mea-
surements obtained in the laboratory and those probed
by cosmological observations was outlined long ago [131].
Furthermore, the measurements of Σ have recently reached
important sensitivities, as discussed in Section 7.

In Figure 6(b), an updated version of the plot (𝑚
𝛽𝛽

versus
Σ) originally introduced in [132] is shown. Concerning the
treatment of the uncertainties, we use again the assumption
of Gaussian fluctuations and the prescription reported in
Appendix B.

SNO+

Figure 4.4: The effective Majorana mass (mββ) limit expected to be achieved by
SNO+ in five years time. The shaded regions in green and red are the 3σ regions of
mββ given the inverted and normal hierarchy scenarios, which are calculated based on
the given lightest neutrino mass and the uncertainties in the oscillation parameters.
Figure adapted from [50].

expected to deliver a limit on the 0νββ half-life of 1.9 × 1026 years [164], as plotted
in Figure 4.3. Converted to effective Majorana mass mββ, this measurement would
correspond to a limit of 37− 89 meV, as depicted in Figure 4.4. As a demonstration,
the resulting spectrum in the case of a Majorana mass mββ = 100 meV in a five-year
run using the IBM-2 nuclear matrix element [62] is shown in Figure 4.5.

Though not severe, the introduction of tellurium to the scintillator will lead to a
decrease in the light yield and a rise in the background levels. With the relatively
lower light yield and higher background level, the physics studies taken during the
pure scintillator phase could potentially be affected. The supernova studies, with
most events at several tens of MeV, are not expected to be affected to any significant
degree, except for the measurement of proton elastic scattering which is of low visible
energy and will be further discussed in Chapter 7.
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Figure 4.5: Stack plot of event counts for 0νββ and all relevant backgrounds ex-
pected for five years of data-taking plotted against the visible energy in the detector.
This plot uses a Majorana mass mββ = 100 meV and the IBM-2 nuclear matrix ele-
ment [62]. A spherical fiducial volume of radius 3.3 m is applied. Figure originally
from [164, 165].
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4.3 Detector Electronics and Data Processing
The detectable physical interactions in SNO+ will yield photons, which will be
recorded in the detector in the form of PMT “hits”. When an event is triggered,
the time and charge information will be retrieved from the PMTs that have regis-
tered a hit. Knowledge about the physics event observed in the detector would then
be gathered from this information. This is the basic idea of how signals are converted
to data in SNO+. The details of this process will be described in this section.

4.3.1 Photomultiplier Tubes
The 8-inch Hamamatsu R1408 PMTs, shown in Figure 4.6, used in SNO+ were
inherited from SNO. When a photon hits the photocathode a photoelectron will be
created via the photoelectric effect. This electron is then accelerated by the electric
field within the tube, and directed to a series of nine dynodes each inducing secondary
photoelectron emissions. In the end, these PMTs are expected to result in a gain of
107 electrons per photoelectron [168], generating a measurable signal to be collected
at the anode situated at the base of the PMT.

In addition, all of the normal PMTs are equipped with a truncated Winston-cone-
shaped reflective concentrator of 27 cm outer diameter [169]. These concentrators lead
to an increase in the effective solid-angle coverage of the PMTs by focusing photons
onto the photocathodes. Without the concentrators, the coverage would be a mere
31% [156] constrained by the geometry, compared to the 54% with concentrators.
The PMT together with the concentrator as a unit are contained in hexagonal cases
mounted to the PSUP.

Each of these PMTs is connected to the detector electronics via waterproof BNC
cables, providing the high voltage (HV) to the PMTs and also transmitting the anode
pulse signals. The cables are of equal length in order to ensure the transmission times
from each PMT are the same. These cables connect to electronics crated in the room
just above the cavity.

4.3.2 Electronics and Trigger System
To distinguish the events which might possibly correspond to physics interactions
worth recording, a trigger system is crated on top of the deck above the detector
cavity. A sketch of the electronic signal path is shown in Figure 4.7.

The PMTs are connected to a paddle card with a dedicated channel on it. A total
of eight PMTs are connected to each paddle card, with four paddle cards per PMT
interface card (PMTIC), i.e., 32 channels per PMTIC. The PMTIC then passes the
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Figure 4.6: Specifics (left) and circuit diagram (right) of the Hamamatsu R1408
PMT. Dimensions of the left plot are in centimetres. Figure adapted from [156] (left)
and [168] (right).

signals to the front end card (FEC), in which the PMTIC is linked to the daugh-
terboards (DB) of the FEC. Each DB contains two chips setting the thresholds of
discriminators for each channel and two chips to record the PMT times. If the pulse
amplitude exceeds the discriminator thresholds, the corresponding PMT channel will
be triggered, registering a “hit”. Within the event time window of a single global
trigger (GT), only the first hit in each PMT will be registered.

When a channel is triggered, the charge read from individual PMTs will be am-
plified and integrated over three time windows:

• QHS: high-gain charge integration over a short time window of 60 ns

• QHL: high-gain charge integration over a long time window of 400 ns

• QLX: low-gain charge integration over either time window

All of this information will be temporarily stored on the FEC. Furthermore, each
PMT produces four signals for triggering a GT:

• ESUMHI: the high-gain copy of the PMT pulse
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Figure 4.7: Schematic sketch of the signal paths from the PMT to the master trigger
cards.

• ESUMLo: the low-gain copy of the PMT pulse

• N100: square pulse of length 100 ns

• N20: square pulse of length 20 ns

Since the N100/N20 signal from each PMT is equal in amplitude, it is essentially
a count of the number of PMT hits within the 100/20 ns time window. Note that
amongst the four signals related to the issuance of a GT, the N100 is the main GT
trigger used in SNO+.

The ESUM signals together with the N100 and N20 signals from each DB will be
summed over all the channels by the FEC, and forwarded to the single crate trigger
card (CTC). A crate is made up of 16 sets of PMTICs and FECs. In total, there
are 19 such crates in SNO+. Each crate will then submit the trigger signals to an
analogue master trigger card (MTCA). The MTCA sums the signals from all the
individual crates. One MTCA is used for each type of trigger signal. Note that
the OWL PMTs, producing only ESUMHI, ESUMLO and N100 signals, are summed
separately. There are, therefore, 7 MTCAs in total.
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Figure 4.8: Timing of the SNO+ trigger system when the trigger threshold is passed.
Since the transmission of signal from FEC to MTC takes about 110 ns, the earliest
time for an event at the FEC to initiate the next GT is 110 ns before the MTC lock
is lifted.

The summed signals will be passed from the MTCA to the digital master trigger
card (MTCD), digitising the signals and detecting if any of the pulses pass the relevant
thresholds. If any summed signal passes the thresholds set on the MTCD, a GT,
with an unique ID (GTID) assigned, will be issued. Additionally, the trigger time
is recorded by a 50 MHz clock, which resets approximately every two days and is
synced with the Global Positioning System (GPS) clock.

Once a GT is issued, the MTCD will be forbidden from issuing another GT for a
time interval of 450 ns. The GT is sent back to the FECs, and the data held will be
read out. The PMT information at each channel are constantly digitised and cached
at the FEC by the analogue-to-digital converters (ADCs). These digitised data will
be held for a 400 ns time interval known as GTValid, beyond which the data will
be discarded. When the FEC receives the GT, all the data within GTValid will be
read out, forming an event. GTValid is, therefore, often referred to as the event
time window. Furthermore, the time for signal transmission between the FECs and
MTCD is 110 ns, so there will be a 220 ns delay between the hit that caused the
GT and the time when the GT reaches back to the FECs [170]. The time window
thus includes signals within 180 ns prior to the triggering hit. The time intervals and
windows just described are summarised in Figure 4.8.
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Figure 4.9: Schematic illustration of the 96-bit digitised PMT hit information.

4.3.3 Event Data Flow
When a GT is issued, the digitised PMT information read out from the channels will
be stored in a 4 MB FIFO memory on the FEC. The digitised information will be
96 bits long, as depicted in Figure 4.9, comprising the following information:

• PMT logical channel number (PMT LCN) (unique to each PMT): 14 bits
The PMT LNC is also a word with bit fields that is defined as

LNC = 512×Ncrate + 32×Ncard +Nchannel (4.1)

where Ncrate, Ncard and Nchannel corresponds to the numbers assigned to a given
crate, FEC and channel, respectively.

• Time to amplitude converter (TAC): 12 bits
TAC is the digitised time of the triggering PMT hit, ranging from 0 to 4,095
and giving a resolution of around 0.1 ns.

• QHS: 12 bits

• QHL: 12 bits

• QXL: 12 bits

• GTID: 24 bits
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• CMOS cell information: 4 bits
The CMOS cell bits provide information regarding where the analogue data is
stored.

• Miscellaneous CMOS information: 6 bits
These final bits stores information related to any error occurring in the CMOS
chips, including whether the memory is full.

A customised translator board (XL3) in each crate copies the data from the FEC
FIFOs in its crate, and transfers the data to the builder. The builder then constructs
files in ZDAB format to store the information. When the ZDAB file reaches a size of
999,940,000 bytes, the file will be closed and a new ZDAB file will be created to carry
on if there are remaining data for the given data “run”, which is an hour of data by
default. These output ZDAB files are then in a state ready for analysis. They will
be further transferred to the Grid [171] for processing to to further convert the data
to ROOT-format [172] files for analysis. The data flow is summarised schematically in
Figure 4.10.

FEC

(16 in total)
XL3

Crate

Builder 

System
Ethernet

ZDAB 

File
Output

Figure 4.10: Flow of the SNO+ data acquisition system.
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4.4 Full Reconstruction
In order to proceed with the physics analyses aimed to be carried out in SNO+, it
is necessary to convert the original SNO+ detector events, which consists of trigger
read-outs and PMT-hit data, into high-level event information, e.g., position, energy
or event time, etc. The process of this conversion is known as reconstruction. Full
reconstruction methods in SNO+ reconstruct the position, time and energy of an
event. Depending on the configuration, the full reconstructions include: waterFitter
for water phase, scintFitter for scintillator phase, and partialFitter for the filling
phase. For partialFitter, the configuration will be determined by an user-defined
interface level, above which is the scintillator volume and below it the water volume.
In this section, the focus will be put on the position and time reconstructions, whereas
the energy reconstruction will only be briefly described.

4.4.1 Position and Time Reconstructions
Vertex reconstruction in SNO+ is based on the pattern of the PMT hit time distribu-
tion. The underlying principle is simple: the PMTs closer to the true event position
get hit earlier and the farther the later. Full reconstruction algorithms then decide
the position and time by determining the best fit to the recorded hit time pattern.
In the case of an ideal detector with uniform material and absolute time resolution,
this position can be calculated directly via triangulation

|r⃗PMT − r⃗∗|
c

= tPMT − t∗ (4.2)

where c is light speed in the material, r⃗∗ and r⃗PMT are the positions of the event and
PMT hit, respectively; and t∗ and tPMT are the event time and PMT hit time. The
event vertex can, therefore, be solved with a set of four PMTs.

In practice, however, the electronic noise and the relatively long emission period
of the scintillation light introduces uncertainties to the fit results. These uncertain-
ties can be reduced by iterating this process in order to create a large collection of
estimated vertices. Information of the true vertex can then be extracted from the
overall distribution of this sample set. The Quad fitter, developed by I. Coulter [173],
is a position reconstruction method built upon this idea, which takes the median of
each coordinate distribution as the fit result. The use of the Quad fitter will also be
discussed in Section 6.2.3.

The fit result of Quad is taken as the initial position and time (a seed) for the full
reconstruction methods. Starting with this seed vertex, the light path is evaluated
by taking into account the light speed difference in different materials. Using this
augmented light path model, the emission time profile can be evaluated. The final
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vertex is then determined by performing a maximum likelihood fit on the time profile
with a probability distribution function (PDF). The PDFs are pre-determined using
simulations of evenly distributed electron events.

4.4.2 Energy Reconstruction
Energy in SNO+ is reconstructed based on the number of PMT hits (Nhit). The
Nhit value is first corrected according to the reconstructed position of the event to
account for the difference in PMT coverage across the detector. This corrected Nhit
value is then converted to a number of photo-electrons. Finally, the event energy
is estimated by exploiting the proportionality between the energy deposited in the
detection material and photo-electrons generated.

4.5 Data Analysis and Simulation — RAT
Data analysis and Monte Carlo (MC) simulations in SNO+ are done by using the
Reactor Analysis Tool (RAT) [174]. The RAT framework is written primarily in C++,
and invokes GEANT4 [175] and GLG4sim [176] libraries for the MC simulations. GEANT4
is used to simulate the geometry of the detector. The GLG4sim package, on the other
hand, is used to generate the primary event process and to simulate the optical
photons generated via Cherenkov radiation and scintillation. For simulations, the
propagation of every optical photon will be fully modelled from its creation to when
it is absorbed. In addition to the physical processes, the electronic responses are also
simulated.

The data or simulated events are then passed to the analysis algorithms, such as
the reconstruction methods, which are incorporated into the RAT framework. Finally,
the resulting analysed events are stored in ROOT-formats [172] for further analysis and
handling.

61



Chapter 5

Measurement of Internal
Backgrounds in Liquid Scintillator

The main theme of this chapter is to measure the uranium (238U) and thorium (232Th)
decay chain concentrations via bismuth-polonium (BiPo) coincidence tagging. The
decay chains are shown in Figures 5.1 and 5.2. The chapter will start with an intro-
duction of the decay chains as a source of internal backgrounds i in the detector. As
the results presented here include measurements spanning through the entire period
of filling the AV with liquid scintillator, there will be a brief account of the detector
configuration evolution during the phase transition. Details of the BiPo coincidence
analysis and the resulting measured 238U and 232Th contamination levels will then
follow. In addition to its primary purpose of estimating the 238U and 232Th levels, the
BiPo coincidence analysis has been proven to be a useful means of in-time monitoring
of the detector. The final sections of this chapter will be dedicated to this aspect of
the analysis.

Note that although the basic strategy of coincidence tagging is based on the
Monte-Carlo (MC) simulation studies of [4], the design and determination of certain
cuts applied on data, the functioning analysis script, and the analyses of the data in
Section 5.3; and the results presented in Sections 5.4 and 5.5 are original works of
the author.

5.1 238U and 232Th Decay Chains
As shown in Figure 4.5, the 238U and 232Th decay chains constitute a significant
fraction of the background in the spectral region of interest (ROI) for 0νββ detection.
The decay schemes of both decay chains are plotted in Figures 5.1 and 5.2. The

iIn the usage of SNO+, “internal” refers to inside of the AV and “external” for outside of it.
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Figure 5.1: 238U decay chain. The energies quoted are the primary channel α energies
for the α decays and Q value for the β decays.
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Figure 5.2: 232Th decay chain. The energies quoted are the primary channel α
energies for the α decays and Q value for the β decays.
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Source Target Concentration (g/g) Decay Rate (yr−1)

Internal H2O, Water Phase
238U Chain 3.5× 10−14 1.2× 107
232Th Chain 3.5× 10−15 4.1× 105

LAB-PPO, Pure Scintillator Phase
238U Chain 1.6× 10−17 4900
232Th Chain 6.8× 10−18 700
210Bi - 7.6× 108
210Po - 7.8× 108

0.3% Te-Loaded Scintillator, Tellurium-Loaded Phase
238U Chain 2.5× 10−15 7.6× 105
232Th Chain 2.8× 10−16 2.8× 104
210Bi - 7.9× 109
210Po - 9.5× 109

Table 5.1: Target purity level for different phases of SNO+, adapted from [2]. The
units of the 238U/232Th concentration “g/g” stands for grams of the isotope per gram
of detection material.

SNO+ collaboration has set 238U and 232Th chain target purity levels for the detection
material in different phases, which are listed in Table 5.1 [2]. These levels were largely
based on the purity achieved in Borexino [162, 163] as a realistic preliminary target,
where SNO+ is certainly making effort to seek further reductions.

By virtue of their long lifetimes, the 238U and 232Th decay chains can be assumed
to be in secular equilibrium ii [2]. Provided that all the isotopes are in equilibrium,
the 238U and 232Th levels can be inferred by measuring the corresponding BiPo co-
incidences: 214Bi-214Po (BiPo214) for 238U chain and 212Bi-212Po (BiPo212) for 232Th
chain. The equilibrium of radioisotopes after 222Rn and 220Rn is often broken by
radon ingress when having contact with the surrounding mine air. However, the
equilibrium can usually be restored within weeks due to the relatively short lifetimes
of the radon and the short-lived daughter-isotopes that follow. The issue of radon
ingress will be discussed in more detail in later sections.

iiThis is to say that the isotopes in the chain are decaying and being produced at the same
rate [177].
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Figure 5.3: The scintillator fill schedule of SNO+. Only interfaces that have remained
for more than a week are indicated. The dates labelled on the left are when the
scintillator interface first reached that position.

5.2 Scintillator Fill in SNO+
The filling of liquid scintillator started in October 2018. The transition of detection
material in SNO+ has been conducted by draining water from the bottom of the AV
and replacing the volume on top with liquid scintillator. This transitional period will
be referred to as the “partial-fill phase”. As planned, the collaboration performed
inspections on the internal background levels of the liquid scintillator during this
period. In fact, most of the results exhibited in this chapter are from this phase.

Major stages of the filling progress are shown schematically in Figure 5.3. Scintil-
lator fill in the AV started from July 2019, when neck fill was done, and was eventually
completed by April 2021. The final step of the filling is to augment the PPO load
from the current 1.1 g/L (as of the 22nd of November, 2021) to the desired 2 g/L,
which is expected to be done by March 2022.

Despite the fact that partial-fill was intended to be a temporary state of six
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Figure 5.4: Decay schemes for 212Bi (left) and 214Bi (right), adapted from [2].

months for preliminary scintillator assessments, the detector was forced to remain in
this state for a considerably longer time due to the pandemic since 2020.

5.3 Bismuth-Polonium Coincidence Tagging
The decay schemes of 214Bi and 212Bi are shown in Figure 5.4. From the decay
scheme, one can see that the majority of bismuth decays via the β channel: 214Bi
decays to 214Po with 99.979% branching ratio and 212Bi decays to 212Po with 64%
branching ratio. The polonium that follows undergoes an α decay with a sufficiently
short lifetime, τ = 237 µs for 214Po and τ = 431 ns for 212Po, suitable for coincidence
tagging. Thus, a series of selection cuts can be developed to identify this β − α
coincidence, i.e. β emission (Bi) with a subsequent α emission (Po).

The selection strategy, depicted in Figure 5.5, can be divided into three main
steps: identify a polonium candidate; set constraints on possible parent events by
applying inter-event cuts; and, finally, discern the bismuth event out of the eligible
parent event candidates. The selection of candidates consists of two cuts: a cut on the
number of PMT hits (Nhit), serving as a first order estimate of energy; and a fiducial
volume cut, rejecting events from the exterior. After identifying the candidates, a
time difference (∆t) cut and a position difference (∆r) cut are applied to confine the
time and distances between the candidate events.

5.3.1 Fiducial Volume Cut
The fiducial volume cut is essentially the selection of a target volume. Originally
in [4], the cut was chosen to be a single radial cut of r < 4000 mm designed to reject
external backgrounds and reduce the misidentification rate. The study on partial-fill
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Polonium Nhit cut Bismuth Nhit cut

Event I

Fiducial volume

Event II

Fiducial volume∆𝑟 cut + ∆𝑡 cut

BiPo coincidence

Polonium candidate Bismuth candidate

Figure 5.5: Scheme of the BiPo coincidence analysis. If Event II did not pass either of
the bismuth cuts, then the events prior to Event I will continue to be looped through
until there is a bismuth candidate or the upper bound of the ∆t cut is reached.

phase data has, however, suggested the need for more flexible choices regarding the
fiducial volume.

During phase transition, the configuration of the detector was constantly evolving
and the scintillator was often not mixed uniformly. To adapt to this situation, a
combination of radial cuts, Z cuts and ρ cuts was applied to better study the local
behaviour of the detector during filling, where Z is defined along the vertical direction
with Z = 0 mm at the equator and ρ =

√
X2 + Y 2 is defined on the horizontal plane.

Whenever the results are quoted, the chosen fiducial volume will be indicated in the
format of “Radial cut + Z cut + ρ cut”, where the radial cut will be designated
with R, the Z cut with Z and the ρ cut with ρ. A fiducial cut of r < 4000 mm
and 0 < Z < 6000 mm (the upper hemisphere) will, for instance, be labelled as
“R4000_Z6000_0”, and the ρ part is neglected since it is not applied.
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Assuming isotropic distribution for the isotopes in the liquid scintillator, the frac-
tion of events within the fiducial volume ϵFV can simply be expressed as

ϵFV ≡ NFV

NAV

=
VFV

VAV

(5.1)

where NFV and NAV are the number of events identified within the fiducial volume
and AV; and VFV and VAV are the respective volumes of the fiducial volume and AV.

On a side note, the AV neck, though also filled with scintillator, will not be
taken into consideration in this analysis due to its irregular geometry. The terms
“scintillator volume” or “AV”, whenever mentioned, only refers to the bulk volume
with r < 6000 mm, and the neck region shall always be specified as “AV neck” or
“the neck”.

5.3.2 Nhit Cut
Nhit is the number of PMT hits, which serves as a preliminary indicator of the event
energy. Polonium decays via an α decay and emits an α particle at a specific energy
resulting in a distinct and narrow energy, and thus Nhit, spectrum. The bismuth β
decay, on the contrary, gives rise to a broad spectrum ranging up to the Q value iii,
as a consequence of its three-body nature. Therefore, the broader bismuth Nhit cut
will contribute relatively less to the discriminating power of the analysis compared
to its polonium counterpart.

