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ABSTRACT

Lorentz symmetry is among the most fundamental assumptions in physics. Experimental

tests that this symmetry is respected in systems of all types are therefore critically important.

Seven years of data from the Sudbury Neutrino Observatory, a kiloton-scale heavy water

Cerenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino

sector. Such violations would appear as one of eight possible signal types in the detector: six

seasonal variations in the solar electron neutrino survival probability with different energy

and time dependences, and two shape changes to the oscillated energy spectrum. No evidence

for such signals is observed, and limits on the size of such effects are established in the

framework of the Standard Model Extension, including 40 limits on previously unconstrained

operators and improved limits on 15 additional parameters. Limits on all leading-order

operators in the neutrino sector are now available for the first time.
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CHAPTER 1

INTRODUCTION

Central to physics as a discipline is the description of symmetries in nature and their con-

sequences in conservation laws. The justly celebrated Noether theorem formalizes this con-

nection. Perhaps the most fundamental such symmetry is Lorentz symmetry, which reflects

the inertial frame invariance of natural law, the fact that physics is the same in all direc-

tions and at all relative velocities. Lorentz symmetry undergirds the conservation of angular

momentum. The mathematical representation of Lorentz symmetry was developed as part

of relativistic mechanics in the early twentieth century and has since become a foundational

assumption in many areas of physics, including quantum field theories. Nevertheless, the

reality of this symmetry is an experimental question accessible to experimental tests. It is

precisely because of its foundational importance that this assumption should be tested as

carefully as possible. This thesis describes such a test in the neutrino sector.

Although it is clear from its great success in many areas that Lorentz symmetry is at

least approximately respected, the same could have been said in the past for many other

symmetries that were subsequently found to be broken. In fact, history has shown that

most of the symmetries of nature that have been considered fundamental are in fact merely

approximately respected under the most general conditions. The first such example was

the unraveling of Galilean symmetry in the era around 1900 and its eventual replacement

with Lorentz symmetry. Maxwell’s development of a unified theory of electromagnetism [1]

prompted a search for the so-called luminiferous aether that was then thought to permeate

the vacuum to support electromagnetic waves. Michelson’s famous null result [2] in searching

for the aether wind exacerbated existing problems in trying to understand the application of

frame invariance to electromagnetic phenomena. Several physicists, including Larmor [3] and

Poincaré [4], were working on resolving these contradictions in the 1890s and 1900s. They

partially anticipated the result first presented by Lorentz in 1904 [5] that restored frame

invariance to electromagnetism through the introduction of a new set of frame transforma-
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tions. This was later provided with a firm conceptual interpretation in relativistic mechanics

by Einstein in 1905 [6].

There are also important examples of this pattern in the history of the discrete symmetries

of particle physics: charge conjugation (C), parity (P), and time reversal (T). These were

originally believed to be separately conserved, until the discovery in the 1950s by Dalitz of

apparently identical particles that could decay to parity odd or to parity even states, later

understood as two decay modes of the kaon [7]. This led to the realization by Lee and Yang

[8] in 1956 that there was no evidence to support the conservation of parity by the weak

force, since only parity-invariant quantities had been investigated. They suggested a test to

search for a coupling of a nuclear spin to the beta momentum, since unlike momenta, spins

are unchanged by parity. This suggestion was quickly followed by a number of groups, first

by Wu in 1957, who observed parity violation in the decay of spin-polarized 60Co [9]. The

combined CP symmetry was then believed to be conserved until the observation of the CP

violating decay K0
2 → π+π− in 1964 [10]. The violation of these discrete symmetries are

particularly relevant to tests of Lorentz symmetry, since any violation of CPT symmetry

would imply a violation of Lorentz symmetry as well (although Lorentz invariance violations

are a more general class of possibilities) [11].

Violations of Lorentz invariance are expected in many high-energy theories, including

string theory, noncommutative field theories, random dynamics, and other approaches to

quantum gravity [12]. A test of Lorentz symmetry like the one described in this dissertation

can serve two purposes. Should a violation be observed, it would be a critically important clue

toward the physics that lies beyond the Standard Model. Should no violation be observed,

it provides a constraint on the same kinds of models.