The Nhit cut values obtained in this section are based on the MC simulations
using RAT6.18.12. The actual values applied on the data, however, will have to be
adjusted according to the light yield level in the detector. In practice, the upper
limit of the cuts are usually relaxed by 20% to adapt the light yield shifts. Figure 5.6
shows the MC simulated Nhit spectra of BiPo214 and BiPo212, together with the
high rate internal backgrounds BiPo210, under the configuration with the scintillator
interface at Z = −5950 mm iv and a 0.5 g/L PPO concentration. One might notice
that BiPo210 also forms a β − α signal. However, the half-life of 210Po is 138 days,
which makes it practically impossible to identify such signals as coincidences.

From Figure 5.6, one will notice that the 214Po and 212Po peaks overlap each
other and have Nhit higher than most of the high rate backgrounds, and thus the
determination of the polonium cuts should be based upon the discrimination between
214Po and 212Po. As indicated in Table 5.1, the expected activity of the 238U chain

iiiThe Q value is defined as the energy released or absorbed in a nuclear reaction.
ivThough the actual detector configuration is Z = −6000 mm, i.e., fully filled, the processing fitter

used is still partialFitter (see Section 4.4) which requires an interface value above Z = −6000 mm.
The interface value for the current data processing is, therefore, set to Z = −5950 mm to avoid
potential errors.
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Figure 5.6: MC simulated Nhit spectrum of BiPo214, BiPo212 and BiPo210. A
fiducial cut of r < 5000 mm is applied to avoid geometric effects close to the AV
shell, in particular the light loss around the AV neck. Corrected Nhit cuts will be
applied separately to the regions close to the AV shell.

is almost two orders of magnitude higher than the 232Th chain. Consequently, the
polonium cuts are designed such that the more abundant 214Po are rejected in the
212Po identification, whereas the 214Po cut can afford overlapping with the 212Po peak.
The cuts are, therefore, decided to be (160, 280) for 214Po and (230, 320) for 212Po.

Efficiencies of the polonium cuts are determined by

ϵPo ≡
NPo

FV

NFV

(5.2)

where ϵPo is the efficiency of the polonium Nhit cut, and NPo
FV is the number of

events within the fiducial volume which passes the polonium Nhit cut. In the MC
simulation, the efficiencies are found to be 99.996% for 214Po and 90.5% for 212Po.
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As for the bismuth cuts, serving more as an auxiliary cut, the primary objective
is to remove the high rate backgrounds, mainly BiPo210 and 14C v. The 214Bi cut
is simply chosen to be (300, 1050) where the lower edge is just above the 210Bi
spectrum. On the other hand, a large fraction of the 212Bi spectrum happens to be
in a relatively more convoluted region, in which extracting a range for pure 212Bi
would be impractical. Eventually, the range for the 212Bi cut is set to be (150, 800)
to avoid the 210Po peak, 14C and most of the 210Bi spectrum, whilst rescuing most of
the efficiency. The bismuth cut efficiency ϵBi is calculated by

ϵBi ≡
NBi

FV+∆t+∆r

NFV+∆t+∆r

(5.3)

where NFV+∆t+∆r is the number of events within the fiducial volume passing the
inter-event cuts ∆t and ∆r; and NBi

FV+∆t+∆r is the number of those events passing the
bismuth Nhit cut. One would notice that ϵBi is defined with a different denominator
from ϵPo owing to the fact that the bismuth cut is applied after the inter-event cuts vi.

Corrections to the Nhit Cut

The Nhit intervals quoted above for the BiPo212 and BiPo214 coincidences are de-
cided based upon the results of MC simulations which assumes a rather idealistic
and stable configuration. In practice, however, there are situations that can cause
noticeable light yield changes. The two most prominent such situations are PPO
stratification and crate failures.

PPO stratification often happens during scintillator fill. The suspected reason for
the stratification is the presence of a temperature gradient preventing the scintillator
from mixing. When stratification happens, the nominal overall PPO concentration,
calculated simply by dividing the total PPO dose with the total scintillator volume,
will no longer be indicative of the overall light yield level. In this case, the Nhit
cuts will have to be re-tuned for each layer by manually scanning through the Nhit
distribution to identify the new Nhit ranges of the bismuth and polonium. Due to
the notable difference in activity, the BiPo214 is usually used as a benchmark to
determine the light yield and the BiPo212 cut will be scaled accordingly.

Crate failures occur when there are electronics issues in the detector which require
the malfunctioned crates to be turned off for maintenance. As a consequence, the
PMTs mounted to those crates will stop functioning. This reduces the PMT coverage

vThis background is not plotted in Figure 5.6 as it is not simulated in the latest MC sample
production, but the Nhit spectrum can still be inferred to be up to 60 hits from the previous MC
production which also simulates with a 0.5 g/L PPO concentration.

viNote that although the reverse, i.e., tagging bismuth then polonium, gives the same result, it
takes up much more computation time due to the looser Nhit cut of the bismuth.
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Figure 5.7: ∆r distribution of the MC simulated BiPo214 (blue line) and BiPo212 (red
line). The slight difference in the two distributions originates from the energy differ-
ence of the events, which affects the reconstruction resolution.

and causes the Nhit to decrease accordingly. To cope with this situation, the Nhit
cuts are simply scaled down by the fraction of crates turned off.

5.3.3 Position Difference (∆r) Cut
Ideally, the nuclear recoil caused by the bismuth β decay is negligible, and thus the
true position of the bismuth and polonium nuclei should be nearly identical. In
practice, however, the finite resolution of the position reconstruction, as introduced
in Section 4.4, introduces a spatial difference. This position difference between the
bismuth and polonium candidates is defined as

∆r ≡
√

(xPo − xBi)2 + (yPo − yBi)2 + (zPo − zBi)2 (5.4)

where {xi, yi, zi} are the reconstructed positions of the candidates i = Bi, Po.
The ∆r cut was decided upon the criterion of preserving roughly 99% of the

BiPo pairs. The most straightforward way to determine the cut range is to simulate
the BiPo pairs in the corresponding configuration, and examine the simulated ∆r
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Figure 5.8: Comparison of the ∆r distributions of the toy model (green line) and the
MC simulations (red and blue lines) shown in Figure 5.7.

distributions, such as Figure 5.7. Based on the simulated result shown in Figure 5.7,
a cut value of r < 1000 mm was chosen, where the actual efficiency was relaxed to
98% to round up the cut value.

This approach, albeit simple, is often not applicable as detailed simulations are
time-consuming and not always available for the constantly evolving partial-fill con-
figuration. In particular, since ∆r arises from the position reconstruction uncertainty,
the variation in the light yield levels that affects the reconstruction uncertainty will,
in turn, affect the efficiency of the ∆r cut.

A useful alternative is to model the BiPo pair by two random points in space
generated from a normal distribution of the given reconstruction resolution. For
instance, Figure 5.8 shows the ∆r distribution generated by the toy model with
a resolution of 155 mm, quoted from [178], for the same configuration as the MC
simulation in Figure 5.7. It is clear that the tail of the toy model distribution is
shorter than the simulated distributions. The reason is that the resolution of the
reconstruction is not uniform throughout the detector, and it worsens as it approaches
the AV shell and especially the AV neck. The toy model, which assumes a gaussian
with the average resolution, underestimates the tail of the position reconstruction
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and, hence, the tail of the ∆r distribution. Regardless of the underestimation in
the tail, the point achieving 98% efficiency turns out to be ∆r < 990 mm which is
fairly close to the 1,000 mm obtained from simulation. This approach provides a
computationally more efficient method to estimate the ∆r cut value for a constantly
evolving configuration.

5.3.4 Time Difference (∆t) Cut
The other inter-event constraint is the time difference between the bismuth and polo-
nium events. For a BiPo pair, the ∆t will be the decay time of the polonium nucleus.
The ∆t cut can, therefore, be determined based on the polonium lifetime.

The number of nuclei N remaining after a given time t can be described by the
exponential decay law

N(t) = N0 exp
(
−t
τ

)
(5.5)

where N0 is the initial number of nuclei and τ is the lifetime. For 212Po and 214Po,
τ212Po = 431 ns and τ214Po = 237 µs respectively. The efficiency of the ∆t cut ϵ∆t can
then be calculated by

ϵ∆t =

∫ ∆tup
∆tlow

exp(−t/τ)dt∫∞
0

exp(−t/τ)dt
(5.6)

where ∆tlow and ∆tup are the lower and upper limits of the ∆t cut. In [4], the upper
limit of the ∆t cut is selected to achieve a 99.95% efficiency when ∆tlow = 0. This
sets the upper ∆t limit to 1.8 ms for BiPo214 and 4 µs for BiPo212.

The lower ∆t limit requires further considerations. For BiPo214, as the lifetime
of 214Po is significantly longer than that of 212Po, the lower bound is set to 4 µs
which rejects the BiPo212 whilst causing only a slight sacrifice of 1.38%. The case
for BiPo212, on the other hand, is more complicated as the 212Po lifetime happens to
be of the same order as the SNO+ trigger time window. As described in Section 4.3.2,
the event time window in SNO+ is set to 400 ns. If the polonium decay happened
within 400 ns after the bismuth decay trigger, it will be written into the bismuth
event. For BiPo coincidences, this is known as an “in-window BiPo” event. This
analysis will focus only on the out-window BiPo coincidences. Accordingly, the lower
∆t bound for BiPo212 is chosen to be 400 ns. The resulting efficiencies calculated
with Eq. 5.6 are ϵBiPo214

∆t = 98.57% and ϵBiPo212
∆t = 48.4%.

During scintillator fill, it was soon discovered that these upper bounds are not
stringent enough for the high activity in the detector. The misidentification rate,
discussed in more detail in Section 5.3.6, was almost of the same level as the BiPo
signal, or even higher in the case of BiPo212. To rescue the purity of the tagged
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BiPo212 Tagging BiPo214 Tagging

Cut Interval Efficiency Cut Interval Efficiency

Lower Limit Higher Limit Lower Limit Higher Limit

Po Nhit Cut 230 320 90.5% 160 280 99.996%

∆t Cut 400 ns 800 ns 24% 4µs 1 ms 96.8%
∆r Cut - 1000 mm 97.9% - 1000 mm 98.3%

Bi Nhit Cut 150 800 69.5% 300 1050 82.3%

Overall Cut Efficiency 14.8% 78.3%

Branching Ratio 64% 99.979%

Combined Efficiency 9.5% 78.3%

Table 5.2: A summary on the cuts applied to the BiPo analysis with their respective
efficiencies. The overall cut efficiency is all the individual efficiencies multiplied to-
gether, whereas the combined efficiency is the overall cut efficiency further multiplied
by the branching ratio.

pairs, the upper bounds were lowered to 1 ms for BiPo214 and 800ns for BiPo212
bringing the efficiencies down to ϵBiPo214

∆t =96.8% and ϵBiPo212
∆t =24%, respectively.

5.3.5 Tagging Efficiency
The overall efficiency of the selection cuts is evaluated by combining the individ-
ual efficiencies of each cut. Table 5.2 lists the cuts deployed in the analysis and
their corresponding efficiencies. Note that the effect of the fiducial cut is not in-
cluded in the overall efficiency. As mentioned earlier, the detector has often been
in a rather agitated state during phase transition giving rise to the need of a more
versatile fiducial volume. It is, therefore, desirable to quote the tagging efficiency in
a volume-independent form. This is implicitly assuming that the tagging efficiency is
uniform within the scintillator volume, which, again, does not apply to regions near
the AV neck. Another important factor worth mentioning is the branching ratio. It
is included in the final efficiency in Table 5.2 for convenience when converting the
coincidence counts to the 238U and 232Th purity level, which can be seen in Section 5.4.

5.3.6 Misidentification
The analysis developed thus far has the potential problem of tagging other back-
ground events as BiPo coincidences. A method based on MC simulations to set an
upper bound on the misidentification rate was proposed in [4]. Besides that, a simpler
method was developed for analysing the data, which simply infers the misidentifica-
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tion rate from a fit to the ∆t distribution. Both methods will be introduced in this
section.

MC Estimation

Recalling the analysis flow in Figure 5.5, the analysis is initiated by the declaration of
a polonium candidate, then followed by retracing in time for possible bismuth events.
The rate of coincidences can, therefore, be estimated by the rate of polonium events,
denoted RPo, multiplied by the probability of finding a bismuth candidate within the
given time and position intervals, denoted PBi.

The rate of polonium candidates originating from a specific isotope i can be simply
calculated as

Ri
Po = Ri

all · ϵiFV · ϵiPo (5.7)
where Rall is the total event rate and the superscript i is designated to associate the
terms with the isotope i. The total rate of such candidates is then RPo =

∑
iR

i
Po.

The bismuth occurrence probability PBi within a time interval of ∆t with an
expected number of bismuth candidates of NBi is expressed as the sum of Poisson
probability distribution functions

PBi =
∞∑
n=1

(NBi)
ne−NBi

n!
= 1− e−NBi (5.8)

where NBi is evaluated by

NBi =
∑
i

N i
Bi =

∑
i

(Ri
all ·∆t) · ϵiFV · ϵi∆r · ϵiBi. (5.9)

When carrying out Eq. 5.9, ϵ∆r can be approximated by

ϵ∆r ≈
4
3
π∆r3

VFV

(5.10)

as an upper limit. Note that ϵiFV cannot be evaluated in the same fashion as Eq. 5.1.
Since the distribution of the external backgrounds are clearly not uniform, ϵiFV has
to be evaluated via simulations.

Finally, the misidentification rate is expressed as

Rfalse
BiPo = Rfalse

Po P false
Bi +Rfalse

Po P true
Bi +Rtrue

Po P
false
Bi (5.11)

where RBiPo is the rate of coincidence declared, and the superscripts true and false
indicate whether the quantities arise from genuine BiPo pairs or not, viz. whether
the isotopes i in Eqs. 5.7 and 5.9 are the corresponding polonium and bismuth.
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Data Fit

The MC method was extremely valuable in estimating the upper limit of the misiden-
tification rate without data. Nonetheless, as seen in Section 5.3.3, the dependence
on detailed simulations makes it impractical when the detector configuration starts
to evolve. Alternatively, it was noticed that the misidentification rate can be evalu-
ated directly by fitting the ∆t distribution of tagged BiPo pairs in data. As stated
in Section 5.3.4, the ∆t distribution of true BiPo pairs is characterised by Eq. 5.5.
The misidentified coincidences, as a random accident, should exhibit a uniform ∆t
distribution. Therefore, the ∆t distribution of the tagged BiPo coincidences should
be described by a form of

A exp
(
−t
τ

)
+B (5.12)

where A and B are constants reflecting the magnitude of the true and false coinci-
dences.
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Figure 5.9: BiPo214 ∆t fit using data from May 2021. The A and B values are counts
per bin.
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Figure 5.10: BiPo212 ∆t fit using data from May 2021. The A and B values are
counts per bin.

An example of the fit using data from May 2021 is shown in Figures 5.9 and 5.10.
From this example, one can clearly see that, due to the reasons described in Sec-
tion 5.3.2, the purity of the tagged BiPo214 is much higher than that of the tagged
BiPo212.
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5.4 Measurement of 238U and 232Th
In this section, the various measurements on the 238U and 232Th performed during
the data taking period from July 2019 to May 2021 will be presented and discussed.

Based on the equilibrium assumption of the decay chains, the decay rate of the
bismuth is equal to that of the corresponding 238U or 232Th decay chain:

1

τ214Bi

N214Bi =
1

τ238U
N238U

1

τ212Bi

N212Bi =
1

τ232Th

N232Th
(5.13)

where N is the number of the kind of isotope indicated in the subscript and τ is the
lifetime of the corresponding isotope. Eq. 5.13 can be further expanded and expressed
in terms of the tagged BiPo rates RBiPo:

(ϵFV · ϵBiPo214
comb )−1 ·RBiPo214 =

1

τ238U
· σ

238U ·MAV ·NA

m238U

(ϵFV · ϵBiPo212
comb )−1 ·RBiPo212 =

1

τ232Th

· σ
232Th ·MAV ·NA

m232Th

(5.14)

where σ is the per material mass concentration of the decay chains; ϵFV is the vol-
ume fraction of the fiducial volume chosen; ϵcomb is the combined efficiency listed in
Table 5.2; MAV is the mass of the scintillator in the entire AV; NA is the Avogadro
constant; and m is the molar mass of the isotope. The 238U and 232Th chain con-
centrations can, therefore, be estimated directly from the number of tagged BiPo
coincidences.

5.4.1 Radon Ingress
Ideally, with Eq. 5.14, the estimation of 238U and 232Th levels will be a simple con-
version of the number of BiPo coincidences after removing the misidentifications. In
reality, however, the infiltration of 222Rn and 220Rn is not rare in the detector, es-
pecially during scintillator fill. The radon inevitably enters the scintillator when it
gets exposed to air during transport and loading, so a rise in the radon level is al-
most guaranteed whenever scintillator is loaded into the detector. Many of the rises
in BiPo coincidence rates, shown in Figure 5.11, can be attributed to scintillator
loading, as indicated by the red arrows.

Radon ingress breaks the assumption of equilibrium and, hence, the validity of
Eq. 5.14. Fortunately, the lifetimes of radon and its daughter isotopes are not long,
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Figure 5.11: Tagged number of BiPo214 coincidences in the scintillator volume from
the data taking period of 11th of February to 11th of April, 2020. The red arrows
indicate the days of scintillator fill. The decay slopes in the plot matches the lifetime
of 222Rn, confirming it as the source of the activity rise.
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Figure 5.12: Tagged number of BiPo212 coincidences in the scintillator volume from
the data taking period of 18th of April to 4th of May, 2021. The decay slopes in the
plot matches the lifetime of 212Pb, confirming the 220Rn as the source of the activity
rise.
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238U Measurement

Period Mass (tonnes) Interface Z (mm) 238U Concentration (g/g)

December 2019 - January 2020 72 +3850 (9.2±0.8)×10−15

February 2020 181 +2500 (7.5±0.4)×10−15

March - April 2020 355 +750 (1.9±0.1)×10−15

June - July 2020 355 +750 (4.6±1.2)×10−17

Table 5.3: Measurements on the 238U decay chain concentration hitherto made. Num-
bers quoted from [179]. The quoted “Mass” is the mass of the scintillator and “In-
terface Z” is the scintillator interface Z position with respect to the AV equator.

232Th Measurement

Period Mass (tonnes) Interface Z (mm) 232Th Concentration (g/g)

March - April 2020 355 +750 (9.3±7.8)×10−17

May 2020 355 +750 (7.5±3.4)×10−17

June 2020 355 +750 (6.5±2.9)×10−17

July 2020 355 +750 (5.3±1.5)×10−17

August - October 2020 355 +750 (4.8±0.9)×10−17

Table 5.4: Measurements on the 232Th decay chain concentration hitherto made.
The quoted “Mass” is the mass of the scintillator and “Interface Z” is the scintillator
interface Z position with respect to the AV equator.

so it is not impractical to wait for the radon to decay away. The decay time scale of
the intruding radon will be characterised by the bottleneck in the decay chain. For
222Rn, this will be the 222Rn itself, having a lifetime of 5.51 days. For 220Rn, it is
212Pb which has a lifetime of 15.3 hours. The time profile of the number of tagged
BiPo coincidences would then take the form of Eq. 5.12, where τ would become the
characteristic lifetime of the radon ingress and the constant component B would
now indicate the 238U/232Th chain contribution to the BiPo coincidence count. The
238U and 232Th chain levels can, therefore, be extracted by performing such a fit.
The fit results for the 238U measurement (fitted in collaboration with my colleague
I. Morton-Blake [180], where he performed the final fit and the author practiced the
BiPo analysis) are listed in Table 5.3. Results for the 232Th measurement, carried out
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only during the half-filled period due to higher misidentification rates, are listed in
Table 5.4, for which, regardless of the scenario described thus far, the measurement
was done by a simple exercise of Eq. 5.14 as there were no evidence of 220Rn ingress
for those periods.

It should be noted that in order to perform the measurement in this fashion, a sta-
ble period is needed, i.e. no further radon support after the first radon ingress, lasting
at least a few characteristic lifetimes of the corresponding radon series. Otherwise,
the constant term of the distribution will be concealed by the statistical fluctuations
of the overwhelming exponential component. For instance, the stable periods in early
March 2020, as depicted in Figure 5.11, or late April 2021, as depicted in Figure 5.12,
are apparently too short for fitting. This has been the problem for the more recent
data, and, hence, there have not been further measurements made since July 2020.

The most recent measurements listed in Tables 5.3 and 5.4 indicate that the
scintillator contamination level of both the 238U and 232Th chains are within one
order of magnitude from the target listed in Table 5.1, placing SNO+ in a position
capable of executing its primary purpose of detecting neutrinoless double beta decays.
Though encouraging, these results were based on the half-filled configuration, and
whether the scintillator further loaded into the detector keeps up to this standard
awaits confirmation when the detector stabilises.

5.5 214Bi-214Po Pairs as a Calibration Source
The implementation of the BiPo214 tagging method has improved the understanding
of the detector in various aspects aside from the main objective of serving as a handle
for estimating the 238U decay chain concentration. Since the estimated misidentifi-
cation of BiPo214 is nearly negligible, as demonstrated in the example of Figure 5.9,
it has the potential to serve as an in-situ calibration source for various properties of
the detector. This section will focus on two aspects: the tracking of PPO mixing
and verification of the light yield level. Others have also used the tagged BiPo214
pairs for other purposes, for instance my colleague I. Morton-Blake has carried out
a detailed study regarding the liquid scintillator time response to α and β particles
using the tagged BiPo214 pairs [180].

5.5.1 Light Yield Verification
As the misidentification rate of the BiPo214 pairs is insignificant, the tagged pairs
can be regarded as nearly pure α and β particles. By exploiting the known energies
of the corresponding decays, i.e. the 3.27 MeV β decay of 214Bi and the 7.83 MeV α
decay of 214Po, one can perform a direct comparison between simulation and data to
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Figure 5.13: The Nhit comparison of 214Bi between data (blue) from April 2020 and
MC simulations using RAT6.18.0 (yellow) and RAT6.18.12 (green). The original
distributions of the simulations are plotted in dashed lines and the scaled distributions
of which are plotted in solid lines. Both versions of the simulation agrees well with
data after a 12% scale-up in light yield.

estimate the light yield level in the detector. The comparison is done by scaling the
MC simulated Nhit distribution to match that of data. To scale the simulation, the
Nhit of each event is first multiplied by the chosen scale factor, then smeared by a
Poissonian error.

An example comparison of the half-filled data for April 2020 with simulations
using RAT6.18.0 (the RAT version contemporary with the data) and RAT6.18.12 is
shown in Figures 5.13 and 5.14. The simulations used a light yield expected for
0.5 g/L PPO, whereas the data PPO concentration is estimated to be at 0.52 g/L by
summing the total amount of PPO loaded in each fill. Results for 214Bi showed over-
all good agreement with the anticipated light yield, confirming the estimated PPO
concentration. This is not too surprising as the scintillator response to electrons is
well-understood, and, hence, is handled better in the simulations. The 214Po α emis-
sion, on the contrary, involves the phenomenon of quenching vii which is much more
complicated and adds difficulty to simulations. As shown in Figure 5.14, the result

viiProcesses that reduce the light yield of scintillation are known as quenching. For detailed
discussions on the topic, see [57].
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Figure 5.14: The Nhit comparison of 214Po between data (blue) from April 2020 and
MC simulations using RAT6.18.0 (yellow) and RAT6.18.12 (green). The original
distributions of the simulations are plotted in dashed lines and the scaled distribu-
tions of which are plotted in solid lines. The discrepancy between data and MC
originates from the complications of quenching of the α particle. One can clearly see
the improvement in the later RAT versions, where the difference between data and
simulation has changed from 5% scale-down to 10% scale-up in light yield, matching
the results from the 214Bi.

from the comparison between data and the original simulation, using RAT6.18.0,
suggested that the α particle is more quenched than the model used in that simula-
tion. After that, much effort has gone into improving the model, and it is clear that
the simulations done with the more recent versions of RAT are agreeing better with
data.

5.5.2 PPO Mixing
Due to technical issues during filling, the PPO concentrations in each load of scintil-
lator varied between 0 to 80 g/L rather than being fixed at 2 g/L. This has caused
the light yield level to fluctuate over the period. Even worse, the dynamics of mixing
between different PPO levels, as previously stated in Section 5.3.2, turns out to be
non-trivial. It is, therefore, important to be able to track its state of evolution. The
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Figure 5.15: The Nhit distribution (left) and the Nhit distribution plotted against
the Z axis (right) of the tagged 214Po from data taken from the 16th to 18th of
December, 2019. Scintillator with no PPO was loaded during the 17th and 18th of
December. This is a typical demonstration of PPO stratification during filling.
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Figure 5.16: The Nhit distribution (left) and the Nhit distribution plotted against
the Z axis (right) of the tagged 214Po from data taken on the 19th of June, 2021.
This is a recent example of non-uniform 222Rn distribution in a stable light yield
configuration.

mono-energetic α particle of 214Po is found to be an efficacious in-time indicator of
the local light yield level.

Figure 5.15 is an example of PPO stratification during a scintialltor fill from 16th
to 18th of December, 2019. This was one of the first instances of observing PPO
stratification in the detector. SNO+ had been troubled with the problem of strati-
fication for long periods during the phase transition. Eventually, it was discovered
that the PPO stratification is caused by the existence of temperature gradients in
the detector. The gradient can be eliminated by either further proceeding with the
filling, which agitates the configuration, or forcibly recirculating the liquid in the AV.

Besides PPO, the distribution of the radon ingress is also non-uniform in many
occasions, especially when it just entered. In general, this stratification originates
from the same cause. Nonetheless, as shown in Figure 5.16, radon and PPO strati-
fication does not necessarily coincide with each other. In such cases, the PPO was
already uniform when the thermal gradient arose.
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5.6 Summary
In this chapter, the β−α coincidence signals originating from the pairs 214Bi-214Po and
212Bi-212Po have been investigated. Using the tagged BiPo pairs, the concentrations of
238U and 232Th decay chains in the liquid scintillator have been measured to be (4.6±
1.2)×10−17 g/g and (4.8 ± 0.9)×10−17 g/g, respectively. These latest measurements
suggest that the contamination level of the liquid scintillator is within one order of
magnitude from the target initially set for the pure-scintillator phase. Though slightly
higher than the target for pure-scintillator phase, it is still well within the limit set for
the double beta studies in the tellurium-loaded phase. It should also be noted that
this currently achieved purity of the scintillator is by no means final. SNO+ will be
carrying out further purification throughout the data-taking period, which is expected
to further reduce the contamination level to target, or even lower. Furthermore,
the results shown in this chapter are measured in the half-filled configuration (Z =
+750 mm), and the purity of the scintillator loaded after still await confirmation to
ascertain the overall contamination level of the fully filled configuration.

Besides estimating the 238U and 232Th concentrations in the scintillator, the coin-
cidence identification method developed in this chapter has been proven to be valuable
in many other aspects. In particular, the high purity of the tagged 214Bi-214Po pair
has been used as a calibration source for the light yield level and time response of
the scintillator. During the light yield calibration study, it was also noticed that the
mono-energetic α from 214Po is a useful handle in monitoring the local light yields
and radon ingress of the detector. Additionally, the method is valuable in itself as a
framework for identifying other signals of coincident nature, amongst which the most
important is the identification of inverse beta decay (IBD). Indeed, the framework
and script developed for this study has been modified to tag IBD events from reactor
anti-neutrinos in [180]. With slight modifications to the cut values, the framework
established in this study can be easily adapted for the identification of IBD events
from supernova neutrinos.
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Chapter 6

Fast Reconstruction

In SNO+, the full reconstruction algorithms implemented have achieved good resolu-
tion and provided reliable reconstructed information. Full reconstruction is, however,
time and resource demanding, currently multiple hours per hour of data. This might
be problematic for analyses where prompt response is required, for instance, the de-
tection of supernova bursts and pre-supernova neutrinos. Methods of conducting
swift reconstructions, albeit at the risk of losing some resolution, would be desirable
for those purposes.

This chapter will serve as an exposition of the algorithms we have developed for
fast reconstruction by exploiting the early PMT hit information. The first half of this
chapter describes the FastZ position reconstruction method developed for partial-fill
phase using the earliest PMT hits from the top and bottom regions. This algo-
rithm was developed as an auxiliary method when the full reconstruction, that is,
partialFitter, was still in its early stages. The second half of the chapter focuses on
studies regarding the identification of spatial coincidences. In particular, the devel-
opment of the TimeCentroid coincidence tagger is based on the PMT hit topology,
which does not involve actual position reconstruction. Results of this metric-based
algorithm will be compared to the position reconstruction methods to demonstrate
that a full position reconstruction can be avoided if spatial coincidence identification
is the only objective.

6.1 FastZ — Position Reconstruction for Partial
Fill

When applying the PMT triangulation relation Eq. 4.2, the discontinuity at the
partial-fill interface complicates reconstruction and causes the full reconstruction
methods to become even more time-consuming. Initially, this did not raise much
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Figure 6.1: Schematic illustration of the light path difference between top and bottom
PMTs. This path difference is used in FastZ to estimate the Z position of the event.

attention as partial fill was thought to be a transient phase. It became more problem-
atic when the phase transition was prolonged. A proposal to reduce the computation
time was to run a swift position estimate along the Z axis and veto the events that
are clearly from the water volume. This idea later became the FastZ fitter, which
utilises the PMT hit time difference between the top and bottom of the detector to
conduct a swift and simple Z position estimate.

6.1.1 Light Path Calculation
The basic idea of the FastZ fitter is to infer the Z coordinate of the event in a similar
fashion as Eq. 4.2 by selecting the PMT hits located in the top and bottom regions of
the detector as shown in Figure 6.1, in which top and bottom regions are chosen to be
the regions with Z > +8000 mm and Z < −7000 mm. This idea relies on the basic
properties of scintillation light, which is nearly isotropic and usually results in high
number of PMT hits. Furthermore, as scintillation light is usually not all emitted
at once, only the earliest PMT hit in each region will be selected. These properties
of scintillation light can be observed from Figure 6.2. With this selection criterion,
it can then be assumed that the photons received are from the first wave of photon
emissions and are emitted at roughly the same time which will be denoted as t0.
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Figure 6.2: The photon angular distribution (left) and emission time (right)
of a tagged 214Bi from the 23rd of March, 2021. The (θ, ϕ) coordinates are
defined as the usual spherical coordinates with the reconstructed event posi-
tion (1596.94, 1598.96, 4915.19), in millimetres, as origin. The emission time of the
photons is defined as PMT hit time subtracted by the estimated light propagation
time, where the zero time is set to the emission time of the photon that first triggered
a PMT.

Having selected the two PMT hits in each region, the Z position of the event can
immediately be estimated by

ttop = t0 + fh
s

zh − z

cs
+ fh

w

zh − z

cw

tbottom = t0 + f l
s

z − zl
cs

+ f l
w

z − zl
cw

(6.1)

where ttop and tbottom are the hit times of each selected PMT; z is the Z coordinate of
the true event; cs and cw are the light speed in scintillator and water; {fh

s , f
h
w, f

l
s, f

l
w}

are the fraction of each path being scintillator or water satisfying fh
s + fh

w = 1 and
f l
s + f l

w = 1. Eq. 6.1 implicitly assumes that the light path is nearly parallel to the
Z axis, which is not completely unreasonable given that the chosen PMT hits are
selected from the very top and bottom regions of the detector. To make the expression
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Figure 6.3: The fitted resolution (left) and bias (right) of FastZ applied on 2.5 MeV
electrons simulated in the scintillator volume of a partial-fill configuration with Z =
+4400 mm using RAT6.16.7.

more realistic, the light speeds are replaced by c′s = cs ·cos θi and c′w = cw ·cos θi, where
θi ∈ [0, π/2] (i = h, l) are the angles of the travel direction relative to the Z axis. It
is, however, not possible to get the precise θi for each event without knowing the true
event position. Therefore, instead of obtaining an angle for each event, the average
angle for the given configuration is applied as an approximation to all events, which
is effectively a correction factor to the light speed. By combining the approximations
and Eq. 6.1, the reconstructed event Z coordinate can be expressed as

zrecon =

(
fh
s

cs cos θh + fh
w

cw cos θh

)
zh +

(
f l
s

cs cos θl +
f l
w

cw cos θl

)
zl(

fh
s

cs cos θh

)
+
(

fh
w

cw cos θh

)
+
(

f l
s

cs cos θl

)
+
(

f l
w

cw cos θl

) . (6.2)
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Partial Fill, Z = +4500mm

Method CPU Time per Event (s)
FastZ 0.00045
partialFitter (RAT6.17.6) 0.75

Table 6.1: CPU time per event for FastZ and partialFitter.

6.1.2 Performance
The fitter was tested on samples of 2.5 MeV electrons simulated within the scintillator
volume using RAT6.16.7. The scintillator interface was set to Z = +4400 mm, which
corresponds to the 60-tonne configuration initially planned for inspection.

Figure 6.3 shows the resulting resolution and bias of FastZ at different positions,
where the resolution is defined by the standard deviation of the zrecon − ztrue dis-
tribution and the bias is the deviation from zero of the zrecon − ztrue distribution
mean. FastZ, being a simple estimate based on only two PMT hits, is obviously not
competitive compared to the approximately 90 mm resolution of partialFitter.
Nevertheless, FastZ is able to maintain reasonable resolution and overall stable per-
formance even in regions close to the interface and high up in the AV neck, except for
above +8000 mm which is already around the PSUP. Furthermore, Table 6.1 shows
that the CPU time per event spent by FastZ is about three orders of magnitude
faster than partilFitter. From these perspectives, it serves its purpose of doing a
quick and preliminary estimate on the Z position.
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6.2 TimeCentroid — Spatial Coincidence Identifi-
cation

Coincidence events are one of the most informative types of events within neutrino
detectors, for they can be tagged with high purity without much difficulty. Coinci-
dences are identified by pairing events occurring within a specific time window and
in neighbouring regions, e.g., the inter-event cuts of the bismuth-polonium (BiPo)
analysis in Chapter 5. In spite of the effectiveness of the distance correlation cut (∆r
cut), the full position reconstruction is time-consuming. The increase in light yield,
e.g., when the PPO load reaches the target 2 g/L, could further aggravate the situ-
ation as reconstruction time increases with the number of PMT hits. With the aim
of reducing the computation time, this immediately invites the obvious question of
whether precise position reconstruction is necessary, or even more radically whether
position reconstruction is needed at all, for the purpose of coincidence identification.
For this purpose, the TimeCentroid algorithm for swift position coincidence tagging
based on PMT hit topologies is proposed and investigated.

6.2.1 Topological Similarity in PMT Hit Distributions
The underlying argument for the algorithm is rather simple and intuitive: the topol-
ogy of the emitted photons, and thus PMT hits, from the same position, as in a
coincidence event, should be similar as shown in Figure 6.4. By exploiting this topo-
logical similarity, one should, in principle, be able to identify spatial coincidences
without performing actual position reconstruction.

In order to verify this hypothesis, BiPo214 pairs in both simulation, randomly
distributed in the full-scintillator configuration, and data, from the 2nd of April, 2020,
with the scintillator interface at Z = +750 mm, are employed for examination. The
spatial distribution of PMT hits versus the PMT hit times for an example bismuth
and polonium event from both cases are shown in Figures 6.5 and 6.6. From those
plots, it is evident that there is some similarity to be exploited between the PMT hit
distributions of the BiPo pairs.

6.2.2 Weighted Coincidence Classifier
One of the most prominent features exhibited by the light patterns in Figures 6.5
and 6.6 is the spatial resemblance of the dense cluster of early PMT hits. The
TimeCentroid tagger is built upon this spatial resemblance. The idea is to evaluate
the similarity by locating the central position (mean or median) of the leading light
cluster, and use it as a similarity metric.
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Prompt Event Delayed Event

Figure 6.4: Graphical representation of the scintillation photon distribution of a
coincidence event.

In TimeCentroid, the leading light cluster is defined as the first N PMTs with
PMT hit times in the range 250 − 280 ns i, which can be inferred from Figures 6.5
and 6.6. Note that the number of PMTs chosen, N , is dependent on the light yield
level. The central location of the early cluster is then chosen to be a weighted mean
of the PMT hit coordinates taking the form of

x̂µ =

(
N−1∑
i=0

w(ti) x
µ
i

)/ (
N−1∑
i=0

w(ti)

)
(6.3)

with the weight function
w(t) =

1

t− t0 + C
(6.4)

where x̂µ = {x̂, ŷ, ẑ} are the weighted means; i is the index for the PMT hits; xµi =
{xi, yi, zi} are the coordinates of the ith PMT hit; ti is the hit time of the ith PMT
hit; t0 is the hit time of the earliest chosen PMT hit; and C is a time offset for the
weight. Note that i = 0 corresponds to the earliest PMT, whereas the time ordering
of the rest of the cluster is irrelevant. Since the clustering of the leading light is more
pronounced for earlier hits and becomes more scattered for later times, the PMT

iThe zero time of the PMT hit time is defined as 280 ns before the PMT trigger threshold is
passed [170]. This was arbitrarily chosen such that the zero time is earlier than the lower end of the
event time window to keep the PMT times positive.
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Figure 6.5: PMT position versus hit time distribution for an example 214Bi (left)
and 214Po (right) pair simulated in the full-scintillator configuration with RAT6.18.0.
The BiPo214 pairs are randomly distributed within the AV. This example BiPo214
pair is positioned at (x, y, z) = (2664.18, 3207.11, −1968.65), in units of millimetres.
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Figure 6.6: PMT position versus hit time distribution for an example tagged
214Bi (left) and 214Po (right) pair from the data taken on the 2nd of April, 2020,
which has the scintillator interface at Z = +750 mm.
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coordinates are weighted by the inverse of the PMT hit time in Eq. 6.3. As weights
of the form 1/t are dependent on the choice of t = 0, the zero time is set to float by
adding a time offset C, in units of nanoseconds.

Having obtained the central position {x̂, ŷ, ẑ}, the similarity metric can then be
evaluated by the Pythagorean sum of the coordinate differences

∆r̂2 = ∆x̂2 +∆ŷ2 +∆ẑ2 (6.5)

where
∆x̂ = x̂prompt − x̂delayed

∆ŷ = ŷprompt − ŷdelayed

∆ẑ = ẑprompt − ẑdelayed.

(6.6)

Note that the carets on the central position variables are used as a reminder that these
parameters are not event position reconstructions. Instead, these variables serve as
an indicator of the position of the early light cluster, and points towards a position
around the PSUP which is also apparent from Figures 6.5 and 6.6.

Performance

Performance tests for the algorithm were conducted using samples of 50,000 BiPo214
events simulated in the partial-fill, applying the conditions of the detector configu-
ration as of the 2nd of April, 2020, and full-scintillator configurations. Needless to
say, the BiPo214 pairs are regarded as the signal. The background sample, for com-
parison, is constructed out of unassociated events. For this purpose, two successively
simulated 214Bi events, which are independently and randomly distributed within the
AV, are paired.

Having defined the signal and background samples, the receiver operating char-
acteristic (ROC) curve can then be constructed to evaluate the performance of
each method. Before comparing TimeCentroid to the full reconstruction meth-
ods scintFitter and partialFitter, there are two parameters that remain un-
determined, namely the number N of PMTs to include in the weighted mean and
the time offset C. By inspecting the ROC curves depicted in Figures 6.7 and 6.8,
it is found that {N,C} = {70, 10} is the optimised choice for the full-scintillator
configuration and {N,C} = {50, 10} for the partial-fill case. Finally, Figure 6.9
presents the optimised TimeCentroid ROC curves plotted against the scintFitter
and partialFitter curves. Though the full reconstruction methods, without much
surprise, clearly deliver the best results, the performance achieved by a method as
simple as TimeCentroid is still encouraging. At the point of plateau, TimeCentroid
yields efficiencies greater than 99% for true coincidences with a less than 5% false
identification rate.
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Figure 6.7: ROC curves of TimeCentroid with a range of different N values (left)
and C values (right), tested on BiPo214 pairs simulated in the full-scintillator con-
figuration with RAT6.18.0.
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Figure 6.9: ROC curves of scintFitter, partialFitter and TimeCentroid (with
optimised parameters).

CPU Time

Besides comparing the identification efficiency to that of the full reconstruction al-
gorithms, another important feature that should also be compared is the CPU time
spent when executing these algorithms. Reducing the CPU time is the value and
motivation of developing TimeCentroid.

Table 6.2 lists the CPU time per event for performing TimeCentroid and the posi-
tion reconstruction methods on the samples of simulated BiPo214 pairs. TimeCentroid,
being a simple calculation looping through the PMT hits once, is undoubtedly the
most time efficient. It is about three orders of magnitude faster than the full recon-
struction methods, and one order of magnitude faster compared to the simplest part
of the full reconstruction, i.e., Quad which was introduced in Section 4.4.1.

99



6.2. TIMECENTROID — SPATIAL COINCIDENCE IDENTIFICATION

Full Scintillator

Method CPU Time per Event (s)

scintFitter 2.2
TimeCentroid 0.0015
Quad 0.016

Partial Fill, Z = +750 mm

Method CPU Time per Event (s)

partialFitter 0.3
TimeCentroid 0.0013
Quad 0.013

Table 6.2: CPU time per event for processing simulated BiPo214 events in full-
scintillator (top) and partial-fill (bottom) configurations.

Full Scintillator

Method CPU Time per Event (s)

TimeCentroid 0.0015

Method Iterations CPU Time per Event (s)

Quad 4000 0.016
Quad 1000 0.0057
Quad 100 0.003
Quad 50 0.0017

Table 6.3: CPU time per event for processing simulated BiPo214 events in the full-
scintillator configuration using Quad with different number of iterations.
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6.2.3 Quad with Reduced Iterations
From Table 6.2, the CPU time spent by Quad is, in general, only one order of magni-
tude higher than TimeCentroid. It is, therefore, valuable to take it as an example of a
fast primitive position reconstruction, and compare it to the TimeCentroid classifier.

Table 6.3 lists the CPU time for running Quad with different numbers of iterations
on the BiPo214 pairs in full-scintillator configuration, from which one can see that
Quad with 50 − 100 iterations takes the amount of time comparable to that used
by TimeCentroid. The resulting ROC curves compared to that of TimeCentroid
is presented in Figure 6.10. One can observe that the performance of Quad with
the original 4,000 iterations is slightly better than TimeCentroid. As the number
of iterations decrease, however, the performance of Quad rapidly worsens, e.g., the
false rate for 99% efficiency becomes 84% when Quad is brought to the same speed
as TimeCentroid.
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Figure 6.10: ROC curves of Quad with different numbers of iterations (n iterations
labelled as “Quad - n”). The ROC curve of TimeCentroid in full-scintillator config-
uration is also plotted for comparison.
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6.2.4 Applications
With the three orders of magnitude lower CPU time than scintFitter and rea-
sonable discriminating power, TimeCentroid can be useful in various studies that
involve coincidence identification. The two types of coincidences currently of concern
are the inverse beta decay (IBD) and Bismuth-Polonium events.