When exploring these non-standard effects, a consistent phenomenological framework

provides an invaluable utility. In this study, that role is filled by the so-called Standard

Model Extension (SME) [13, 14], which classifies all possible violations of Lorentz symmetry

in particle physics subject to certain desiderata which will be discussed in detail in Chapter

2



3. This framework includes a very large number of independent Lorentz symmetry violating

operators, each controlled by a separate coefficient governing the strength of the violation.

In general, these can vary according to the particle species involved, the spatial direction

selected, and the particular effect observed. Separate tests must be carried out to look

for each of these effects individually. Some effects, particularly in the photon sector, have

been studied to extreme precision, while others have not been studied at all. Among those

effects heretofore poorly tested are some of those in the neutrino sector. The extremely

weak interactions of neutrinos make such tests challenging, but their tiny masses make them

excellent probes of such effects.

The conceptual basis of the test described here is quite similar to the test for the aether

wind carried out by Michelson. The idea is to leverage the non-inertial orbital motion of the

Earth to look for variations in particle behavior at different times of year. The neutrinos

studied in this analysis originated in the Sun, which generates an enormous flux of neutrinos

through its nuclear reactions. These solar neutrinos were detected in an experiment called

the Sudbury Neutrino Observatory (SNO) [15], which is discussed in detail in Chapter 4.

As the Earth orbits the Sun, the direction of propagation of solar neutrinos reaching the

Earth varies in the inertial frame of the Sun. Thus if there were direction-dependent effects

on the propagation of neutrinos, this would be detected as annual variations in the behavior

of neutrinos detected in SNO. We derive the specific form of this signal in Chapter 5. The

practical details of the analysis are discussed in Chapter 6, and the results presented in

Chapter 7. Chapter 8 concludes.
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CHAPTER 2

NEUTRINO PHYSICS

Neutrinos are electrically neutral fundamental particles. They arise most commonly as a

byproduct of nuclear beta decay, in which a neutron decays into a proton, an electron, and a

neutrino. The neutrino interacts so weakly that it was not observed in early studies of beta

decay. This made it appear that conservation of energy was being violated, since the energy

carried off by the neutrino was not being accounted for. Pauli predicted the existence of the

neutrino as a solution to this problem in 1930 [16]. Direct observation of the neutrino was not

achieved until 1956 when Reines and Cowan used recently developed nuclear reactors as an

intense neutrino source [17]. Neutrinos are produced in coincidence with charged leptons (for

example, electrons in beta decay), which allows their “flavor” to be tagged. It is now known

that there are three distinct neutrino flavors (electron, muon, and tau), one corresponding

to each of the charged leptons [18].

The correct fermion model describing neutrinos remains unknown. Pauli originally as-

sumed that the neutrino was massless since no kinematic effects were visible in the beta

decay spectrum. We now know from experiments including SNO that they are massive,

albeit with unknown and very tiny masses (at least five orders of magnitude smaller than

the electron [19]). There are two possible descriptions of massive fermions, known after their

originators as Dirac and Majorana fermions. Only neutral particles can be described as Majo-

rana fermions, since such states are preserved under charge conjugation. Dirac and Majorana

fermions would obtain their masses through quite different means, with Dirac masses coming

from the Higgs mechanism, while Majorana masses result from higher-dimension operators

[20]. This explains in part why neutrinos are particularly attractive as probes of Lorentz

symmetry violations. Lorentz violations would likely derive from new physics at high en-

ergy scales, and are therefore suppressed relative to known physics at electroweak scales.

However, in the neutrino sector, it may be that the only known physics with which Lorentz

violations would have to compete likewise derive from physics at high energy scales, and
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could therefore plausibly appear at a similar level.

The search for evidence of Majorana neutrinos has led to a broad program of experiments

trying to observe neutrinoless double beta decay (one of the experimental signatures of Ma-

jorana masses), including the SNO+ experiment that is a successor to the SNO experiment

described herein. However, for the purposes of understanding the leading-order interactions

of the neutrino, the distinction between Dirac and Majorana neutrinos is irrelevant because

of the chiral nature of the weak interaction.

2.1 Neutrino Interactions

The interactions of neutrinos are described as part of the Standard Model of particle physics,

a quantum field theory with its field content and allowed interactions specified to be consis-

tent with all available evidence about the behavior of fundamental particles. The fields of

the Standard Model, shown in Figure 2.1, are categorized into three types: quarks, leptons,

and gauge bosons. Quarks and leptons are fermions, the matter content of the model. There

are three generations of these fermions, which are identical in all respects apart from their

masses. In addition to the matter fields there are the W± and Z bosons which mediate weak

nuclear forces, the photon which mediates the electromagnetic force, gluons which mediate

strong nuclear forces, and the Higgs boson, which gives rise to fundamental masses through

its interactions.

The coupling of these forces to the matter fields are governed by charges: the electrical

charge for the electromagnetic force, the weak charge for the weak nuclear forces, and color

charges for the strong nuclear force. Neutrinos are electrically neutral and colorless, and

therefore couple to other forms of matter only through the weak interaction. For the energies

relevant at SNO (notably below the muon mass), neutrinos can interact in three distinct

ways: scattering off an electron (Figure 2.2), or undergoing an interaction with a nucleon,

which can be mediated by either a charged current or a neutral current (Figure 2.3).

Although neutrinos are observed in the flavor basis, there is no reason that these states
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Figure 2.1: Particle content of the standard model. The quarks are shown in orange, the
leptons in green, the gauge bosons in blue, and the Higgs in purple [21].

W

νe

e−

νe

e−

Z

ν

e−

ν

e−

Figure 2.2: Two contributions to the elastic scattering of an electron by a neutrino. Because
the diagram on the left exists only for νe while the diagram on the right is flavor-agnostic,
this interaction is sensitive to a different linear combination of flavor content than either the
charged or neutral current interactions.

W

νe

d

e−

u

Z

ν

q

ν

q

Figure 2.3: (left) Charged current interaction, accessible only to electron neutrinos at the
energies of solar neutrinos; (right) Neutral current interaction.
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must be energy eigenstates of the neutrino system. Indeed, it turns out that under ordinary

circumstances, the flavor states are not eigenstates of motion. This results in the phenomenon

known as neutrino oscillation, in which neutrinos initially produced in one flavor state may

be observed in a different flavor state at a later time.

The neutrino Hamiltonian is given by

H =
1

2E
(M2 + A) , (2.1)

where M is the mass matrix of the neutrinos (which in general can contain a combination of

both Dirac and Majorana masses) and A is an effective potential due to interactions of the

neutrinos with matter. The matrix M in general need not be diagonal in the flavor basis,

and indeed it is not, just like in the case of the quark sector. It is diagonalized by a matrix

U called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [22, 23], which is typically

parameterized [19] in terms of three mixing angles and a complex phase δ as:

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ c12s23 − s12s23 − s12c23s13e

iδ c23c13

 . (2.2)

(Here cij ≡ cos θij and sij ≡ sin θij .) Nonzero δ would lead to CP violation in the neutrino

sector, but its value is currently unknown. The truly complete form of the PMNS matrix also

includes two Majorana phases; however, these do not enter into the physics of any existing

or projected experiment. We will discuss the origin and impact of the potential term in more

detail in the next section, focusing here on the behavior in vacuum.

The nondiagonal form of the Hamiltonian gives rise to a time dependence in the neutrino

flavor state, called an oscillation because the flavor fractions change back and forth in time.

The physics of oscillation in the simplest case of a two-flavor system in a vacuum can be easily

understood, and the more realistic cases are merely variations on the same idea. Suppose
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we begin with a neutrino in the electron flavor, |νe〉. We can time-evolve this state easily if

we rewrite it in the energy basis. In a two-state system, unitarity guarantees that we can

write any state as |ψ〉 = sin θ |E1〉+ cos θ |E2〉 for some choice of θ. We can therefore write:

|ν(t)〉 =
∑
n

e−iEnt/~ |νn(0)〉

= sin θe−iE1t/~ |ν1〉+ cos θe−iE2t/~ |ν2〉 .
(2.3)

Since neutrinos have such small masses, they are usually found in ultrarelativistic states, in

which the energies can be estimated to be En =
√
p2 +m2

n ≈ p+m2
n/2E. Substituting this

and factoring out the common phase e−ipt/~, we have

|ν(t)〉 = sin θe−im
2
1t/2E~ |ν1〉+ cos θe−im

2
2t/2E~ |ν2〉 . (2.4)

The “survival probability” P of finding the neutrino in the electron state at a later time is

therefore

P = |〈νe|ν(t)〉|2 =
∣∣∣sin2 θe−im

2
1t/2E~ + cos2 θe−im

2
2t/2E~

∣∣∣2
= 1− sin2 2θ sin2(∆m2

12t/4E~) .