IBD events are the main handles to the detection of pre-supernova νe and su-
pernova bursts, where this method can be particularly valuable as supernova-related
studies are often constrained for time. Implementation of the classifier in the pre-
supernova alert is currently in progress.

TimeCentroid has so far only been tested as an event filter to the BiPo iden-
tification analysis described in Chapter 5, which could potentially make the BiPo
background monitoring more prompt. The basic idea is to run the BiPo tagging
cuts with the ∆r cut replaced by a TimeCentroid cut on the unprocessed data, and
process only the events passing those cuts. This can significantly reduce the pro-
cessing time for each run. To test the effectiveness of this strategy, this event filter
is tested on the data runs from the 2nd of April, 2020. This combined event filter
was able to preserve 23,155 of the 23,161 events tagged by the original BiPo analysis
with only 1,826 additional mistagged events, i.e., the number of events to process
per one-hour data run can be reduced from about 300,000 to around 1,000. The
processing time spent by the TimeCentroid event filter was around a minute, and
the processsing time of the full reconstruction using partialFitter was reduced to
roughly 5 minutes bringing the total reconstruction time down from nearly 6 hours
to 6 minutes.

6.3 Summary
The two algorithms, FastZ and TimeCentroid, developed in the aim of reducing the
reconstruction time has been introduced in this chapter. Both of the methods were
able to deliver reasonably well results with the CPU time reduced by three orders
of magnitude compared to the full reconstruction, fulfilling their initial objectives.
The FastZ method was designed for a specific period during scintillator fill, and,
hence, was not generally applied afterwards. TimeCentroid, on the other hand, is
generally applicable for coincidence studies, e.g., BiPo and IBD studies. As a result,
TimeCentroid could come to the aid of the background and supernova studies by
making the most time consuming step, namely position reconstruction, in BiPo and
IBD identifications nearly prompt. Furthermore, the method has the potential to be
applied to a wider range of configurations, as the underlying principles apply to any
scintillator detector.

102



Chapter 7

Supernova Signal Detection

Core collapse supernovae (CCSNe), introduced in Chapter 3, are amongst the most
powerful sources of cosmic neutrinos of all flavours. The extreme density and tem-
perature during the supernova evolution provides opportunities to probe neutrino
properties which are not accessible on Earth. Furthermore, the detection of these
neutrinos are expected to convey information from deep in the core of the supernova
that is likely to shed light on the details of the currently not well-known explo-
sion mechanism. Nonetheless, before these exciting features and properties can be
explored, one has to be able to detect them. To date, the 24 neutrino detections
associated with SN1987A remain the only confirmed observations of supernova neu-
trinos [75, 76, 77]. It is, therefore, a top priority of the field to secure the neutrino
detection of the next supernova.

This chapter will be divided into three sections. The first section will be a brief
introduction on the main interaction channels of supernova neutrinos in liquid scintil-
lator. Following that, the next section will discuss how a supernova can be detected
in SNO+ and the implementation of a neutrino burst trigger counting high energy
events. The final component of the chapter will focus on the utilisation of the time
profile of the detected supernova neutrinos from multiple detectors to locate the su-
pernova on the celestial sphere. Given the different arrival times of the various signals
originating from the supernova, this directional information would serve as a valu-
able early warning for optical and gravitational wave telescopes, which constitutes
an important part of the tasks of the Supernova Early Warning System (SNEWS).

103



7.1. SUPERNOVA INTERACTION CHANNELS IN LIQUID SCINTILLATOR

7.1 Supernova Interaction Channels in Liquid Scin-
tillator

Before discussing the detection and identification of supernova neutrinos, it is im-
portant to understand the properties of the interaction channels that are relevant to
liquid scintillator detectors. Table 7.1 lists the dominant interaction channels of su-
pernova neutrinos in scintillator, which can be classified into four categories: inverse
beta decay (IBD), neutrino-electron elastic scattering (EES), neutrino-proton elastic
scattering (PES) and neutrino-nucleus interactions. The kinematics of each channel
will be briefly introduced in this section.

7.1.1 Inverse Beta Decay
Inverse beta decay (IBD),

νe + p→ e+ + n (7.1)
is the process of an electron anti-neutrino interacting with a proton via charged
current interaction producing a positron and a neutron. The theoretical neutrino
energy threshold Eν of the interaction is given by

Eν =
(mn +me)

2 −m2
p

2mp

≈ 1.806 MeV (7.2)

where me, mn, mp are the rest masses of the electron/positron, neutron and proton,
respectively.

The signal of IBD consists of two parts: a prompt event originating from the
annihilation of the positron, and a delayed signal caused by thermal neutron capture
on a proton. The energy visible from the prompt event Ee+

vis is given by the sum of
the annihilation energy and the positron kinetic energy

Ee+

vis = Te+ + 2me (7.3)

where the positron kinetic energy can be approximately expressed as

Te+ ≈ Eνe +mp −mn −me. (7.4)

This approximation is valid since the neutron is significantly more massive than the
positron, and the resulting neutron recoil energy is only of O(10 keV) which can be
neglected [181].

The neutron capture event is expected to happen about 200 − 260 µs after the
positron annihilation [182]. The deuteron resulting from neutron capture will be

104



7.1. SUPERNOVA INTERACTION CHANNELS IN LIQUID SCINTILLATOR

Supernova Neutrino Interaction Channels

Channels Weak Interaction Type Event Yield
νe + p→ e+ + n (IBD) CC 194.7 ± 1.0
νe + e− → νe + e− NC/CC 6.4
νe + e− → νe + e− NC 2.7
νx + e− → νx + e− NC 2.1
νx + e− → νx + e− NC 1.8
ν + p→ ν + p NC 429.1 ± 12.0
νe +

12
6 C →12

6 C + νe + e− + e+ CC 2.7 ± 0.3

νe +
12
6 C →12

6 C + νe + e− + e+ CC 7.0 ± 0.7

ν +12
6 C →12

6 C + ν + γ (15.11 MeV) NC 43.8 ± 8.7
νe +

12
6 C →11

6 C + e− + p CC 0.16 ± 0.08

νe +
12
6 C →11

5 B + e+ + n CC 0.16 ± 0.08

ν +12
6 C →11

5 B + ν + p NC 1.6 ± 0.5

ν +12
6 C →11

6 C + ν + n NC 0.5 ± 0.16

Table 7.1: Interaction channels for supernova neutrinos in liquid scintillator with the
corresponding event yields estimated based on a CCSN at 10 kpc observed in SNO+,
adapted from [2]. The CCSN model releases a total energy of 3 × 1053 ergs equally
partitioned amongst the neutrino flavours. The errors on the event yields are derived
from the uncertainties of the interaction cross sections. Note that the uncertainties
of the electron scattering cross-sections arising from Standard Model calculations are
less than 1%, and are, therefore, neglected in the yield count.
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formed in an excited state, and will quickly de-excite to the ground state via emis-
sion of γ rays. These γ rays then constitute the delayed signal. More than 99% of
the thermalised neutrons will be captured on the Hydrogen nuclei producing a char-
acteristic 2.23 MeV γ. Besides that, the remaining less than 1% of the neutrons will
be captured on the 12C nuclei with a 4.945 MeV de-excitation γ emission.

The high tagging efficiency and large cross section of IBD makes it the most
important and reliable signal for supernova neutrino detection, e.g., all of the events
detected in SN1987A were IBD events. In the discussions of this chapter, the IBD
signals will often be taken as a conservative estimate for the least yield scenario to
demonstrate the efficiencies of the methods developed.

7.1.2 Neutrino-Electron Elastic Scattering
Neutrinos of all flavours and energies are able to scatter elastically on electrons via
weak interactions known as the neutrino-electron elastic scattering (EES). Being a
purely leptonic process, the cross section of this interaction can be calculated ana-
lytically with the Standard Model. The leading order Feynman diagrams of all the
possible channels are depicted in Figure 7.1. As shown in the Feynman diagrams,
both the neutral and charged current interaction channels are available for νe and νe,
whereas the muon and tau flavours can only interact via Z boson exchange.

The leading order cross sections of each channel of the EES interaction can be

e− e−

νe νe

Z

e− νe

νe e−

W

νe − e−

Scattering
e− e−

νe νe

Z

e−

νe

νe

e−

W−

νe − e−

Scattering
e− e−

νx νx

Z

νx − e−

Scattering

Figure 7.1: The EES Feynman diagrams for νe, νe and νx = {νµ, ντ , νµ, ντ}.
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calculated by [9]

σNC
ν =

G2
F2meEν

π

((
1

2
− sin2 θW

)2

+
1

3
sin4 θW

)
(7.5)

σCC
ν =

G2
F2meEν

π
· 2 sin2 θW (7.6)

σNC
ν =

G2
F2meEν

π

(
1

3

(
1

2
− sin2 θW

)2

+ sin4 θW

)
(7.7)

σCC
ν =

G2
F2meEν

π
· 2
3

sin2 θW (7.8)

and the total cross section can be expressed as

σtot =
G2

F2meEν

π

(
c1

(
1

2
± sin2 θW

)2

+ c2 sin4 θW

)
(7.9)

where GF is the Fermi coupling constant; θW is the Weinberg angle; the “+” sign is
for the electron flavour neutrinos/anti-neutrinos; the “−” sign is for the muon and tau
flavour neutrinos/anti-neutrinos; and c1 and c2 depends on the type of the neutrino
with cν1 = cν2 = 1 and cν1 = cν2 = 1

3
.

The visible energy of the interaction is induced by the kinetic energy of the elec-
tron in the laboratory frame

Te ≡ Ee −me =
2meE

2
ν cos2 θ

(me + Eν)2 − E2
ν cos2 θ (7.10)

where θ is the scattering angle of the electron. The differential cross section with
respect to the visible energy distribution is then given by

dσ
dTe

=
G2

F2me

π

(
g21 + g22

(
1− Te

Eν

)
− g1g2

meTe
E2

ν

)
, (7.11)

and the differential cross section for the electron scattering angle can be derived via
the relation in Eq. 7.10,

dσ
d cos θ =

G2
F2me

π
· 4meE

2
ν(me + Eν)

2 cos θ
((me + Eν)2 − E2

ν cos2 θ)2
·
(
g21 + g22

(
1− Te

Eν

)
− g1g2

meTe
E2

ν

)
(7.12)

where the values of g1 and g2 for each flavour and type of neutrino are listed in
Table 7.2 [9].
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ν flavour g1 g2

νe
1
2
+ sin2 θW sin2 θW

νe sin2 θW
1
2
+ sin2 θW

νx −1
2
+ sin2 θW sin2 θW

νx sin2 θW −1
2
+ sin2 θW

Table 7.2: Values of g1 and g2 for each neutrino flavour.

7.1.3 Neutrino-Proton Elastic Scattering
Neutrino-proton elastic scattering (PES) is the process of neutral current interaction
between a neutrino and proton, which is identical for all flavours of the neutrino.
Unlike the case of the EES, PES involves hadronic interaction and, hence, its cross
section cannot be fully determined analytically. The total cross section and differ-
ential cross section with respect to the proton recoil energy Tp can be expressed
as

σtot =
G2

FE
2
ν

π

(
c2V + 3c2A

)
(7.13)

dσ
dTp

=
G2

Fmp

2πE2
ν

(
(cV + cA)

2E2
ν + (cV − cA)

2(Eν − Tp)
2 − (c2V − c2A)mpTp

)
.(7.14)

where cV and cA are the vector and axial-vector neutral current coupling constants
between the Z boson and proton [183]. At supernova neutrino energies, the expres-
sions of the neutral current coupling constants can be approximately written as [183]

cV =
1− 4 sin θW

2
(7.15)

and
cA =

1.27−∆s

2
(7.16)

where ∆s is the strange quark nucleon spin contribution which is not measured to
good precision i. Although the measured cross section of PES is only a third of that
of the IBD, the PES event yield is still the highest since all six flavours of neutrinos
are involved.

Similar to EES, the visible energy of PES is induced by the recoiled charged
particle, i.e., the proton. The visible energy is, however, strongly quenched due to
the higher mass of the proton which ionises more scintillator molecules and, in turn,

iThe currently best value is 0.152± 0.0889 [184]
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suppresses the prompt emissions in scintillation ii. As a consequence, the visible
energy of most of the PES events, converted to electron equivalent energy, is scaled
below 0.5 MeV. In this case, only about 30% of the signal events are left within the
detection window given a 0.2 MeV energy threshold [57].

Since neither the EES nor PES signals can be tagged by any characteristic signa-
ture or coincidence, the only remaining method to discriminate the two is via pulse
shape discrimination (PSD). This method, however, requires knowledge regarding
the time response of the protons in scintillator which is hitherto unmeasured. In this
case, the two channels form an irreducible background for each other.

7.1.4 Neutrino-Nucleus Interaction
For supernova neutrino energies, the neutrinos are often energetic enough to surpass
reaction thresholds to interact with the 12C nucleus which is abundant in the organic
liquid scintillators. As the nucleus is involved, the cross sections of this interaction has
to be either estimated via nuclear network calculations or empirically measured [185,
186]. In this section, the seven channels listed in Table 7.1 for neutrino-12C interac-
tion, in which three are super-allowed transitions and four forbidden transitions, will
be briefly introduced.

Super-Allowed Transition

The three super-allowed transitions with substantially higher cross sections are

νe + 12
6C −−→ 12

7N + e−

12
7N

τ = 15.9 ms−−−−−−→ 12
6C + e+ + νe

(7.17)

νe + 12
6C −−→ 12

5B + e+

12
5B

τ = 29.1 ms−−−−−−→ 12
6C + e- + νe

(7.18)

ν + 12
6C −−→ 12

6C∗ + ν ′

12
6C∗ −−→ 12

6C + γ (15.11 MeV)
(7.19)

where Eqs. 7.17 and 7.18 are charged current interactions, and Eq. 7.19 is a neutral
current interaction.

iiThis phenomenon is known as ionisation quenching [57]. The ionised scintillator molecules
causes relatively delayed emissions, known as phosphorescence, compared to the prompt emissions,
known as fluorescence. Since the light yield from phosphorescence is lower than that of fluorescence,
the total light yield is reduced.
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As suggested by Eqs. 7.17 and 7.18, both of the charged current channels form
a coincidence signal with the e± pair. The coincidence consists of a prompt elec-
tron(positron) signal originating from electron neutrino(anti-neutrino) capture fol-
lowed by a delayed positron(electron) emitted by the relatively short-lived nucleus
via beta decay. These reactions have high energy thresholds that can be calculated
as

Eνe =
(m12N +me)

2 −m2
12C

2m12C
≈ 17.86 MeV (7.20)

and
Eνe =

(m12B +me)
2 −m2

12C
2m12C

≈ 13.89 MeV (7.21)

where m12N, m12B and m12C are the masses of the 12N, 12B and 12C nuclei, respectively.
The visible energy of the signals depend on the particle type. If the signal is from an
electron, the energy is simply the kinetic energy of the electron, whereas for positrons
the energy becomes the sum of the positron kinetic energy and annihilation energy
as in Eq. 7.3.

The neutral current interaction, on the other hand, is identified by the distinct
signature of a prompt 15.11 MeV de-excitation γ. With a mono-energetic γ, the
signal would appear as a well defined peak corresponding to the 15.11 MeV visible
energy. Due to the neutral current nature, just as the PES, this channel is insensitive
to the neutrino flavour.

Forbidden Transition

With the supernova neutrino energies, the neutrinos are energetic enough to cause
the 12C nuclei to eject a nucleon [187, 188]. The event yield contribution of these
interactions is not significant, and only the processes with relatively larger cross
sections are listed here. This involves two charged current channels

νe + 12
6C −−→ 12

7N∗ + e-

12
7N∗ −−→ 11

6C + p
(7.22)

νe + 12
6C −−→ 12

5B∗ + e+
12
5B∗ −−→ 11

5B + n
(7.23)
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and two neutral current channels

ν + 12
6C −−→ 12

6C∗ + ν ′

12
6C∗ −−→ 11

5B + p
(7.24)

ν + 12
6C −−→ 12

6C∗ + ν ′

12
6C∗ −−→ 11

6C + n.
(7.25)

Each of these processes consists of two stages: a neutrino scatter that excites the
nucleus followed by a de-excitation nucleon emission. The signals of these interactions
form backgrounds for other channels, e.g., the emitted protons constitute a source of
background for PES interactions, and Eq. 7.23 is essentially an IBD reaction. Since
the final state nuclei 11

6C and 11
5B are relatively stable and do not create a coincidence

signal, these backgrounds are difficult to reject and should be taken into account
when measuring the corresponding signals.

In general, the neutrino-nucleus interactions have high reaction thresholds. If
channel discrimination with high precision were possible, the interactions could pro-
vide useful flavour information of the neutrino flux for the high energy spectrum.
This is, however, not relevant to the main theme of this chapter, and is mentioned
just to illustrate the possible prospects of study for this interaction mode.

7.2 Multi-Threshold Supernova Burst Trigger
In the event of a galactic supernova, the primary signature in neutrino detectors is
expected to be the emergence of a burst of hundreds to thousands of high energy
neutrino-induced events within a short time interval of seconds. It is, therefore, pos-
sible to identify the supernova by implementing a burst trigger targeting at high en-
ergy events. The original supernova burst trigger in SNO+ was inherited from SNO,
which was designed for the water phase and to comply with the conservative once-
per-century false alarm rate of the Supernova Early Warning System (SNEWS) [189].
Now, with scintillator loaded, the trigger thresholds for both energy and multiplicity
should be re-evaluated. In addition, with the more tolerant attitude of the astronom-
ical community towards false bursts, it is possible to explore the lower energy ranges
to maximise the physics value of the SNO+ data. Inclusion of the lower energy ranges
might reveal signs of the PES events, which SNO+ will be in a unique position to
detect amongst all the neutrino detectors around the globe.
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Figure 7.2: Sensitivity of the original SNO supernova burst trigger versus supernova
distance for the models: 8.8M⊙ (Shen) (red), 27M⊙ (LS220) (yellow), 40M⊙ (LS220)
forming a black hole after 0.5 s (blue), and 40M⊙ (LS220) forming a black hole after
2 s (green). The sensitivities are calculated by assuming a Poisson distribution using
the expected event yields from the quoted models.

7.2.1 Original SNO Burst Trigger
In the original settings of the SNO supernova burst trigger, the trigger was divided
into three distinct levels [190]. Level 1 was the event burst monitor which surfs
through the datastream and declares bursts if the threshold of 30 events with greater
than 35 PMT hits, equivalent to 4 MeV in SNO [189], occur in a 2 s window. When a
burst is declared, the events would be written into a file and transferred to the Level 2
trigger where data-cleaning cuts are applied to remove the detector instrumental
noise. Finally, if more than 35% of the events survived the data-cleaning cuts, the
burst would be passed to Level 3. From Level 3, an alert would be sent to SNEWS.
The SNO burst trigger group would also be notified to analyse the fitted vertices
and obtained directional information to infer the possible direction of the observed
supernova.
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Figure 7.3: Structure of the SNO+ burst trigger time windows.

This study will focus on the trigger thresholds applied in the event burst monitor.
The original design consists of only a single high energy and high multiplicity trigger,
which guarantees the purity of the declared bursts. This, however, sacrifices the sensi-
tivity of the trigger as indicated in Figure 7.2, where the sensitivity for typical CCSNe
is limited beyond 30 kpc. Possibilities of lowering the event multiplicity threshold
to improve the detection sensitivity for SNO has been discussed in [191], though the
energy thresholds are still maintained at a relatively high level. Besides lowering the
event multiplicity threshold, the possibility of lowering the energy thresholds will also
be explored in this chapter for the SNO+ scintillator phase burst trigger.

7.2.2 SNO+ Burst Trigger
The SNO+ burst trigger system, designed by M. Rigan [5], is developed based on the
original trigger system. In the SNO+ burst trigger system, Level 1 refers to the data
acquisition and event trigger system. The burst monitor, originally Level 1 in the
SNO burst trigger system, is now defined as Level 2. The new burst logic starts with
a burst declaration time window up to 2 s, during which the events are subjected
to the burst thresholds to determine whether a burst should be declared. Once the
burst thresholds are passed, a burst will be declared and an “extending window” of 1 s
starts. If any event during the 1 s extending window has Nhit above 700 PMT hits,
the extending window will be renewed and reads in another second after that event.
The extending window can then be maximally extended to 42 s. The declaration
window and extending window forms the main body of the burst. Besides that, the
new logic also includes a pre-burst and post-burst buffer to keep track of the overall
trend, which records all events 1 s before the beginning of the declaration window
and 1 s after the end of the extending window. The basic structure of the burst
trigger time windows is illustrated schematically in Figure 7.3.
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Partial Fill SN Burst Trigger

Multiplicity 3 5 7 10 20
Nhit 1630 1000 795 700 380

Table 7.3: Nhit thresholds for each burst trigger evaluated in partial-fill phase (26th
of June to 27th of August, 2020). The background burst rates are not exactly one
burst per month as the values are rounded up to steps in 5 PMT hits.

Full Scintillator SN Burst Trigger

Multiplicity 3 5 7 10 20
Nhit 1630 1200 885 835 460

Table 7.4: Nhit thresholds for each burst trigger evaluated in full-scintillator
phase (17th of August to 17th of September, 2021). The background burst rates
are not exactly one burst per month as the values are rounded up to steps in 5 PMT
hits.

The burst file will then be passed to Level 3 for data cleaning. The cleaned events
will be re-evaluated again by the burst logic. If it still constitutes a burst, this Level 3
burst will be sent out for manual review. In the future, the SNO+ supernova working
group is planning to set up an automatic message sent to SNEWS when Level 3 bursts
occur.

7.2.3 Burst Trigger Thresholds
In this study, the new thresholds of the Level 2 burst monitor are tuned such that
the false burst rate from the radioactive backgrounds is once per month. In order
to expand the sensitivity range and explore the lower energy signals, a design of an
augmented multi-threshold burst trigger is implemented. The current implementa-
tion of the burst trigger consists of a four-fold multiplicity threshold of 3, 5, 7 and 10
events in a 2 s window. Table 7.3 lists the Nhit thresholds currently implemented for
each multiplicity trigger. These values are determined by examining the background
rates of the partial-fill data from the 26th of June to the 27th of August, 2020.

Figure 7.4 shows the sensitivity of these triggers for different supernova models
at different distances. The sensitivity is estimated via a Poisson distribution based
on the expected event yield passing the thresholds for each supernova model. To
derive the event yields, a toy simulation is performed. This simulation is based on
the distance-scaled neutrino luminosity profiles quoted from the supernova models.
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Figure 7.4: Sensitivity of the burst trigger in partial-fill phase versus supernova
distance for the models: 8.8M⊙ (Shen) (top left), 27M⊙ (LS220) (top right),
40M⊙ (LS220) forming a black hole after 2 s (bottom left), and 40M⊙ (LS220) forming
a black hole after 0.5 s (bottom right). The sensitivities are calculated by assuming
a Poisson distribution using the expected event yields from the quoted models.

The interaction channel, listed in Table 7.1, is then randomly assigned according
to their respective cross sections in liquid scintillator. Finally, the generated visible
energy is converted to Nhit by the light yield, which has been determined to be
320±15 PMT hits per MeV for the chosen data period with the method introduced in
Chapter 5. In general, the burst trigger sensitivity with respect to supernova distance
follows the pattern of lower multiplicity thresholds leading to higher sensitivities and
vice versa. The 3-event burst trigger, accordingly, has the highest sensitivity in
all cases. The higher multiplicity triggers, though slightly inferior in sensitivity,
are still valuable in different aspects. The initial intention of implementing higher
multiplicity thresholds was to introduce triggers that are more resilient against the
radioactive backgrounds and electronic noise. However, the final decision of tuning
all of the triggers to a fixed background burst rate shrouded this advantage of the
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Figure 7.5: Sensitivity of the burst trigger in full-scintillator phase versus super-
nova distance for the models: 8.8M⊙ (Shen) (top left), 27M⊙ (LS220) (top right),
40M⊙ (LS220) forming a black hole after 2 s (bottom left), and 40M⊙ (LS220) forming
a black hole after 0.5 s (bottom right). The sensitivities are calculated by assuming
a Poisson distribution using the expected event yields from the quoted models.

high multiplicity triggers. Besides resisting backgrounds, the lower energy thresholds
associated with these triggers allow the burst to record interactions of lower visible
energy such as PES. For instance, the 10-event trigger is expected to be able to utilise
nearly 5% of the PES signal.

Apart from the triggers currently implemented, one will notice there are two
supplementary triggers plotted in Figure 7.4 that are not yet in operation. They
are studied out of the interest of improving the sensitivity range and recording low
energy signals. The additional burst triggers include a trigger with a multiplicity
threshold of 20 events in the 2 s time window and a trigger of 2 IBD events in a 10 s
time window. The motivation of testing a 20-event trigger is simply to increase the
acceptance fraction of the PES signal. With the threshold listed in Table 7.4 for the
20-event trigger, it is expected that almost 20% of the PES signal will be preserved
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constituting a third of the expected event yield. On the other hand, the 2-IBD
trigger is devised to test the maximum sensitivity one could possible exploit from
burst detection. Since the IBD signal is essentially free of background and SNO+
expects only 5 IBD events per month, the lowest possible multiplicity threshold for
a burst can thus be set to 2 IBD events. Indeed, this trigger sets the upper limit of
the sensitivity as shown in Figure 7.4.

As SNO+ reached full-scintillator phase, the background rate of the detector
nearly doubled. Consequently, the triggers currently implemented, using thresholds
obtained from partial-fill phase, fire much more often than the original once-per-
month target false alarm rate. The thresholds were, therefore, re-evaluated using the
more recent data from the 17th of August to the 17th of September, 2021. The new
values and their corresponding sensitivities are listed in Table 7.4 and Figure 7.5.
Though the thresholds were forced to be raised, the sensitivities still improved as the
event yield is also expected to be doubled with the extra scintillator.
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7.3 Multi-Detector Supernova Pointing
Whereas supernovae are extremely luminous optically, the optical signals are ex-
pected to be heavily attenuated by the cosmic dust along their paths. To capture
these attenuated signals, dedicated observations using large telescopes will be needed.
However, the angular coverage of the relevant telescopes are, in general, of only sev-
eral degrees [1]. An early warning with prompt and accurate directional indication is,
therefore, valuable and necessary for the detection of the supernova electromagnetic
signals. In addition, this warning will also be essential for possible gravitational wave
signals, whose waveform is uncertain and likely to be lost otherwise.

The SNEWS network is thus proposed to serve this demand by utilising the
neutrino signals that are expected to arrive at the Earth tens of minutes to a few
days prior to the electromagnetic waves [1, 189]. The question is then how could the
directional information be extracted from the neutrinos before they could be optically
located. Two approaches were explored in [192]: single detector in-situ directionality
and multi-detector triangulation. The first approach requires in-situ directionality
information from the detector, which usually relies on the Cherenkov light and is
currently mainly performed in water detectors. Though this approach gives the best
angular resolution, it is relatively more time-consuming, usually on the order of tens of
minutes [193], and might be at the risk of not being able to provide prompt enough
warning for the telescopes. This is where the second approach of multi-detector
triangulation demonstrates its value. The supernova direction in this case is inferred
from the time difference between the neutrino detectors by simple calculations that
can be done nearly instantly. This approach has, until recently, been considered
unfeasible owing to the low yield of past neutrino detectors. Nonetheless, with the
new generation of kilotonne detectors envisaged to observe thousands of events during
a supernova explosion, this method has been brought back to the attention of the
astrophysical community.

7.3.1 SNEWS Network
The supernova early warning system (SNEWS), operating since 1998 and automated
since 2005, is a network combing a wide range of neutrino detectors across the globe [1,
189]. The basic idea of the SNEWS network is to issue prompt alerts to the astronom-
ical community based on the coincidence of neutrino bursts across multiple neutrino
detectors within a short time window (10 s by default). Member experiments cur-
rently connected to SNEWS are listed in Table 7.5 with NOνa, KM3NET and Baksan
preparing to join.
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Experiment Material Main Interaction Channel

Super-Kamiokande water (32 kt) νe + p→ n+ e+

Daya Bay scintillator (20 t) νe + p→ n+ e+

LVD scintillator (1 kt) νe + p→ n+ e+

Borexino scintillator (300 t) νe + p→ n+ e+

KamLAND scintillator (1 kt) νe + p→ n+ e+

SNO+ scintillator (0.8 kt) νe + p→ n+ e+

IceCube water (Antarctic ice) noise excess
HALO Lead (76 t) νe + Pb → e− + Bi∗

Table 7.5: Neutrino experiments currently connected to SNEWS [1]. Note that
SNO+ joined recently by the end of 2021, and is in the testing channel by the time
of writing.

Participating neutrino experiments will execute their own supernova monitors.
The SNEWS client will then send the necessary information, such as the experiment
name, time of first burst event and burst quality parameter, to the SNEWS coinci-
dence servers located at the Brookhaven National Laboratory and the University of
Bologna. Directionality and burst size information is optional depending on its avail-
ability at each experiment upon supernova explosion. Alerts are further categorised
into “gold” and “silver”, where “gold” alerts satisfies all the burst quality criteria and
are automatically sent out to the subscribers; and “silver” alerts are those that fail at
least one of the criteria and will only be sent to the experiments for manual review.
This design is largely driven by the target one-per-century false alert rate allowing
only coincidences of extremely high quality.

With the advancements of astro-particle physics in various fronts, such as the
successful detection of gravitational waves [194] and possible neutrino observation
of a blazar [195], multi-messenger astronomy has acquired wide attention amongst
the astronomical community. Consequently, the SNEWS network is aiming for an
upgrade, known as SNEWS 2.0, to become more suitable for multi-messenger as-
tronomy. The focus of the system is shifted from purity of the signal to maximising
the possible information that can be extracted from the future supernova. The main
changes introduced by SNEWS 2.0 include [1]: sacrifice of burst purity for sensi-
tivity; reducing alert latency; implementation of multi-detector triangulation; and
implementation of a pre-supernova alert. These upgrades will make SNEWS 2.0 the
most comprehensive neutrino multi-messenger alert system.
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Figure 7.6: Schematic representation of multi-detector triangulation with a pair of
neutrino detectors.

7.3.2 Multi-Detector Positioning
The whole idea of multi-detector triangulation is to reconstruct the supernova direc-
tion from the time differences between different pairs of spatially separated neutrino
detectors connected to SNEWS. Figure 7.6 is a schematic illustration of the concept
with a single pair. The relation between the detector time difference ∆t and the
supernova direction can be expressed as

∆t =
|d⃗ · n̂|
c

(7.26)

where d⃗ is the displacement between the detectors, n̂ is the directional unit vector of
the supernova with the origin chosen to be the centre of the Earth, and c, without
surprise, is the speed of light. Note that this implicitly assumes that the distance
between the Earth and the target supernova is far greater than |d⃗|, which is clearly
the case.

7.3.3 Time Difference Determination
Time difference determination is the central piece of supernova triangulation. It is
clear from Eq. 7.26 that the problem can be reduced to finding the time difference,
since ∆t is the only unknown variable besides the supernova direction. There are, in
general, two approaches to the problem: model-dependent and model-independent.
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In the former approach, a likelihood fit on the signal would elegantly solve the issue.
The only problem with it is which model, out of the ocean of supernova models,
should be used or, even worse, whether the models are applicable at all. This is
another complicated topic that is beyond the scope of this thesis.

The model-independent approach, on the contrary, will rely on the exploitation of
the time lapse between the detections of notable features within the time series. The
question is, then, of which feature should one focus on. An immediately apparent
choice is the use of the time difference between the first or first few events of the time
series, which has been studied in [196]. This simple method provides surprisingly
good resolution. For instance, the combination of JUNO and Super-Kamiokande
yields a ∆t resolution of 5.7 ms. It is, however, less resilient against background
events and has a relatively larger bias.

Another option, which will be discussed in more detail, is to match the overall
profile of the two time series, as depicted in Figure 7.7. By comparing the entire pro-
file, it is expected to introduce a smaller bias and be more robust against background
events as more data points are taken into account. The basic idea is to make use of
the shape similarity between the light curves. Assuming an identical underlying time
distribution, which should be the case for comparable detectors, shifting one of the
profiles by the correct time offset ∆t should, in principle, result in the minimisation
of some difference metric between the two distributions. Conventional metrics such
as χ2 and cross-correlation have been explored in [197]. The time resolution is im-

121



7.3. MULTI-DETECTOR SUPERNOVA POINTING

proved with this method, e.g., the JUNO plus Super-Kamiokande pair now gives a
resolution of 2.73 ms using χ2 and 2.75 ms using cross-correlation. After examining
these conventional methods, it appears that the resolution power mainly comes from
the edges, i.e., large derivatives, of the time distributions.

This observation is consistent with the Cramer-Rao theorem [192, 198, 199] which
is used to estimate the theoretical limit of the true event time resolution (δt0)min:

1

(δt0)2min

= N

∫
dx [∂f(x)/∂x]

2

f(x)
(7.27)

where N is the total number of events, and f(x) is the time profile. For binned
distributions, Eq. 7.27 can be approximately expressed as

1

(δt0)2min

≈ N
∑
i

[∆bi/∆x]
2

bi
(7.28)

where the subscript i denotes the bin index; bi is the bin content of the normalised
profile; ∆x is the bin width; and ∆bi/∆x is the average slope at bin i. The limit of
the time difference resolution for a pair of detectors can then be simply calculated
via error propagation

δ(∆t) =
√

(δt0)2min + (δt′0)
2
min (7.29)

where (δt0)min and (δt′0)min are the individual resolution limits of the pair of detectors.
This motivates one to consider weighted-difference metrics that emphasize more on
the edge.

To demonstrate this idea, a simple parameter η is devised for the binned time
series F = {tj}Nj=1 and F ′ = {t′j}N

′
j=1:

ηi = |bi − b′i|(bi + b′i) if both bins are non-zero
ηi = |bi − b′i|(bmax + b′max) if one of the bins is empty
ηi = 0 if both bins are empty

(7.30)

where bi and b′i are the bin contents of the normalised distributions of F and F ′;
bmax = max{bi} and b′max = max{b′i}. This metric is designed to accentuate the edge
feature of the metric profile by assigning greater weight to the bin difference when
there is an actual displacement, that is, when a non-empty bin of one light curve is
compared to an empty bin of the other. The metric value calculated by Eq. 7.30 is
per bin, and the resulting metric value is the sum of all such values

η =
∑
i

ηi. (7.31)

122



7.3. MULTI-DETECTOR SUPERNOVA POINTING

0 0.5 1 1.5 2 2.5 3
Time (s)

0

2

4

6

8

10

3−
10×
IBD Event Distribution, shen­s8.8

E
v
en

ts
 p

er
 1

0
m

s 
(n

o
rm

al
is

e
d
)

0 0.5 1 1.5 2 2.5 3
Time (s)

0

2

4

6

8

10

12

3−
10×

IBD Event Distribution, ls220­s40.0c­bh

E
v
en

ts
 p

er
 1

0
m

s 
(n

o
rm

al
is

e
d
)

0 0.5 1 1.5 2 2.5 3
Time (s)

0

2

4

6

8

10
3−

10×
IBD Event Distribution, ls220­s27.0co

E
v
en

ts
 p

er
 1

0
m

s 
(n

o
rm

al
is

e
d
)

0 0.5 1 1.5 2 2.5 3
Time (s)

0

5

10

15

20

3−
10×

IBD Event Distribution, ls220­s40s7b2c­bh

E
v
en

ts
 p

er
 1

0
m

s 
(n

o
rm

al
is

e
d
)

Figure 7.8: Expected IBD event time distribution for the supernova models:
8.8M⊙ (Shen) (top left), 27M⊙ (LS220) (bottom left), 40M⊙ (LS220) forming a black
hole after 2 s (top right), and 40M⊙ (LS220) forming a black hole after 0.5 s (bottom
right).

7.3.4 Supernova Signal Simulation
In order to test the metric, realistic simulations of the observed supernova signal time
series in each detector are needed. The simulation is divided into three stages: event
yield calculation, event interaction simulation and, finally, detector response. For this
study, four supernova models from the Garching group [78, 132, 200] were employed:
an electron capture supernova with a progenitor mass of 8.8M⊙ (shen-s8.8); an iron-
core CCSN with progenitor mass of 27M⊙ (ls220-s27.0co); two 40M⊙ progenitor mass
supernovae forming black holes in 0.5 s (ls220-s40s7b2c-bh) and 2 s (ls220-s40.0c-bh)
after core bounce.

The event yield calculation was done with the SNOwGLoBES event rate calcula-
tor [201]. SNOwGLoBES multiplies the neutrino flux, derived from the luminosity
and mean energies of the supernova models, by the corresponding interaction cross-
sections of each channel to obtain the interaction rate. The interaction rate of a given
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channel i can then be expressed as:

Ri =
L

⟨E⟩ · 4πD2
σi = Φσi (7.32)

where L and ⟨E⟩ are the luminosity and mean energies obtained from the supernova
models, respectively; D is the distance of the supernova, 10 kpc by default; Φ is the
derived flux; and σi is the interaction cross-section. The total rate is then simply the
sum of all possible channels:

R =
∑
i

Ri =
∑
i

Φσi. (7.33)

The total event yield obtained from SNOwGLoBES is then fed to the simulation as
the total number of events to simulate. For each event, a time is randomly generated
by taking the time dependent interaction rate as the probability distribution function.
Once the time series is generated, each event is assigned a neutrino energy following
the energy spectrum according to its time label. The neutrino energy spectrum is
described by Eq. 3.10 in Section 3.5.2.

Now, with the incident time and incoming neutrino energy assigned, the next step
is to assign an interaction channel to the simulated event. The channel is randomly
assigned based on the relative expected event rates, calculated by Eq. 7.32, at the
given time and energy. Depending on the assigned interaction channel, the visible
energy of each event can be calculated as discussed in Section 7.1.

Finally, Gaussian smearing is applied to the resulting visible energies to approxi-
mate the effect of the energy resolution of the detectors. This smeared visible energy
is compared to the energy threshold of the detector subjected to the simulation, and
the event will be discarded if it happens to fall below threshold.

For this study, JUNO and Super-Kamiokande are the only detectors investigated,
and their respective energy resolutions are 3% [202] and 4.5% [203]. Furthermore, for
the discussions in this section, IBD will be the only interaction channel considered due
to its high purity. Figure 7.8 shows the expected IBD event time distribution for the
four supernova models, where the incident time is defined as the prompt event time
of each pair. Note that IBD tagging in Super-Kamiokande is slightly different from
that in scintillator detectors since the delayed 2.2 MeV γ is below the water detection
threshold, and, hence, is not eligible for coincidence tagging. To cope with this issue,
in [204], it was proposed to dope Gadolinium into the Super-Kamiokande detector, so
that 90% of the IBD events will result in neutron captures on Gadolinium leading to
a γ cascade with a total energy of 8 MeV. This will be the scenario considered in this
study, and, hence, Super-Kamiokande will refer to Super-Kamiokande-Gd whenever
mentioned hereafter.
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Figure 7.9: The IBD event distributions of an average trial for the ls220-s27.0co model
at distance 10 kpc, where the Super-Kamiokande histogram is shifted by ∆t0 = 10 ms.

7.3.5 Result
With the JUNO and Super-Kamiokande IBD time series simulated following the
description in Section 7.3.4, an artificial time offset ∆t0 will be applied to one of
the time series. For convenience of presentation, results shown in this section are
carried out with the artificial time delay fixed at +10 ms, which is the maximum
time difference possible for this pair of detectors, and always applied to the Super-
Kamiokande time series. The reverse and different offset values have both been
tested, and are confirmed to have no effect on the results. Figure 7.9 shows the time
series distribution of an averaged trial of the model ls220-s27.0co.

The time window for comparison is chosen to be from −0.2 to 4 s after core
bounce. The bin size is event-yield dependent and is optimised for each model and
distance. Each time entry in the time series will then be filled into the corresponding
histograms. Whilst being binned, the entries of one of the series, the JUNO series in
this case, will be shifted by a scanning time offset ∆̂t. This scanning offset ∆̂t will
scan through a range of −60 to 60 ms in steps of 0.1 ms, and the shifted series will
be re-binned at each step. Presumably, the total metric value η should be minimised
when ∆̂tmatches up with the true offset ∆t0. Figure 7.10 shows the resulting ηi values
per time bin at each ∆̂t step for an averaged trial based on the model ls220-s27.0co.
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Figure 7.10: The η distribution per time bin (ηi) at each ∆̂t step for an averaged
trial based on the model ls220-s27.0co at 10 kpc. The colour scale indicates the η
contribution of a given time bin.

The final ∆t that one obtains should, in principle, be the value with the minimum
summed η. Nonetheless, the summed η distribution against ∆̂t is rugged due to the
binning of discrete time entries. The η distribution is, therefore, smoothed by a
fourth order polynomial, and the final ∆t will be determined from the overall trend
of the distribution.

This method is tested with 1,000 trials for each supernova model simulated as de-
scribed in Section 7.3.4. The resulting ∆t distribution is further fitted by a Gaussian
to determine the resolution and bias, which are defined as the standard deviation of
the distribution and |⟨∆t⟩ −∆t0|, respectively. Results are listed in Table 7.6. One
can clearly see that this method outperforms the aforementioned existing methods:
3.4 ms compared to the 5.7 ms resolution of the first-event method using the shen-s8.8
model [196]; and 1.83 ms compared to the 2.73 ms resolution of the χ2 method using
an analytical model equivalent to a 27M⊙ CCSN [197]. This demonstrates that there
is further mileage to be gained from unconventional metrics focusing on the large
derivatives.
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Shape Comparison
Models Resolution (ms) Bias (ms)

shen-s8.8 3.4 0.6 ± 0.17
ls220-s27.0co 1.83 0.04 ± 0.15
ls220-s40.0c-bh 0.95 0.02 ± 0.08
ls220-s40s7b2c-bh 0.56 0.15 ± 0.04

Table 7.6: Resolutions and biases of the shape comparison method for each supernova
model at the default 10 kpc distance.

Background

As mentioned earlier, all the results hitherto obtained are solely based on the expected
IBD signals of each target detector. The coincident nature of the signal assures
that accidental detections arising from the radioactive backgrounds are expected to
be negligible. There are, nonetheless, authentic IBD backgrounds in each detector
caused by geo-neutrinos and reactor anti-neutrinos. JUNO is foreseeing a rate of
about 64 IBD events per day [205], and the IBD event rate for Super-Kamiokande
is around 13 per month [206]. For the 4.2 s time window under consideration, the
expected IBD background rate is thus far lower than one for both of the detectors.
The worst case scenario would, therefore, simply be the occurrence of one, or at most
two, such event. This might cause trouble to the relatively simple first-event method,
but should not affect the shape comparison method which invokes a significant portion
of the time series.

To test the robustness of the method, one and two randomly generated back-
ground events within the time window of comparison are added to the simulated
1,000 trials. For the case of the ls220-s27.0co model, the change in resolution is
minor: 1.85 ms for one background event and 1.86 ms for two background events,
compared to the original 1.83 ms. The biases are largely unaffected in both cases,
confirming the reliability of light curve matching against backgrounds.