(2.5)

We can rewrite this in a more concrete form by noting that t = L/c for a realistic neutrino,

and plugging in the constants to find

P = 1− sin2 2θ sin2

(
1.27

∆m2
12[eV2]L[km]

E[GeV]

)
. (2.6)

From this, one can see that the experimentally accessible quantities are the mixing angles and

the mass-squared differences. In a typical experiment the distance to the source L is fixed

and the parameters are fit as a function of the neutrino energy. The quantity 4πE/∆m2 is

called the oscillation length since it determines the representative distance scale over which

flavor changes can be observed.
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Figure 2.4: Flavor content of the neutrino mass states [24]. The normal hierarchy is shown
on the left, and the inverted hierarchy on the right. Red is electron flavor, green muon flavor,
and blue tau flavor.

Since only the mass squared differences appear in the survival probability, the masses

themselves and the matrix M remain completely unknown. We do not even know whether

m3 > m1 or vice versa. These two possibilities are called the normal and inverted mass hier-

archy, respectively, by analogy with the situation in the charged lepton sector. In contrast,

the diagonalizing matrix U is known to reasonable precision thanks to a widespread program

over the last twenty years to determine these mixing parameters. The mixing matrix can

be visualized in terms of the flavor content of the various mass states. This is illustrated in

Figure 2.4.

Because of the large separation of scales between the two mass squared splittings, it has

largely been possible to measure these parameters individually in different systems. The

parameters have therefore acquired names indicating the system in which they were first

measured. θ12 (the “solar angle”) and ∆m2
21 have been measured through the study of

solar neutrinos in heavy water (by SNO), in light water (by Super Kamiokande [25]), and

in scintillator (by KamLAND [26]). θ13 (the “reactor angle”) has been measured through

the study of reactor neutrinos by Daya Bay [27], Double Chooz [28], and RENO [29]. θ23
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Normal Hierarchy Inverted Hierarchy
Quantity Best Fit 3σ range Best Fit 3σ range

∆m2
21 (10−5 eV2) 7.37 6.93 - 7.97 7.37 6.93 - 7.97

∆m2
23 (10−3 eV2) 2.50 2.37 - 2.63 2.46 2.33 - 2.60

sin2 θ12 0.297 0.250 - 0.354 0.297 0.250 - 0.354

sin2 θ23 0.437 0.379 - 0.616 0.569 0.383 - 0.637

sin2 θ13 0.0214 0.0185 - 0.0246 0.0218 0.0186 - 0.0248
δ 1.35π 0 - 2π 1.32π 0 - 2π

Table 2.1: Current knowledge of neutrino mixing parameters based on a simultaneous fit of
all available data [19]. It is not known whether the mass hierarchy is normal or inverted.

(the “atmospheric angle”) has been measured through the study of atmospheric neutrinos

(by IceCube [30]), accelerator neutrinos (by NOνA [31] and T2K [32]) or both (by MINOS

[33]). Reactor, accelerator, and atmospheric experiments all have sensitivity to the remaining

parameter, ∆m2
32. The results from all of these experiments can be combined into a global

analysis [34] to produce the best understanding of the mixing parameters. These results are

summarized in Table 2.1.