Black Hole Cut-Off Feature

Another notable feature when studying the light curve matching method is the black
hole cut-off. From Table 7.6, it is clear that the resolution is much better in the
cases of the two models where the supernova explosion is accompanied with black
hole formation. This is not only because the slight increase in event yield due to the
heavier progenitor, but is also an effect of the presence of a sharp cut-off at the end
when the black hole forms, as depicted in Figure 7.8. Figure 7.11 demonstrates the
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Figure 7.11: The η distribution per time bin (ηi) at each ∆̂t step for an averaged
trial based on the model ls220-s40s7b2c-bh at 10 kpc. The colour scale indicates the
η contribution of a given time bin.

additional resolution power contributed by the sharp cut-off.
The formation of the black hole is expected to cause this cut-off in luminosity as it

engulfs the core which is the source of the neutrinos. In the black-hole-forming models
invoked in this study, namely the ls220-s40.0c-bh and ls220-s40s7b2c-bh, the cut-off
is a perfect discontinuity in the sense that the simulation was manually terminated
upon black hole formation. If this was the case, then it might be more efficient to
perform a last-event comparison for the determination of the time difference when
black hole formation is identified. The black hole cut-off, however, might be slightly
softer than many have expected, which will be investigated in the next chapter. Light
curve matching is thus currently still the most reliable method for obtaining the time
difference between detectors, where the ending edge caused by the black hole could
play an important role.
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7.4 Summary
Supernova neutrino detection in the SNO+ detector and the multi-detector SNEWS
network has been discussed. Based on the light yield and background levels deter-
mined in Chapter 5, a multi-threshold burst trigger is developed for SNO+ in the
aim of identifying the high energy neutrino burst upon supernova explosion. With
the simulated neutrino fluxes based on the Garching models [91, 132, 144], it is dis-
covered that SNO+ is able to maintain higher than 50% sensitivity at 100 kpc for
the standard iron-core CCSNe (ls220-s27.0co, ls220-s40.0c-bh, ls220-s40s7b2c-bh) us-
ing the currently implemented burst triggers, whereas the sensitivity for the lighter
electron-capture supernovae (shen-s8.8) is slightly lower. Additionally, the practical
maximum sensitivity in SNO+ can be estimated using a 2-IBD trigger, where the
sensitivity for iron-core CCSNe reaches an overall 90% at 100 kpc and 45% for the
electron-capture supernovae at the same distance. In order to achieve this sensitivity
or to implement the 2-IBD trigger, a prompt IBD identification will be need, in which
the TimeCentroid method developed in Chapter 6 could play an important role.

With IBD events identified in a timely manner, this valuable signal can be commu-
nicated amongst different neutrino detectors across the globe as an important handle
in supernova detection, owing to its high purity and relatively high energy emission.
These comparable signals synchronised via the SNEWS network could be utilised for
many purposes. One main application discussed in this chapter is the positioning of
the supernova on the celestial sphere via multi-detector triangulation. To determine
the detection time difference between detectors, a light curve matching method based
on a simple metric focusing on the large time-derivatives in the luminosity profile has
been developed. The results, based on the same set of supernova models, shows that
this simple method outperforms the existing methods: 3.4 ms uncertainty compared
to the 5.7 ms in [196] for the shen-s8.8 model and 1.8 ms uncertainty compared to
the 2.7 ms in [197] for a 27M⊙ model (equivalent to ls220-s27.0co). Furthermore, by
introducing randomly generated events to the luminosity profile, it is demonstrated
that the method is resilient to possible backgrounds.

During the study, it was noticed that the sharp decline associated with black
hole formation could potentially provide strong resolution power. In fact, if the
sharp decline is indeed a perfect cut-off, a last-event method would deliver the most
accurate result. Nevertheless, as it will become clear in the next chapter, the cut-
off is slightly smoother than is usually expected. The light curve matching method
is, therefore, still the most reliable way of identifying the detection time differences
between different detectors.
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Chapter 8

Black Hole Formation in
Core-Collapse Supernova

Black holes are expected to form in the event of a core-collapsing supernova (CCSN)
when the proto-neutron star (PNS) exceeds the neutron star mass limit of 2.1−2.4M⊙.
Though the formation of such a PNS is expected to result from a massive stellar pro-
genitor, further details of the criteria still remain debated [110]. In such an event,
the neutrino, and possible gravitational wave, signals might not be accompanied by
subsequent visible electromagnetic signals. The observation of black hole formation
following a CCSN would, therefore, solely rely on the detection of its neutrino signals.
One distinct indication of such an end result is an abrupt cut-off in the neutrino lu-
minosity profile. This abrupt drop in luminosity is due to the engulfment of the main
neutrino-producing regions of the PNS as well as the strong gravitational redshift of
those neutrinos that just managed to escape.

The cut-off was first explored in the case of photon emissions from a collapsing
stellar surface. In 1964, Podurets was the first to work out the asymptotic behaviour
of such cut-offs in studying the optical luminosity of a free-falling non-rotating mass
shell [207]. It was discovered that the late-time behaviour of the light curve is dic-
tated by photons trapped for an extended period around the unstable circular orbit
at a critical radius of 3M i, where M is the total mass confined within the collaps-
ing surface, resulting in the luminosity approaching a decaying exponential of time
constant 3

√
3M . Later in the same year, Zel’Dovich and Novikov demonstrated that

radial emissions alone would lead to a luminosity decline characterised by a time
constant of 4M [208]. Following these enlightening advancements, Ames and Thorne
presented the expressions of the redshift factor and the resulting spectral profile in

iHere, and hereafter, the so-called geometric units are used in which c = G = 1. In SI units, the
expression for such distance will be 3GM/c2.
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1968 [209]. In the event of a CCSN, the photons would, of course, barely escape and
this cut-off would only be evident in the neutrino channel. Therefore, these results
have been widely applied in later studies of neutrinos emerging from growing black
holes, such as [210, 211].

In terms of the evolution of the black hole, it remains unclear how much of the
PNS is involved in the first instance due to uncertainties in its structure. Nonetheless,
the formation of the event horizon is likely to initially take place below the surface
of the PNS, leaving the most neutrino-producing fertile layers outside. If this is
the case, the layers outside will continue to emit neutrinos in all directions, rather
than radially, before they themselves fall behind the event horizon. Indeed, it was
suggested in [212] that the radial treatment, hitherto adopted by most ray-tracing
studies, is expected to be an underestimate, and that a full treatment would require
detailed ray-tracing through a highly curved spacetime.

As the indicative signature of the incident black hole formation, the final rapidly
declining behaviour of the neutrino light curve is an intriguing feature for its clar-
ity and distinctiveness. In addition, it also reflects the events shrouded deep in the
turbulent and violently evolving CCSN core upon black hole formation, and could po-
tentially provide extra statistical power in the multi-detector triangulation of CCSNe
as mentioned in Chapter 7 [192, 199, 213]. Detailed modelling of this phenomenon
involves computationally intensive hydrodynamic simulations, which, of necessity,
simplify neutrino transport to various degrees and approximate or incorporate full
general relativity, for instance [214, 215]. In many cases, however, the formation of
a black hole presages the end of the validity of such simulations.

Previous analyses of the subject have focused on either specific trajectories or sim-
plified neutrino transport models. In this chapter, we aim to present a comprehensive
account of the effects of non-radial geodesics on the neutrino luminosity cut-off by
performing a ray-trace study. This idealised scenario is clearly a drastic simplification
within a complex domain, but as a toy model it can highlight broad features and be a
useful check for more detailed simulations. Null geodesics from non-rotating collaps-
ing stars have been investigated in [209, 216, 217] for photons, as well as in [218, 219]
for neutrinos, upon which we will base our studies of the cut-off profile arising from
non-rotating black holes. Furthermore, we also present the first ray-tracing study on
rotating black holes using the Kerr metric with much of the formulation derived for
the first time. The results of this study have been published in [3].

8.1 Neutrino Emission upon Black Hole Formation
The hot dense core of the CCSN is the main source of the neutrinos. As described in
Chapter 3, the core undergoes rapid neutronisation during the early stages of the core
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collapse, leading to the neutronisation burst consisting of νe. Later stages see the
thermal production of all neutrino flavours within the coalescing PNS as it continues
to accrete matter from the collapsing star. Two scenarios are envisaged to result in
the formation of a black hole [220]. The first is where the PNS is further compressed
by accretion until sufficient matter is confined within a sufficiently small radius such
that the null geodesics start to curve back on themselves, viz., formation of an event
horizon. For the case of a non-rotating black hole, this horizon will appear at the
radius 2M , which is clear from the metric listed in Section 8.2. In the second, a part
of the PNS undergoes a nuclear phase transition, leading, again, to higher densities
sufficient of forming an event horizon.

In either case, it is worthwhile to note that the formation of the event horizon,
and thus the black hole itself, is a global observable irrelevant to any neutrino trav-
elling beyond the evolving mass distribution. Suppose that the neutrino were to pass
through the environment, the neutrino will only be sensitive to the local curvature
determined by the mass distribution around it. As mass re-distributes, generally
“inwards” in a global sense, the geodesics bend accordingly. For distant observers,
the only indication that a black hole has formed is the disappearance of some, yet
by no means all, neutrinos that follow trajectories which bend back on themselves
prohibiting their escape.

Furthermore, the timescale of this geodesic bending is not altogether sudden.
As the black hole forms, the mass accretion rate onto the PNS is expected to be
on the order of 1M⊙/s [215]. If we use this as the estimate of the growth rate of
the black hole, the critical radius of the unstable circular orbit of the null rays will
correspondingly grow at the rate of 3M⊙/s, or perhaps more intuitively, on the order
of kilometres per second. On the contrary, neutrinos travel at speeds near the speed
of light, which is greater by five orders of magnitude. From this perspective, the
relatively slow increase in the size of the black hole should clearly not affect the
neutrino path to any significant extent.

8.2 Non-Rotating Black Hole: the Schwarzschild
Geometry

To start the discussion, the case of neutrinos emitted, or perhaps undergoing their
last scatter before escaping, from a shell of matter free-falling towards an inner non-
rotating black hole is considered. Spacetime in such a scenario would be described by
the Schwarzschild metric. The Schwarzschild metric, solved in 1916 by Schwarzschild
as the name suggests [221], is an exact solution of the Einstein field equations that
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describes the exterior gravitational field of a non-rotating static spherical body of
mass M . In standard spherical coordinates (t, r, θ, ϕ), the Schwarzschild metric reads
out as

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (8.1)

Since the metric is spherically symmetric, one may restrict attention to study geodesics
in the equatorial plane, θ = π/2, to simplify matters without loss of generality.

8.2.1 The Geodesic Equation
In this study, there are two particles that should be taken into consideration: the free-
falling emitter and the emitted neutrino. The motion in both cases are described by
the geodesic equation, since the emitter is assumed to be free-falling and the neutrino
trajectory is presumably ballistic, that is, free of any force other than gravity.

To tackle the geodesic equations directly from the general form will be rather
laborious. A conventional alternative approach to avoid the tedious computations
involving the Christoffel symbols is to invoke the conservation relations associated
with the Killing vectors [222]. In the case of the Schwarzschild metric, the quantities
can be expressed as

E ≡ −gαβ
(
∂

∂t

)α(
∂

∂τ

)β

= C(r)
dt
dτ

L ≡ gαβ

(
∂

∂ϕ

)α(
∂

∂τ

)β

= r2
dϕ
dτ

(8.2)

where τ is the proper time, or an affine parameter in the case of a null geodesic, and

C(r) ≡ 1− 2M

r
. (8.3)

In the coordinate frame, that is, the frame of a distant observer, the conserved quan-
tities E and L can be regarded as the total energy and total angular momentum per
unit rest mass of a time-like particle. For null rays, similarly, h̄E and h̄L can be
interpreted as the total energy and angular momentum of the particle.

Observation Frames

Before proceeding to the velocities, it will be beneficial to state explicitly the frames
in which the velocities are observed. In this study, there are three frames which
will be frequently referred to. The first is, obviously, the aforementioned coordinate
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frame which is the frame of the distant observer, e.g., observers on Earth. All of
the expressions shown so far are derived in this frame. For consistency, observables
are presumably in this frame unless otherwise specified. The second frame is the
proper frame of the free-falling emitter. This frame will be referred to as the “free-
fall” (FF ) frame hereafter, and the observables of this frame will be indicated by
the subscript FF . Finally, there is the frame of a stationary observer in which
the metric is invariant in time [223], that is to say it is at rest with respect to
the t-hypersurfaces ii, and coincides in position with the falling emitter. Since this
stationary observer turns out to be static iii, the variables observed in this “static” (S)
frame will be labelled with the subscript S.

Velocities

The normalisation of the tangent vector of a geodesic can be expressed as

κ = ξαξα = −C
(

dt
dτ

)2

+ C−1

(
dr
dτ

)2

+ r2
(

dϕ
dτ

)2

(8.4)

where

κ =

{
−1 time-like geodesics
0 null geodesics

.

By substituting the conservation relations in Eq. 8.2, the normalisation condition
becomes

κ = −C−1E2 + C−1

(
dr
dτ

)2

+
L2

r2
(8.5)

and with some rearrangement of the terms one will arrive at(
dr
dτ

)2

= E2 + C

(
κ− L2

r2

)
(8.6)

which is precisely the radial geodesic equation. It will, however, be slightly more
informative written in terms of the velocity rather than proper velocity(

dr
dt

)2

= C2 + C3

(
κ

E2
− b2

r2

)
(8.7)

where b ≡ L/E is known as the apparent impact parameter in the case of null rays,
for it will be the distance of closest approach were the spacetime flat [222]. In this
case, it becomes apparent that the null geodesics will be solely determined by the
impact parameter b.

iiThis means the four-velocity of the observer will be proportional to ∇αt = gαβ(∇βt) = gαβ(dt)β .
In Schwarzschild geometry, this reads out as ∂

∂τ ∝ −C−1 ∂
∂t ∝

∂
∂t .

iiiThe static observer is defined as a strictly time-like observer, i.e., ∝ ∂
∂t .
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Free-Falling Emitter

Consider the case of a free-falling emitter initially at rest at r = r0. Free-falling from
rest suggests that the emitter has no angular momentum, i.e., L = 0 at all times.
The geodesic equation Eq. 8.6 then becomes(

dr
dt

)2

= C2

(
1− C

E2

)
. (8.8)

By inserting the initial condition that the emitter is at rest at r0, one can solve for
E2 without much labour

E2 = C0 (8.9)
where C0 ≡ C(r0). Therefore, the free-falling velocity of the emitter in coordinate
frame is

dr
dt = C

√
1− C

C0

. (8.10)

It is also useful to express this velocity in the static frame. The conversion between
the coordinate and static frames can be figured out by comparing the metric tensor
transform between the coordinates xµ = {t, r, θ, ϕ} and xµS = {tS, rS, θS, ϕS}

(gαβ)S(dxαS)a ⊗ (dxβS)b = gab = gαβ(dxα)a ⊗ (dxβ)b

= gαβ

(
∂xα

∂xγS

)(
∂xβ

∂xδS

)
(dxγS)a ⊗ (dxδS)b

(8.11)

where the abstract index notation has been invoked [222]. In the abstract index
notation, indices in Greek letters are used to indicate the scalar components of the
tensors, and Latin indices are used to keep record of the tensor bases, for which the
outer product will no longer be explicitly written henceforth. For instance, a rank 2
mixed tensor will be written as T a

b = T α
β(∂α)

a(dxβ)b.
Since a local observer will find the local spacetime flat, the metric in the static

frame will simply be the Minkowski metric. Bearing that in mind, a simple com-
parison of the left hand side and right hand side of Eq. 8.11 leads to the following
observations

∂t

∂tS
= C− 1

2 ,
∂r

∂rS
= C

1
2 ,

∂θ

∂θS
= 1,

∂ϕ

∂ϕS

= 1. (8.12)

Finally, with these relations the static frame velocity can be expressed as

βS ≡ drS
dtS

=

(
∂t

∂tS

)(
∂rS
∂r

)(
dr
dt

)
=

√
1− C

C0

. (8.13)
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Neutrino Trajectory

Since the neutrino mass is nearly vanishing, null geodesics can describe the neutrino
trajectories to a fairly high degree of accuracy. In this case, the geodesic equation
describing the neutrino motion will be(

dr
dt

)2

= C2

(
1− C

b2

r2

)
. (8.14)

Following similar transformations as in Eq. 8.13, the radial velocity of the neutrino
in the static frame is found to be(

dr
dt

)
S

= cosψS = σr

√
1− C

b2

r2
(8.15)

where ψS is the angle relative to the outward radial direction as observed in the static
frame; and σr is +1 for radially outward trajectories and −1 for inward trajectories as
measured in, again, the static frame. Note that since the null geodesic is invoked, the
total velocity is always fixed at c = 1 and the radial velocity can simply be identified
as cosψS in the static frame.

Another important quantity in the considerations of the neutrino emission is the
neutrino radial velocity in the free-fall frame, for this will be the frame in which
emission is isotropic. The free-fall frame only differs from the static frame by an
inward boost of βS. Therefore, one can obtain the neutrino radial velocity in free-fall
frame through a simple exercise of velocity addition(

dr
dt

)
FF

= cosψFF =
cosψS + βS

1 + cosψS · βS
(8.16)

where ψFF is now the angle relative to the outward radial direction in the free-fall
frame. Eqs. 8.15 and 8.16 also showed that there is a bijective relation between
the impact parameter b and the emission angle ψ from which one can calculate the
other whenever one of the quantities are known, e.g., b = 0 obviously leads to radial
emissions.

8.2.2 Neutrino Travel Time
With the trajectory determined, the travel time of the neutrino as observed on Earth
can then be estimated by integrating Eq. 8.14, leading to the expression

T (b, r∗; rE) ≡
∫ tE

t∗

dt =
∫ rE

r∗

r5/2dr
(r − 2M)

√
r3 − b2(r − 2M)

(8.17)
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𝑟∗ 𝑟∗

Figure 8.1: Inward and outward trajectories for neutrinos emitted outside the photon
sphere. Outward trajectories escape directly, whilst inward trajectories reach peri-
apses before joining the outward trajectory.

where t∗ and tE are the times of emission and observation; and r∗ and rE are the
emission radius and the distance to Earth, respectively. This expression can be
further simplified in the case of radial emissions

T (b = 0, r∗; rE) =

∫ rE

r∗

rdr
r − 2M

= (rE − r∗) + 2M ln
(
rE − 2M

r∗ − 2M

)
.

(8.18)

When calculating the travel time of the neutrinos, there are two cases that should
be taken into consideration, as depicted in Figure 8.1. For a neutrino appearing to
be emitted outwardly in the static frame, the time delay compared to a neutrino
travelling radially outward from the initial radius is

∆T+(b, r∗) = T (b, r∗; rE)− T (0, r0; rE) (8.19)
where the “+” label indicates the outward travel direction. The inward oriented path,
on the other hand, will acquire an extra Shapiro-like time delay [224] as it passes the
periapsis. The expression of the time delay then becomes

∆T−(b, r∗) = 2T (b, rp; r∗) + ∆T+(b, r∗) (8.20)
where rp is the periapsis distance

rp =
2b√
3

cos
(
1

3
arccos

(
−
√
27M

b

))
(8.21)

which can be solved from the right hand side of Eq. 8.14 at given b.
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𝑟

2𝑀 3𝑀

Figure 8.2: Schematic view of the escape cones (unshaded region) for null geodesics
in Schwarzschild spacetime. At r∗ = 2M , only radial geodesics can escape. For 2M <
r∗ ≤ 3M , only outward-oriented geodesics are able to escape. Beyond r∗ = 3M , some
of the inward-oriented geodesics can also escape to infinity.

Escape Cone and Photon Sphere

It is evident from the integrand in Eq. 8.17 that not all trajectories lead to infinity.
There are two occasions when the integrand diverges: r = 2M and r3−b2(r−2M) = 0.
The first is simply the event horizon, whereas the second condition introduces an
unstable circular orbit at r = 3M known as the “photon sphere”, for which paths
are characterised by the “critical impact parameter” bc ≡ 3

√
3M . The photon sphere

is the only possible circular orbit for null rays in Schwarzschild geometry, for it is
the only instance when both the radial velocity and acceleration vanishes outside the
event horizon

d2r

dt2

∣∣∣∣
r3−b2(r−2M)=0

= σr
(r − 2M)(r − 3M)

r3
. (8.22)

The photon sphere creates a boundary at r = 3M , outside which only outward
oriented geodesics and inward directed geodesics with b

bc < b ≤
√

r3

r − 2M
(8.23)

are able to reach infinity. Between the photon sphere and the event horizon, only
outward travelling paths of b < bc are able to escape. These “escape cones” iv are
shown in Figure 8.2. The reason behind this is that, as shown in Figure 8.3, the
equation r3 − b2(r− 2M) = 0 is solvable outside the event horizon only when b ≥ bc.
Therefore, the paths of b < bc will either escape to infinity if oriented outwards or

ivThe opposite of what Chandrasekhar referred to as the “cone of avoidance” [225].
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Figure 8.3: Behaviour of r3− b2(r− 2M) = 0 at different b values. Roots beyond the
event horizon only exist when b > bc = 3

√
3M .

plunge into the black hole if oriented inwards. The case for paths of b > bc is slightly
more intricate. The outward trajectories beyond the photon sphere simply escapes,
and the inward trajectories within the range 2M < r < 3M will be absorbed by the
black hole. Besides these straightforward cases, the outward paths for 2M < r < 3M
and the inward paths for r > 3M will eventually pass their respective apoapsis and
periapsis at the roots of r3 − b2(r − 2M) = 0 then reverse course as the acceleration
will always be non-zero in the opposite direction, which can be easily verified from
Eq. 8.22.

Emission Angle and Travel Time

Figure 8.4 shows the emission angle dependence of the time delay for a surface free-
falling from rest at radius 10M towards a black hole of mass 2.5M⊙. Note that the
emission angle in Figure 8.4 is that observed in the free-fall frame. The time delay is
zero at ψFF = 0 by definition, since ψFF is defined with respect to the outward radial
direction. As the emission direction deviates from the radial direction, the time delay
increases accordingly and will eventually diverge as the periapsis radius approaches
the photon sphere radius at r = 3M . The escape cone shrinks in accordance with the
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Figure 8.4: Time delays, relative to that of the outward radial emission for a given
radius, as a function of the emission angle in the free-fall frame. The curves are
shown for the initial radius r0 = 10M and for subsequent radii 8M and 6M , for a
Schwarzschild black hole with mass 2.5M⊙.

receding radius. Moreover, the increasing velocity of the falling shell will introduce
a further contraction in the coverage of the escape cone due to relativistic beaming.

With close inspection on Figure 8.4, one will notice that a large fraction of the
trajectories lead to time delays of fractions of a millisecond. This time delay is
expected to lead to the softening of the black hole cut-off.

8.2.3 Redshift
The cut-off profile of the luminosity of a collapsing surface as a function of the
observation time tE is governed by the number of neutrinos reaching the observer as
well as by the redshift, first worked out in [209],

ζ(b, r∗, σr) =
νE
ν∗

=
√
C(r∗)×

√
1− β2

S

1 + βS cosψS

(8.24)

where νE and ν∗ are the neutrino energies upon observation at Earth and upon
emission measured in free-fall frame. The first factor of the right hand side of Eq. 8.24
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Figure 8.5: (a) Redshift factor and (b) the fitted decay parameter for outward ra-
dial emissions (b = 0, solid/yellow line) and critical emissions (b = bc ≡ 3

√
3M ,

dashed/green line) plotted against observation time for a 2.5M⊙ Schwarzschild black
hole. The curves are calculated for a shell falling from 10M to 2.1M (for b = 0) or
3M (for b = bc). The observation time is taken relative to the observation of the first
neutrino received from the shell when it was at 10M . The dashed black line in (a) is
the redshift at the unstable circular orbit at r = 3M , Eq. 8.28.

is the gravitational redshift, assuming rE ≫ r∗, between the energy upon emission
measured in the static frame and the energy measured on Earth

νE
νS

=

√
C(r∗)

C(rE)
≈
√
C(r∗) (8.25)

where νS is the neutrino energy upon emission measured in static frame. The second
part, on the other hand, is simply the Doppler shift between the neutrino emission
energy measured in the static and free-fall frames.
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Figure 8.5 (a) shows the redshift factor for outward radial emissions (b = 0) and
“critical emissions” (b = bc) as a function of their observation times, relative to the
arrival of the first neutrino emitted from the initial radius. Since the behaviours of
the redshift curves are expected to approach exponentials, the curves are fitted by
the form

A exp
(
− t

τ

)
(8.26)

where τ is what will be referred to as the “decay parameter” plotted in Figure 8.5(b).
At late times, the radial redshift curve approaches an exponential of decay constant
4M , which is precisely what was demonstrated in [208]. Meanwhile, the redshift curve
for the critical emission takes a slightly different asymptotic form of an exponential
plus a constant

A exp
(
− t

τ

)
+B. (8.27)

This constant floor is a result of the presence of the photon sphere. Since the critical
emissions from r ≤ 3M will not escape, the late-time behaviour will be dominated by
the emissions just beyond the critical radius, where the redshift factor will approach

ζ(bc, r∗ ≈ 3M,+1) ≈
√
C(3M)×

√
1− (βS(3M))2. (8.28)

By subtracting this asymptotic offset, the fitted decay parameter will eventually
approach 3

√
3M , which is the results of [207, 209].

8.2.4 Ray Tracing and Luminosity Profile
Finally, the energy contribution of a neutrino of impact parameter b emitted at time
t from radius r that reaches the observer at time tE can be written as

dϵ(tE) = ζ(b, r, σr)×
L0 · dt
4πr2

× r2dΩ, (8.29)

where dΩ is the solid angle element of the emitting shell, and L0 is the total lumi-
nosity of the surface. The total luminosity is assumed to be constant throughout the
collapse.

The luminosity profile as a function of the observation time is then evaluated by
a simple ray-tracing Monte Carlo. At each time step in coordinate time t, a fixed
number of neutrino emissions isotropic in direction are generated from the collapsing
shell. The emission angle ψFF is randomly assigned and used to determine the impact
parameter b via the relations in Eqs. 8.15 and 8.16

b =

√√√√r2

C
·

(
1−

(
cosψFF − βS

1− cosψFF · βS

)2
)
. (8.30)

142



8.2. NON-ROTATING BLACK HOLE: THE SCHWARZSCHILD GEOMETRY

Time (ms)
0 0.2 0.4 0.6 0.8 1

C
u
t­

o
ff

 A
m

p
li

tu
d
e

2−
10

1−
10

1

 = 10M0r
 = 5M0r

Full Emission
Radial Redshift

M)3exp(­t / 3

Figure 8.6: Comparison of cut-off profiles for non-radial (solid) and radial (dotted)
emissions for initial radii 10M (black) and 5M (orange). The amplitudes of the
profiles are normalised to unity at tE = 0. The late time behaviours approach falling
exponentials with decay parameters 3

√
3M , which are indicated with black dotted-

dashed lines.

The corresponding observation time tE, if applicable, and the redshift factor ζ will
then follow. Additionally, the simulation is further simplified, in light of the spherical
symmetry of the metric, by simulating the neutrino from a single point on the shell
regardless of where the trajectory intersects the outer sphere of radius rE. The
results are shown in Figure 8.6 for initial radii of 10M and 5M . The general feature
of the profiles consists of an initial slow drop in luminosity for several tenths of
milliseconds, soon followed by a steepening which rapidly approaches an exponential
characterised by a decay parameter of 3

√
3M . The 3

√
3M decay parameter thus

characterises much of the cut-off rather than only the end, where dominance by nearly
critical emissions (b ≈ bc) has long been expected [207]. Moreover, it is evident that
consideration of all emission directions softens the overall cut-off. Figure 8.7, for
example, shows that the decay parameter of the full emissions curve exceeds that of
critical emissions at all times.
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Figure 8.7: The decay parameter for critical emissions (b = bc) (dashed/green) and
full emissions (solid/black), with initial radius r0 = 10M .

Emission Schemes

It should be noted that Figure 8.6 shows the result of all the neutrino emissions
included in the distant observation, i.e., the surrounding medium is transparent to
the neutrinos. If, on the contrary, the inner medium is assumed to be completely
opaque to neutrinos, then only those neutrinos appearing to be emitted outwards in
the free-falling frame will escape. The cut-off profiles of this “opaque shell” scenario
are shown in Figure 8.8. Note that the opaque shell scenario is different from that
of allowing only outward emissions in the static frame. The opaque shell scenario
includes the contribution from neutrinos which appear to be directed inward in the
static frame, whilst lagging behind the collapsing opaque shell, viz., when the inward
radial velocity of the neutrino is less than βS. As it turns out, the modification of
the opaque shell correction is rather mild compared to the full emission scenario, and
only introduces minor changes to the decay timescale.
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Figure 8.8: Comparison of three different inward emission scenarios for initial radii
10M (black) and 5M (orange): transparent medium, with emissions allowed in all
directions (solid); opaque inner medium, allowing only emissions which are outward
in the free-fall frame (dotted); and allowing only emissions which are outward in the
static frame (dashed-dotted).

8.2.5 Emitters Not in Free-Fall
The neutrino-emitting surface is hitherto assumed to be in free-fall, yet it is gen-
erally expected that free-fall is an overestimate of the collapsing speed of the shell.
To introduce a little more realism to the toy model, one can consider reducing the
acceleration of the shell by a constant factor f to mimic residual pressure support.
The proper velocity will then be

dr
dτ =

√
f · (C − C0). (8.31)

As the motion no longer follows a geodesic, the Killing equations will not apply. The
conversion to ordinary velocity will then rely on the normalisation relation given in
Eq. 8.4 which results in the expression

dt
dτ =

√
(1− f)C−1 + fC0C−2 (8.32)
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Figure 8.9: (a) Luminosity and (b) decay parameter profiles for free-fall (f = 1,
solid/black) and reduced (f = 1/4, dashed/blue) shell acceleration. The curves are
shifted in time to meet at t = t0.01, when the luminosity has fallen to 1% of its value
at t = 0.

and leads to the velocity in coordinate frame

dr
dt = C ·

√
C0 − C

C0 + ( 1
f
− 1)C

. (8.33)

In the static frame, it becomes

βS =

√
C0 − C

C0 + ( 1
f
− 1)C

. (8.34)

The resulting luminosity profile for f = 1/4, corresponding to a doubling of the
collapse time relative to the free-fall case, is shown in Figure 8.9. This slower velocity
profile leads to an extension of the initial slow drop by approximately 0.8 ms before
the onset of the rapid decay. In order to compare the rapid decays, the luminosity
profiles in Figure 8.9 are aligned at the point where they have decreased to 1% of
the initial amplitude. The quarter free fall decay parameter profile starts from a
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Figure 8.10: (a) Luminosity and (b) decay parameter profiles for free
falling (solid/black) and ρ-shell (dashed/violet) emitters. The curves are shifted in
time to meet at t = t0.01, when the luminosity has fallen to 1% of its value at t = 0.

higher value and decreases more gradually throughout. Once the rapid decay begins,
however, it approaches a decay parameter of 3

√
3M in a manner fairly similar to the

free-fall case.
Another variation of the opaque shell model is to allow the shell radius to fall

at a speed different from that of the emitters themselves. In this case, the surface
is drawn by the density of the matter below which the emitted neutrino is expected
to scatter or be absorbed, known as the “neutrinosphere” [226]. The emitters, on
the other hand, fall through this radius as they emit. The values of shell radii
and emitter velocities as a function of time come from outside the present toy model.
They are calculated from a GR1D [227] general relativistic hydrodynamic simulation,
with modern neutrino transport and interaction rates. This simulation is based on
a 40M⊙ progenitor model [228] using the Lattimer & Swesty equation of state with
nuclear incompressibility of 220 MeV, which collapses to a 2.25M⊙ black hole [214].
As mentioned in Section 3.3.1, this shell is usually chosen to be at the density of ρ =
1011 g/cm3, as the optical depth of the neutrino reaches unity at that density [229].

Simulations are carried out until black hole formation. This corresponds to a
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shell collapsing from roughly 7M to 3.5M and attaining a final maximum speed
of approximately 0.35c in the static frame. When the simulation is terminated,
no further emissions will be generated, though the neutrinos already emitted on
escaping trajectories will continue to propagate to the observer. The resulting profiles
are shown in Figure 8.10. The slowly decaying part of the luminosity profile is
significantly elongated compared to the free-fall case. In the end, nonetheless, the
decay parameter still approaches 3

√
3M , as a result of neutrinos emitted inwards and

subsequently trapped near the photon sphere at r = 3M .

8.3 Rotating Black Hole: the Kerr Geometry
In this section, the neutrino luminosity profile of a collapsing surface around an
uncharged rotating black hole will be discussed. The geometry of an uncharged
rotating black hole v is described by the Kerr metric, discovered by Kerr in 1963 as
a generalisation of the Schwarzschild metric [230]. The metric expressed in Boyer-
Lindquist coordinates (t, r, θ, ϕ) vi is [231]

ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdϕ

+
Σ

∆
dr2 + Σdθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdϕ2

(8.35)

where

a ≡ J/M

∆ ≡ r2 + a2 − 2Mr

Σ ≡ r2 + a2 cos2 θ
(8.36)

and J is the angular momentum of the black hole. Since the Kerr metric is only
axially symmetric, the geodesics are not, in general, planar and one is no longer at
liberty to restrict attention to the equatorial plane without loss of generality.

vThis will be simply referred to as a rotating black hole hereafter.
viThese are ellipsoidal coordinates.
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8.3.1 The Geodesic Equation
Similar to the case of the Schwarzschild metric, the geodesics are, again, characterised
by the conserved quantities E and L as defined in Eq. 8.2

E ≡ −gαβ
(
∂

∂t

)α(
∂

∂τ

)β

=

(
1− 2Mr

Σ

)
dt
dτ +

2Mar sin2 θ

Σ

dϕ
dτ

L ≡ gαβ

(
∂

∂ϕ

)α(
∂

∂τ

)β

= −2Mar sin2 θ

Σ

dt
dτ +

A sin2 θ

Σ

dϕ
dτ

(8.37)

with the useful shorthand

A ≡ (r2 + a2)2 −∆a2 sin2 θ. (8.38)

In addition, another conserved quantity was discovered by Carter in 1968, by perform-
ing a separation of variables of the Hamilton-Jacobi equation [232]. This conserved
quantity is known as the Carter constant Q, which can be thought of as character-
ising the non-planar motion. Soon after, Walker and Penrose identified the Carter
constant with a rank 2 Killing tensor, a generalisation of the Killing vector [233].
The resulting equations of motions are [232]

Σ

E

(
dt
dτ

)
=

1

∆
(A− 2Mrab)

Σ

E

(
dϕ
dτ

)
=

b

sin2 θ
+
a

∆
(2Mr − ab)

Σ

E

(
dθ
dτ

)
= σθ

√
Θ

Σ

E

(
dr
dτ

)
= σr

√
R

(8.39)

with the abbreviations

R ≡ ((r2 + a2)− ab)2 −∆
(
q + (a− b)2 − κ

E2
r2
)

Θ ≡ q − cos2 θ
(

b2

sin2 θ
− a2

(
1 +

κ

E2

)) (8.40)

where κ is defined as in Eq. 8.4; σr and σθ indicate the direction of motion relative
to the r and θ axes; and the impact parameters b ≡ L/E, as before, and q ≡ Q/E2.
Additionally, the direction of the azimuthal motion can be read from b, in that b > 0
indicates co-rotation with the black hole and b < 0 indicates counter-rotation.
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Locally Non-Rotating Frame

As in the non-rotating case, the observables will be discussed in three observation
frames, of which the notions of the coordinate and free-fall frames remain the same.
The stationary observer in Kerr spacetime is, however, no longer static due to the
effects of inertial-frame dragging. This frame of stationary observers in Kerr space-
time is known as the locally non-rotating frame (LNRF), proposed by Bardeen in
1972 [234]. In this section, the LNRF will be used in place of the static frame of
the non-rotating case, and, hence, the subscript S will be re-purposed to represent
observables in the LNRF for convenience.

By definition, as the stationary observer is at rest with respect to the t-hypersurfaces,
the four-velocity of the observer will be proportional to

∇at = gab(∇bt) = gab(dt)b = gαt
(

∂

∂xα

)a

= gtt
(
∂

∂t

)a

+ gϕt
(
∂

∂ϕ

)a

=
−1

Σ∆

(
A

(
∂

∂t

)a

+ 2aMr

(
∂

∂ϕ

)a)
=

−1

∆ sin2 θ

(
gϕϕ

(
∂

∂t

)a

− gϕt

(
∂

∂ϕ

)a) (8.41)

where the components of the metric are

gtt =
2Mr − Σ

Σ
, gϕϕ =

A sin2 θ

Σ
, gtϕ = gϕt = −2Mra sin2 θ

Σ
. (8.42)

The four-velocity of the observer can, therefore, be written as

Za =

(
∂

∂τ

)a

= Z0

((
∂

∂t

)a

− gϕt
gϕϕ

(
∂

∂ϕ

)a)
(8.43)

where Z0 is the normalisation constant and τ = tS is the proper time of the observer.
The “angular momentum” L of the observer, as defined in Eq. 8.37, can then be
evaluated by

L = gabZ
a

(
∂

∂ϕ

)b

= Z0

(
gϕt + gϕϕ

(
− gϕt
gϕϕ

))
= 0. (8.44)

For this reason, the LNRF observer is also known as the zero angular momentum
observer (ZAMO) vii [235].

viiNote that, strictly speaking, the term ZAMO actually encompasses a wider class of observers
that are not necessarily stationary. Nonetheless, this term is usually attributed to the LNRF observer
in most usages.
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Furthermore, Eq. 8.44 shows that the basis of the LNRF is{
Z0

((
∂

∂t

)a

− gϕt
gϕϕ

(
∂

∂ϕ

)a)
,

(
∂

∂r

)a

,

(
∂

∂θ

)a

,

(
∂

∂ϕ

)a}
. (8.45)

The transformation between the LNRF {tS, rS, θS, ϕS} and the coordinate frame
{t, r, θ, ϕ} can then be carried out in a similar fashion as in Eq. 8.11. This results in
the transforms
∂t

∂tS
=

√
A

Σ∆
,

∂r

∂rS
=

√
∆

r2 + a2
,

∂θ

∂θS
= 1,

∂ϕ

∂tS
=

2Mra√
AΣ∆

,
∂ϕ

∂ϕS

=

√
r2 + a2

A
.

(8.46)
Based on these relations, it is also useful to define the orthonormal tetrad basis in the
LNRF {tS, xrS, xθS, x

ϕ
S} [234], in which the local metric takes the form of a Cartesian

Minkowski metric, viz., diag(−1, 1, 1, 1). The relations in Eq. 8.46 then become

∂t

∂tS
=

√
A

Σ∆
,

∂r

∂xrS
=

√
∆

Σ
,

∂θ

∂xθS
=

1√
Σ
,

∂ϕ

∂tS
=

2Mra√
AΣ∆

,
∂ϕ

∂xϕS
=

√
Σ

A sin2 θ
.

(8.47)

Free-Fall in Kerr Geometry

For free-fall in Kerr geometry, the emitter initially at “rest” coincides with the ZAMO
at r = r0 with L = 0. The equations of motion in Eq. 8.39 then become

Σ

E

(
dt
dτ

)
=
A

∆

Σ

E

(
dϕ
dτ

)
=

2Mra

∆

Σ

E

(
dθ
dτ

)
= σθ

√
q + a2

(
1− 1

E2

)
cos2 θ

Σ

E

(
dr
dτ

)
= σr

√
(r2 + a2)2 −∆

(
r2

E2
+ q + a2

)
.

(8.48)

With the initial conditions
∂r

∂τ

∣∣∣∣
r=r0

= 0,
∂θ

∂τ

∣∣∣∣
r=r0

= 0 (8.49)

and the fact that for ZAMOs, from Eq. 8.47,

dt
dτ

∣∣∣∣
r=r0

=

√
A

Σ∆
, (8.50)

151



8.3. ROTATING BLACK HOLE: THE KERR GEOMETRY

one can solve the constants of motion

Q = a2(1− E2) cos2 θ (8.51)

and
E =

√
Σ0∆0

A0

(8.52)

where Σ0 = Σ(r0), ∆0 = ∆(r0) and A0 = A(r0). After some algebra, the free-fall
velocity can finally be shown to be

dr
dt =

∆√
A

·

√
1− Σ∆/A

Σ0∆0/A0

(8.53)

which in the LNRF becomes

βS =

√
1− Σ∆/A

Σ0∆0/A0

. (8.54)

Neutrino Trajectory

As in the Schwarzschild case, the null geodesics are characterised by the impact pa-
rameters and emission angles. Now, since the geometry is not spherically symmetric,
two emission angles are required to specify the emission direction, as depicted in Fig-
ure 8.11. The emission angle ψ is reserved for the angle relative to the outward radial
direction. The other emission angle η is then defined as the angle in the θ − ϕ plane
from the θ axis with η ∈ [0, 2π), where η̂ is defined as the cross product n̂×ψ̂ between
the emission direction (n̂) and the positive ψ direction (+ψ̂). η ∈ (0, π) indicates a
co-rotating trajectory and η ∈ (π, 2π) counter-rotating.

From the equations of motion Eq. 8.39, the radial velocity can immediately be
read out to be

dr
dt =

σr
√
R∆

A− 2Mrab
, (8.55)

which in the LNRF, using Eq. 8.47, can be written as

(υr)S =
dxrS
dtS

= cosψS =
σr
√
RA

A− 2Mrab
. (8.56)

The radial velocity in the free-fall frame can be expressed in the exact same form as
Eq. 8.16. The velocity of the neutrino in the LNRF can then be determined by the
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Figure 8.11: Schematic view of the definition of the emission angles ψ and η.
η ∈ (0, π) corresponds to the +ϕ direction and η ∈ (π, 2π) corresponds to the −ϕ
direction.

velocity component along the θ direction viii

(υθ)S =
dxθS
dtS

= sinψS cos ηS =
σθ
√
Θ∆A

A− 2Mrab
, (8.57)

whereas the corresponding velocity observed in the free-fall frame will be

(υθ)FF = sinψFF cos ηFF =

√
1− β2

S sinψS cos ηS
1 + βS cosψS

. (8.58)

Note that κ = 0 for null geodesics, so the R and Θ in Eqs. 8.55 − 8.57 are

R = ((r2 + a2)− ab)2 −∆(q + (a− b)2)

Θ = q − cos2 θ
(

b2

sin2 θ
− a2

)
.