2.2 Solar Neutrino Oscillations

The neutrinos studied in SNO originate in the Sun, and a number of special features are

relevant to understanding this system, which we discuss here. The Sun is powered by nuclear

reactions that produce electron neutrinos as a byproduct. There are several different sources

of solar neutrinos, classified according to their parent nucleus, which differ in their energy

distributions. These include both broadband and line sources with energies generally between

0.1 and 20 MeV. The composite solar neutrino spectrum is shown in Figure 2.5. Because

SNO could only reliably detect neutrinos with energies of at least 3.5 MeV, the only solar

neutrino source of relevance for this analysis is the 8B neutrino, which has a broad spectrum

of up to 12 MeV. (SNO was also sensitive to higher-energy hep neutrinos, but these have

such a small flux that they could not be unambiguously identified in SNO [35]).
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Figure 2.5: Energy spectrum of solar neutrinos. Figure from reference [36].
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The solar neutrino spectrum and fluxes can be estimated from the Standard Solar Model

that describes the workings of the Sun [37]. These estimates have been broadly supported

by measurements from SNO and Borexino [38]. In this analysis we do not make assumptions

about the normalization of the solar neutrino flux, although we do use the well-established

shape of the 8B energy spectrum (which is just the complement of the β spectrum of 8B).

Solar neutrinos are among the more complicated neutrino systems to be experimentally

probed and do not obey the straightforward vacuum oscillation equation derived above. In

fact, contrary to popular belief, solar neutrinos do not oscillate during their propagation

between the Sun and the Earth, but instead are adiabatically converted from an electron

flavor state into a mass state as they pass out of the Sun due to the Mikheyev-Smirnov-

Wolfenstein (MSW or matter) effect [39, 40]. We will here discuss the physics of this process.

Coherent forward scattering of neutrinos by electrons introduces a term in the neutrino

Hamiltonian that depends on the local electron number density. The fact that a scattering

process can give rise to a local property (a potential) is entirely analogous to an optical index

of refraction. In both cases, scattering in a medium causes the wavepacket to accumulate

an additional phase [7] in proportion to the distance d it traverses in the medium and its

wavenumber k:

∆Ψ = k(n− 1)d . (2.7)

In optics, such an effect is typically described as a refractive index n, which can be expressed

[41] as a function of the forward scattering amplitude f(0) as

n = 1 +
2π

E2
Nef(0) , (2.8)

where Ne is the number density of scatterers (electrons in this case). For charged cur-

rent electron-neutrino scattering, f(0) = GFE/
√

2π. In principle, there is a similar effect

arising from the scattering of neutrinos of all flavors off of neutrons, but since this is flavor-

independent, it has no effect on the dynamics of neutrino mixing and can be neglected.
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Since we are more interested in a Hamiltonian approach to the problem, it is more

convenient to interpret the additional phase as an effective potential. It is easy to see that

since k ∝ p ≈ E for ultrarelativistic neutrinos, this scattering phase is equivalent to changing

the Hamiltonian by a potential of the form

V = E(n− 1) =
√

2NeGF . (2.9)

From the definition of A in the Hamiltonian (equation 2.1), we then see that A = 2EV =

2
√

2EGFNe. Although GF is very small, this term can still have an impact because the

mass squared values of the neutrinos are also very small. In fact, this matter effect dominates

solar neutrino oscillations in certain energy regimes.

The presence of this matter potential causes the energy eigenstates within the Sun to

differ from the vacuum eigenstates. Since computations are typically done in terms of mixing

angles, it is useful to define matter-perturbed mixing angles. For a two-flavor system, this

can be defined [20]

sin2 θm =
1

2
+

−∆m2 cos 2θ + A

2

√(
∆m2

)2 − 2∆m2A cos 2θ + A2
. (2.10)

There is likewise a matter-perturbed mass-splitting,

∆m2
m =

√(
∆m2 cos 2θ − A

)2
+
(
∆m2 sin 2θ

)2
. (2.11)

In a completely general three-flavor model, these matter-perturbed quantities become

extremely complicated, but thankfully the scale separation between the different neutrinos

means that for solar neutrinos, to first order the above expressions apply with the matter

potential reduced by a factor cos2 θ13, or about 2% [20]. We will discuss a more detailed

approach below.

Now that we have introduced the necessary concepts connected to the matter effect, we
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can return to our discussion of the dynamics of solar neutrinos. Neutrinos are produced in

nuclear reactions in the Sun exclusively in the electron flavor state; however, its projection

onto mass states is different deep within the Sun because of the high electron density. In the

case of 8B neutrinos, it just so happens that the electron flavor state is almost identical to

the ν2 mass state for the electron number densities found near the center of the Sun, which

is where such neutrinos are produced (V ≈ 2× 10−8 meV).