(8.59)

As in the case of the Schwarzschild metric, the impact parameters b and q, and,
hence, the trajectory, can be inferred from the given emission direction (ψ, η). Since

viiiIt can, of course, also be the ϕ component, but it is slightly more laborious to work with as it
involves both dt and dϕ (dxϕS) as shown in Eq. 8.46 (Eq. 8.47).
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the emissions are always generated in the free-fall frame, the calculation always start
from the emission angles (ψFF , ηFF ). From these variables, one can calculate the
quantities

B ≡ a2 − ∆

sin2 θ

(υr)
2
S = cosψS =

cosψFF − βS
1− βS cosψFF

(υθ)
2
S = sinψS cos ηS =

sinψFF cos ηFF (1 + βS cosψFF )√
1− β2

S

µ2 ≡ (υr)
2
S + (υθ)

2
S = cos2 ψS + sin2 ψS cos2 ηS

(8.60)

from which the impact parameter can be calculated

b =
A
(
2Mra(1− µ2)− σb

√
(1− µ2)(4M2r2a2 − AB)

)
AB − 4M2r2a2µ2

, (8.61)

where σb ≡ b/|b| is the rotating direction relative to the rotation of the black hole,
and

q = cos2 θ
(

b2

sin2 θ
− a2

)
+ sin2 ψS cos2 ηS

(A− 2Mrab)2

∆A
. (8.62)

8.3.2 Neutrino Travel Time
The neutrino travel time can now be calculated from Eq. 8.55 in a manner similar to
Eq. 8.17

T (b, q, a, r∗; rE) =

∫ tE

t∗

dt =
∫ rE

r∗

A− 2Mrab

σr
√
R∆

dr. (8.63)

Furthermore, since the integrand in Eq. 8.63 depends implicitly on θ via A, and θ is
not in general constant, the propagation of θ along r has to be accounted for when
evaluating the travel time. By equating the θ and r equations in Eq. 8.39, one can
write down the propagation as∫ r

r∗

dr
σr
√
R

=

∫ θ

θ∗

dθ
σθ
√
Θ

=

∫ cos θ

cos θ∗

−σθd cos θ√
q + (a2 − q − b2) cos2 θ − a2 cos4 θ

.

(8.64)

The time delays ∆T± are carried out in the same fashion as in Eqs. 8.19 and 8.20.
For the inward case, the periapsis position rp is the largest real root of R for some
given b and q.
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r∗ q b (σr = +) b (σr = −)

rH < r∗ < r+e 0 ≤ q < 27M2 b−c < b < b+c N/A

r+e ≤ r∗ < 3M 0 ≤ q < q∗ b−c < b ≤ b+max b+c < b < b+max

q∗ ≤ q < 27M2 b−c < b < b+c N/A

3M ≤ r∗ < r−e 0 ≤ q < q∗ b−c < b ≤ b+max b+c < b < b+max

q∗ ≤ q < 27M2 b−max ≤ b ≤ b+max b−max < b < b−c , b+c < b < b+max

27M2 ≤ q < qmax b−max ≤ b ≤ b+max b−max ≤ b ≤ b+max

r∗ ≥ r−e 0 ≤ q < 27M2 b−max ≤ b ≤ b+max b−max < b < b−c , b+c < b < b+max

27M2 ≤ q < qmax b−max ≤ b ≤ b+max b−max ≤ b ≤ b+max

Table 8.1: Null geodesic escape conditions in Kerr geometry of a disc model. Table
adapted from [236]. rH is the event horizon.

Escape Conditions

The escape conditions for the Kerr metric are much more complicated than those for
the Schwarzschild metric and entail a number of cases, which are tabulated in [237]
for a full Kerr space and [236] for a disc model.

Whilst the relations thus far derived are generally applicable to the entire Kerr
space, the results will only be calculated for the case of emissions from an equatorial
disc, namely θ∗ = π/2, to reduce computation time. Therefore, the discussions in
this section will only focus on the escape conditions of the disc model, in which the
collapsing surface would become a ring of matter. Table 8.1 lists the escape conditions
from [236]. Moreover, the discussion will only consider the case of a > 0 as it will
simply become the Schwarzschild metric when a = 0.

By observing the integrand of Eq. 8.63, one immediately identifies two conditions
that would lead to the divergence of the integrand: ∆ = 0 and R = 0. These two
conditions correspond to the two conditions in the Schwarzschild case, where ∆ = 0
is evidently the event horizon and R = 0 is the equivalent of r3 − b2(r − 2M) = 0.

Suppose one is to consider the restrictions on b first. For some given q, one can
obtain the photon sphere ix by solving R = 0 and ∂R/∂r = 0, which results in the

ixNote that in the rotating case it is not exactly a sphere any more.
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Figure 8.12: Behaviour of r3(r3 − 6Mr2 + 9Mr2 − 4Ma2) + qa2(r −M)2 = 0 with
a = 0.5M at different q values. Real roots, corresponding to r±c , only exist when
q ≤ 27M2.

relations
q = −r

3
c (r

3
c − 6Mr2c + 9M2rc − 4Ma2)

a2(rc −M)2
(8.65)

and
bc = −rc∆−M (r2c − a2)

a(rc −M)
(8.66)

where rc is the critical radius which can be solved from Eq. 8.65 and bc the critical
impact parameter, corresponding to the 3

√
3M in the Schwarzschild case. From

Figures 8.12 and 8.13, one will notice a boundary at q = 27M2, at which the co-
rotating and counter-rotating critical radii coincide at r = 3M . For q < 27M2, there
will always be at least two real roots where the smaller root, denoted by r+c , is the
critical radius for co-rotation and the larger root, denoted by r−c , for counter-rotation.
On the other hand, if q > 27M2, there will be in general no critical radii at all. This
is not to say that the emissions will plunge into the black hole. In fact, the opposite
is true: R = 0 will always have a real root in the range r ≥ 3M regardless of the b
value when q ≥ 27M2, viz., a periapsis always exists.
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Figure 8.13: Behaviour of r3(r3 − 6Mr2 + 9Mr2 − 4Ma2) + qa2(r −M)2 = 0 with
a = M at different q values. r = M is a root regardless of the q value. When
q > 27M2, r =M will be the only real root. When q ≤ 27M2, there will be an extra
pair of real roots corresponding to r±c . When q = 3M2, the root for r+c will coincide
with r =M and will fall behind it if q < 3M2.

At any given a, the extremal critical radii r±e will happen when q = 0, and can
be expressed as

r±e = 2M

(
1 + cos

(
2

3
arccos

(
∓a
M

)))
. (8.67)

Note that in the case of extreme rotation a = M , as shown in Figure 8.13, the co-
rotation critical radius will fall behind r = M , the event horizon, when q < 3M2,
and, hence, the r+c will effectively be at r =M .

These critical radii will lead to the escape conditions similar to those of the
non-rotating case. For r ≤ rc, only outward directed geodesics with |b| < |bc| will
escape. For r > rc, all outward travelling geodesics and inward travelling geodesics
of |bc| < |b| ≤ |bmax| will reach infinity, where bmax can be solved from R = 0 by
rearranging the equation as an quadratic equation of b

(2Mr − r2)b2 − 4Mrab+ (r4 + (a2 − q)r2 + 2M(a2 + q)r − a2q) = 0 (8.68)
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resulting in

b±max =
−2Mar ±

√
r∆(r3 − q(r − 2M))

r(r − 2M)
. (8.69)

In order to make sure bmax is real, the condition r3−q(r−2M) ≥ 0 has to be imposed
on q. With the experience from the Schwarzschild case, one can immediately conclude
that q < 27M2 for r ≤ 3M and q ≤ qmax for r > 3M , where

qmax =

√
r3

r − 2M
. (8.70)

Furthermore, the fact that θ∗ = π/2 leads to a restriction on q

Θ(θ = θ∗) = q − cos2 θ∗
(

b2

sin2 θ∗
− a2

)
= q ≥ 0. (8.71)

Finally, there is one last notable value of q, which is q∗ = q(rc = r∗). At this
q value, the emission radius coincides with one of the critical radii: r∗ = r+c for
r∗ ≤ 3M and r∗ = r−c for r∗ > 3M . With all these special values identified, the
escape conditions as in Table 8.1 follow simply.

Emission Angle and Travel Time

The time delays ∆T , defined as in the non-rotating case and plotted against the
emission angles in the free-fall frame (ψFF , ηFF ) for the cases of a = 0.5M and
a = M , are shown in Figure 8.14. In each case, the rotation is in the direction of
increasing azimuthal angle ϕ. The overall behaviour of the time delays is, in general,
quite similar to that of the case of a non-rotating black hole: increased time delays
at larger ψFF , and escape cone contraction alongside the collapse. The boundary
between the white and black regions in Figure 8.14 indicates the critical emission
directions of divergent time delays, and so the trajectories in the white region dive
into the black hole. Nonetheless, the presence of rotation introduces an asymmetry
in the emission directions. As mentioned earlier, the emissions with ηFF ∈ (0, π) are
classified as co-rotating and ηFF ∈ (π, 2π) as counter-rotating. From Figure 8.14, one
notices that at each given ψFF the counter-rotations tend to induce relatively longer
time delays. Figure 8.15 illustrates an example path of a counter-rotating geodesic.
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Figure 8.14: Time delays relative to that of the radial direction, as a function of the
emission direction in the free-fall frame, at different emission radii for a collapsing
ring around a rotating black hole. The white region at large ψFF indicates plunging
directions, and the border between the white and black regions is the photon sphere.
The black hole mass is M = 2.5M⊙, and the ring starts from rest at 10M . Top row:
sub-extreme rotation a = 0.5M . Bottom row: extreme rotation a =M .
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Figure 8.15: An example counter-rotating null geodesic emitted close to the event
horizon of a rotating black hole. Near the event horizon the strong local frame
dragging causes the geodesics to appear in the same direction as the black hole
rotation in the coordinate frame, though not so in the LNRF.

8.3.3 Redshift
The redshift of the neutrino emissions from the collapsing surface in the case of a
rotating black hole can be derived in a manner similar to the non-rotating case. The
redshift can, again, be factored into contributions from gravitational redshift and
Doppler shift, in which the Doppler shift component remains unaltered. It is the
gravitational redshift in Kerr spacetime that is to be derived.

Following the standard derivation of gravitation redshift in Schwarzschild space-
time [222, 238], one starts out by considering two ZAMOs at r∗ and rE. The four-
velocity of the ZAMO shown in Eq. 8.43 can be expressed explicitly as

Za = Z0

((
∂

∂t

)a

− gtϕ
gϕϕ

(
∂

∂ϕ

)a)
=

√
A

∆Σ

(
∂

∂t

)a

+
2Mra√
AΣ∆

(
∂

∂ϕ

)a

. (8.72)

The four-wavevector ka of the neutrino, on the other hand, will be the tangent vector
of the null geodesic [222, 238]

ka =
dxµ
dτ

(
∂

∂xµ

)a

. (8.73)
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Figure 8.16: (a) Redshift factor and (b) redshift decay parameter of radial emissions
for non-rotating (a = 0), moderately rotating (a = 0.5M) and extremal (a = M)
Kerr black holes.

Subsequently, the observed energy by the ZAMO becomes

ν = kaZa = ka · Z0(−
Σ∆

A
)(dt)a

=
dt
dτ · Z0(−

Σ∆

A
)

=
A− 2Mrab

Σ∆
E ·
√

A

Σ∆
(−Σ∆

A
)

= −E ·
√

A

Σ∆

(
1− 2Mra

A
b

)
,

(8.74)

and the gravitation redshift (rE ≫ r∗)

νE
νS

≈
√

Σ∆

A

(
1− 2Mra

A
b

)−1

. (8.75)
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Figure 8.17: (a) Redshift factor and (b) redshift decay parameter of critical emissions
with b = 2M and q = 3M2, for orbits near the horizon at rH = M , plotted against
observation time for a 2.5M⊙ extremal (a =M) Kerr black hole.

As a result, the overall redshift will be of the form

ζ(b, q, r∗, σr) =
νE
ν∗

=

√
Σ∆

A

(
1− 2Mra

A
b

)−1

×
√

1− β2
S

1 + βS cosψS

. (8.76)

An important difference of the rotating redshift from that of the non-rotating
case is that it no longer approaches an exponential of constant decay parameter, as
shown in Figures 8.16 and 8.17. It is most clear from the case of radial emissions,
Figure 8.16, that the stronger the rotation is, the more it deviates from the exponen-
tials described in Section 8.2.3. Furthermore, the much slower decline in the redshift
curve of the critical emissions in Figure 8.17 hints at a further softening in the cut-off.
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8.3.4 Ray Tracing and Luminosity Profile
The final luminosity profile is generated using the same ray-tracing Monte Carlo ap-
proach with some of the expressions updated. As mentioned in Section 8.3.2, the
emitters are confined to the equatorial plane, and thus takes the form of a collapsing
ring. The resulting cut-off profiles are shown in Figures 8.18 and 8.19. From Fig-
ure 8.18, one notices that rotation in general extends the tail of the cut-off profile.
When compared to the Schwarzschild case, the extension of the tail in the moderate
rotation case (a = 0.5M) is not evident. The extreme case (a =M), on the contrary,
exhibits a much more significant modification, which is consistent with the observa-
tions in Figure 8.16. It is also evident from Figure 8.19 that the effects are mainly
from the geodesics that appear to be directed inwards in the free-fall frame, whilst
travelling outwards in the LNRF. Similar to observations in the redshift curves, the
decay parameter of the cut-off profile does not approach a limiting value, but rather
continues to increase in a manner that may be noticeable even before the time when
neutrinos are redshifted below detectable energies.
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Figure 8.18: Luminosity profiles of the neutrino cutoff in Kerr geometry, with a =
0.5M and a =M , and at different initial radii 5M and 10M .
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transparent medium, with emissions allowed in all directions (solid); opaque inner
medium, allowing only emissions which are outward in the free-fall frame (dotted);
and allowing only emissions which are outward in the LNRF frame (dashed-dotted).

8.4 Measurement of the Black Hole Cut-Off
As demonstrated in Section 8.2, one of the most prominent features of the luminosity
profile upon the formation of a non-rotating black hole is the universal exponential
of decay parameter 3

√
3M . To estimate the number of neutrino events that may be

available for resolving the decay parameter, the cut-off profile is reduced to a constant
pre-collapse luminosity followed by a simple exponential tail, neglecting the smooth
transition of tenths of milliseconds as seen in Figure 8.6 and elsewhere. The number
of events is simply calculated by integrating the exponential component.

As an example, the 40M⊙ model from Section 8.2.5 is invoked, assuming a dis-
tance of 10 kpc. A list of the event rates of possible neutrino detectors can be
found in [239]. For Super-Kamiokande [240] and JUNO [205], one may expect to
see an event rate of around 15 per millisecond before the cut-off, followed by a tail
of approximately 0.7 events, which is an event yield unlikely to result in a mea-
surement yet large enough to introduce a systematic uncertainty. This uncertainty
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would affect applications such as the last-event method for multi-detector CCSN
triangulation mentioned in Section 7.3.5. On the other hand, in the case of Hyper-
Kamiokande [241], the estimated event rate would become roughly 100 events per
millisecond before the sharp cut-off, followed by a tail of 5 events. This may very well
lead to a crude measurement even taking into consideration the uncertainty in the
starting time of the exponential. It is worth noting, nonetheless, that these late time
events are likely to be mixed with those originating from other effects, for instance,
an “echo” of neutrinos scattering off infalling material as explored in [239].

For rotating black holes, on the other hand, we note that the effect of rotation in
the moderate case of a = 0.5M is rather mild. The event yield of the exponential tail
only sees an increase of about 20%. Nonetheless, the event yield increases rapidly
with the increase in angular momentum. For the extreme case of a =M , the expected
event yield doubles in the tail with respect to the non-rotating case. The detection of
such deviations from the exponential tail provides a potential approach for measuring
the rotation of the black hole.

8.5 Summary
In this chapter, the contribution of non-radial neutrino emissions to the neutrino
luminosity profile expected upon black hole formation within a CCSN has been in-
vestigated. The toy model calculation based on null geodesic ray-tracing from a
collapsing shell of matter, or ring, demonstrates that the cut-off profile starts out, in
general, with a relatively slower decrease over several tenths of milliseconds, depend-
ing on the collapse velocity profile, and is then followed by a steep decline.

In the Schwarzschild case, the rapid decrease approaches an exponential of decay
parameter 3

√
3M , which is what was predicted by Podurets in the 1960s [207]. This

exponential behaviour of the luminosity profiles persists across different modifications
of the model, indicating that all such models end up with the long-lasting leakages
from near the photon sphere. If this part of the cut-off can be resolved in time, it
would represent an independent handle on the mass of the newly formed black hole.

In the case of a rotating black hole, it is discovered that even for rotations as
large as a = 0.5M the effect of rotation only introduces a mild softening to the cut-
off profile,which does not lead to any noticeable modification to the decay parameters.
As the black hole further spins up, however, the effect of rotation rapidly increases.
When it reaches the extreme case (a = M), the tail will be significantly extended
by the leakage from the critical orbits. Although it is usually considered unlikely,
the case of extreme rotation highlights the desirability of resolving the shape of the
cutoff, not just to measure rotation [242], but also to gauge the validity of using the
time constant as a mass measurement.
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8.5. SUMMARY

This study is clearly very simplistic, it nonetheless suggests that in the observation
of an abrupt drop in neutrino emission from a CCSN, signalling the formation of a
black hole, it is worth examining the shape of the cut-off in more detail from both
theoretical and observational perspectives. The advent of the next generation of
larger detectors, as well as the combination of detectors via SNEWS, places such
measurements in an increasingly feasible position.
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Chapter 9

Conclusion

The main theme of this thesis is the detection of core-collapse supernovae (CCSNe)
via the copious amount of neutrinos emitted in such events.

As a representative case of detecting supernova signals with neutrino detectors,
the sensitivity of SNO+ to supernova neutrinos was investigated in this thesis. The
analysis involved the complications of the evolving configuration during the water-
to-scintillator transition and the varying radioactive background levels. With the
bismuth-polonium (BiPo) coincidence identification, the internal 238U and 232Th chain
concentrations were measured to be (4.6±1.2)×10−17 g/g and (4.8±0.9)×10−17 g/g,
respectively. Furthermore, the 214Bi-214Po pairs served as a calibration source to
evaluate the light yield level of the configuration. Having determined the background
and light yield levels of the detector, a multi-threshold neutrino burst trigger was
developed to detect supernovae by identifying the burst of neutrinos with relatively
higher energies. Based on the simulated neutrino fluxes of [91, 132, 144], it was
discovered that the SNO+ burst trigger, in the full-scintillator configuration, is able
to maintain sensitivity greater than 50% at 100 kpc for most of the studied supernova
models, excepting only the electron-capture supernova model (shen-s8.8). It should
also be noted that the BiPo studies, whilst proven to be useful in supernova studies, is
itself an essential part in achieving the main physics goal of the SNO+ experiment, as
the 238U and 232Th chains constitute a sizeable fraction of the expected backgrounds
for neutrinoless double beta decay (0νββ).

Besides the detection of higher energy neutrino bursts, the identification of inverse
beta decays (IBD) is perhaps the most important handle for detecting supernova
neutrinos. The coincident nature of the IBD guarantees the purity of the signals.
With the coincidence tagging structure established in the BiPo studies, IBDs can
be identified without much trouble in SNO+. By taking the identification of 2 IBD
events within 10 s as the measure of the maximum sensitivity of SNO+, the sensitivity
of the shen-s8.8 model at 100 kpc will be raised from 10% to about 45%, and the other
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models above 90%. The only problem is that the identification of IBDs, just as with
any coincidence identification, involves the spatial correlation between the prompt
and delayed events, which usually relies on time-consuming position reconstruction.
The TimeCentroid algorithm based on the comparison of the PMT hit patterns was,
therefore, developed. TimeCentroid was able to achieve the same level of efficiency
as the position reconstruction algorithms at the cost of only a few percent increase in
the misidentification rate, and reduces the CPU time by three orders of magnitude.
The implementation of this method, thus, enables a more prompt response in the
measurements of pre-supernova and supernova νe, which are often constrained of
time.

In addition, the relatively higher energy emission and high purity of the IBD sig-
nal makes it the common signal amongst water and scintillator detectors. This sets
a common ground for the comparison of detected neutrino signals between neutrino
detectors across the globe. One major application of such comparisons is the posi-
tioning of supernovae via multi-detector triangulation, which is valuable in guiding
the subsequent electromagnetic wave and possible gravitational wave observations.
The central part of this study is the determination of the detection time difference be-
tween a pair of neutrino detectors. A novel method of neutrino light curve matching,
which exploits the underlying similarity between the observed νe light curves, was
developed to determine such time differences. Using, again, the supernova models
in [91, 132, 144], this method was able to reduce the uncertainties from 5.7 ms [196]
to 3.4 ms for the shen-s8.8 model and from 2.7 ms [197] to 1.8 ms for the 27M⊙ CCSN
model (ls220-s27.0co). The method has also showed low biases in all cases and demon-
strated robustness against possible backgrounds. During the study, it was discovered
that the resolution power largely comes from the large derivatives of the time profiles.

Following this observation, it was noticed when examining the two 40M⊙ models
that the sharp edge associated with black hole formation provided additional res-
olution power. This perfect cut-off is, however, an artifact of the termination of
the simulations upon black hole formation. The actual cut-off associated with the
formation of a black hole is expected to approach an exponential of decay constant
3
√
3M [207]. In this thesis, a ray-trace study was performed to give a comprehensive

account on the effects of the contributions from non-radial neutrino emissions upon
the formation of a non-rotating black hole. This extended tail introduces systematic
uncertainties to the degree of how well one can localise the cut-off in time. Further-
more, the measurement of the asymptotic decay constant could possibly constitute
an independent approach for the determination of the black hole mass.

Finally, this thesis also presents the first ray-tracing study on rotating black holes
using the Kerr metric, with much of the formulation originally derived. The intro-
duction of rotation was found to further extend the cut-off profile, and deviates from
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the asymptotic exponential behaviour. This deviation provides a potential way of
gauging the rotation of the black hole. With the next-generation large neutrino detec-
tors, measurements to resolve the black hole cut-off profile are becoming increasingly
attainable.
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