To determine how this state evolves on its way to the Earth, the first question to consider

is how the neutrino evolves on its way out of the Sun. Because the scales on which the electron

density vary inside the Sun are macroscopic and enormous in comparison to the size of a

neutrino wavepacket, the Hamiltonian experienced by a neutrino evolves very smoothly, and

the adiabatic approximation can be applied. In the adiabatic approximation, level crossing

is forbidden, so states transition smoothly from their initial energy eigenstate mixture into

an equal mixture of final energy eigenstates.

In the case of 8B neutrinos, this causes a nearly complete transition into the ν2 vacuum

eigenstate since its initial state is nearly a mass-perturbed ν2 state. Since the neutrinos thus

escape the Sun in an energy eigenstate (to a very good approximation), they then propagate

without oscillating to the Earth, where they are detected in the flavor basis. Thus to a first

approximation the electron neutrino survival probability, Pee, for solar neutrinos is simply

sin2 θ12 (|Ue2|2 with the approximation that sin θ13 = 0).

This can be made more precise by including the small contributions from the other energy

eigenstates. Let Û represent the mixing matrix at the position in the Sun where the neutrino

was created. In practice, Û depends on the radial position within the Sun (since it is electron

density dependent) as well as the energy of the neutrino in question. Û can be computed by

replacing the vacuum mixing angles with those in matter.

In this general approach, vacuum oscillations do take place once the neutrino escapes the

Sun. However, the phase ∆m2L/E acquired by the neutrinos is essentially random since the

neutrino energy cannot be resolved on a scale at all comparable to the number of oscillation
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lengths travelled from the Sun. These vacuum oscillations are therefore averaged over in a

real experiment.

We can calculate the survival probability in a way that captures all these effects as follows.

Let the adiabatic propagator within the Sun be P̂1 = δij in the energy basis, and the vacuum

oscillation propagator be P̂2 = eim
2L/2E . Then the oscillation probability is given by

Pba =
∣∣∣〈νa|P̂2P̂1|νb

〉∣∣∣2
=
∣∣∣〈νa|e−im2L/2EI|νb

〉∣∣∣2
=

∣∣∣∣∣∣
∑
ij

〈
νi|U∗aie

−im2L/2EÛbj |νj
〉∣∣∣∣∣∣

2

.

(2.12)

Here we have followed the usual convention in defining

|νl〉 =
∑
i

Uli |νi〉 , (2.13)

where the l states represent flavors and the i states represent mass eigenstates.

The vacuum propagator acts trivially in the mass basis, so this simplifies to:

Pba =

∣∣∣∣∣∣
∑
ij

U∗aie
−im2

iL/2EδijÛbj

∣∣∣∣∣∣
2

=
∑
ij

U∗aiUajÛbiÛ
∗
bje

i∆m2
ijL/2E

=
∑
i

∣∣∣UaiÛbi∣∣∣2 .
(2.14)

The last step follows because the oscillatory term will average to zero unless i = j (again,

since the phase will vary enormously between neutrinos).

Although the abstract representation of the solar neutrino survival probability in equation

(2.14) is less intuitive than the usual expression in terms of mixing angles, it will be helpful

in calculating the perturbative effects we will study in Chapter 5.
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CHAPTER 3

STANDARD MODEL EXTENSION

Lorentz symmetry is so deeply entwined in our physical models that it can be difficult to think

clearly about the kinds of effects that could be possible in its absence. Any test of Lorentz

symmetry therefore benefits from a framework for categorizing the possible unconventional

effects that must be considered once that assumption is dropped. The benefits are threefold:

it allows comparison between experiments that may be sensitive to the same effects, it

provides a complete list of effects to consider, and it ensures that the effects are logically

consistent and independent [42]. Such a framework has been developed in depth for the field

content of the Standard Model by Kostelecky and his collaborators, and is called the Standard

Model Extension (SME) [13, 14]. It considers all Lorentz symmetry violating interactions of

the Standard Model fields. This framework will be used to determine the physical signals

of Lorentz violation to which SNO is sensitive, and will also provide a standardized way to

report the results. Before discussing the SME in enough detail to explain the origin of the

effects for which we will search, we will review the physical basis of Lorentz symmetry.

3.1 Lorentz Symmetry

Lorentz symmetry reflects the invariance of physical law under changes of inertial frame.

This idea has deep roots in mechanics [43]. One can arguably trace the first conception of

this idea to the Copernican Principle that the Earth is not a privileged frame of reference.

Galileo had something like the modern viewpoint in mind by 1632 when he articulated the

idea that it is only possible to perceive relative and not absolute motion. He used this fact

to explain why we cannot perceive the rapid orbital motion of the Earth.

Galilean symmetry later came to refer to a specific form of frame invariance that derived

from the assumption within Newtonian mechanics that time is measured identically by all

observers, in which case the coordinate measurements of two observers moving with relative
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velocity ~v can be related by

~x′ = ~x− ~vt , (3.1)

assuming that the spatial origins of the two observers coincide at t = 0. It was the specific

form of this transformation, and not the idea of the equivalence of inertial frames, that had

to be replaced after the revolution of relativity. The discovery that the frequency and not

the velocity of light depends on the relative velocity of its source and an observer demanded

a new transformation law. The Galilean transformation (equation 3.1) was replaced by the

Lorentz transformation, under which coordinate measurements of two observers moving with

relative velocity ~v = vx̂ can be related by

x′ = γ(x− vt)

t′ = γ(t− vx/c2)

(3.2)

where

γ =
c√

c2 − v2
. (3.3)

That is, spatial and time coordinates are mixed under boosts in a Lorentz transformation.

The Lorentz transformations form a group in the sense that the subsequent operation of

two Lorentz transformations is also a Lorentz transformation. The group is generated by

six operators: rotations about three orthogonal axes, and boosts along the same. Together

with the group of spatial translations, they form the Poincare group. In addition to its roots

in relativistic mechanics, Lorentz symmetry plays a critical role in theories of fundamental

particles. In Quantum Field Theory, the allowed particle models (for example, the scalar,

spinor, and vector fields) reflect different representations of the Lorentz group.

Lorentz symmetry is also closely related to the discrete symmetries of particle physics:

charge conjugation (C), parity (P), and time reversal (T). Greenberg established in 2002

that CPT violations necessarily imply Lorentz violations (the converse is not true) [11].

This means that every possible CPT violation is included in the SME. Thus a search for
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Lorentz violations would also be sensitive to CPT violations, should they exist.

3.2 SME Framework

The Standard Model Extension (SME) was introduced by Kostelecky et al. [13, 14]. It

provides a coherent description of particle physics that includes all possible Lorentz violat-

ing operators that could arise from the spontaneous breaking of Lorentz symmetry while

preserving the Standard Model gauge invariance.

To give a somewhat concrete motivation for this class of theories, consider a UV com-

pletion of the Standard Model given in terms of strings. The theoretical considerations that

guarantee CPT symmetry fail in the case of strings. One might therefore generically expect

CPT symmetry to be broken in such a theory, which, in light of the CPT theorem, would

suggest that Lorentz symmetry may be broken in its low-energy effective theory. Further-

more, any model in more than four spacetime dimensions (as would be the case for strings)

is expected to contain spontaneous breaking of Lorentz symmetry, which, assuming this ex-

tends into the conventional dimensions, may be observable as a vacuum expectation value

of Lorentz tensors [13].

The requirement that the theory can be generated through spontaneous symmetry break-

ing ensures that it would maintain many of the attractive features of Lorentz symmetry, such

as causality, by virtue of the Lorentz invariance of the underlying theory. Assuming that the

vacuum expectation value is position independent, such properties as energy and momentum

conservation would also be retained. Lastly, coordinate independence (or invariance under

observer boosts) is also ensured, in spite of the fact that invariance under particle boosts is

not.

Since this fact is quite counterintuitive, it is worth explaining how this can be possible in

more detail. It is useful firstly to distinguish between observer Lorentz transformations and

particle Lorentz transformations [13]. An observer transformation meets the traditional def-

inition already discussed: it gives the rule for converting between coordinate measurements
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made by observers in different frames. One might also consider how to relate measurements

made by an observer in one frame of particles moving with different spins or momenta. This

we will call a particle transformation. As long as the symmetry group is preserved, these

two types of transformations are degenerate.

However, when the symmetry is broken, the two types of transformations no longer

behave identically. Consider the familiar example of birefringence. We know that light

can propagate with different speeds depending on the orientation of its polarization in a

birefringent material. Consider a rotational observer transformation. A second observer in a

rotated frame would measure both the optical axis of the crystal as well as the polarization

vector of the light to be changed in the same way, and so measures the same index of

refraction. Thus observer transformations are preserved. However, the first observer would

measure a beam of light with a different polarization direction to have an entirely different

index of refraction, and thus particle transformations are not preserved. When such an effect

is present only in the presence of a special material like a crystal, we consider it a local or

effective breaking of the symmetry. However, if the same behavior were observed under all

conditions, if the vacuum itself exhibited such properties, we would consider it a fundamental

symmetry violation and could describe it by a term in the SME.

The SME includes a large number of Lorentz non-invariant effective operators, each

controlled by a distinct coefficient determining the size of that effect. These effects typically

manifest in terms of annual or sidereal variations, as the Earth rotates and orbits the Sun,

but there are also isotropic effects that have no directional dependence.

This framework has been widely adopted by experimentalists in reporting the limits

established in a variety of areas. The results are collected into tables updated annually [44].

Most analyses in this area assume that only one Lorentz violation coefficient is nonzero,

because searching for the fully general linear combination of many effects is prohibitively

complicated. For this analysis, we will assume that only coefficients of one class are nonzero,

and report both the full linear combination to which we are sensitive, as well as limits on
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the individual components assuming the other components are zero.

Although observer independence guarantees that results can be translated between frames,

the specific components measured will depend on the frame, analogously to the mixing of

electric and magnetic fields under changes of frame in ordinary electrodynamics. To avoid

this complication, it is convenient to adopt a standardized inertial frame for reporting SME

results. The conventional choice is the solar (celestial-equatorial) inertial frame, which is

particularly convenient for the case of solar neutrinos discussed here.

The frame is defined to be centered on the Sun, with z axis parallel to the Earth’s

rotational axis, the x axis pointing from the Earth to the Sun at the vernal equinox (March

20, 2000), and the y axis selected to complete a right-handed system. T = 0 is likewise

defined by the vernal equinox of 2000. The frame is inertial on time scales of thousands of

years [45]. An illustration is shown in Figure 3.1.

3.3 SME Neutrino Sector

The specific operators present in the SME vary according to particle type, and only those

in the neutrino sector are relevant to this analysis. An explication of the SME framework

in the neutrino sector is given in references [46, 47]. This section and section 5.1 extend

the discussion of the prediction of the SME for solar neutrinos given in reference [48] to

operators of arbitrary dimension, and update the discussion to use the spherical harmonic

decomposition introduced after it was written.

In the SME, the Lagrangian for the neutrino sector can be written as [47]

L =
1

2
ΨA(γµi∂µδAB −MAB +QAB)ΨB + h.c. . (3.4)

Here Ψ is a six component spinor multiplet of the three neutrino fields and their conjugates,

with A and B flavor indices. The first and second terms are the usual kinetic and mass terms

for neutrinos, while the third term is an entirely general operator, 4 by 4 in spinor space and
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Figure 3.1: Standard solar reference frame used for reporting SME coefficients, taken from
[45]. η = 23.5◦ is the inclination of the Earth’s orbit. The label T = 0 indicates the spatial
position of the Earth at the time origin. β is the orbital speed of the Earth, not relevant for
this measurement.
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6 by 6 in flavor space, and in general involving derivatives i∂µ. No matter the origin and

form of the new interactions contained in Q, it must be possible to expand it in the basis of

γ matrices:

QAB = −aµABγµ − b
µ
ABγ5γµ + c

µν
ABγµpν + d

µν
ABγ5γµpν

+eνABpν + ifνABγ5pν +
1

2
g
λµν
AB σλµpν −

1

2
H
µν
ABσµν .

(3.5)

The coefficients c, d, and H are CPT conserving but Lorentz violating, while a, b, e,

f , and g violate both CPT and Lorentz symmetry. These coefficients are labeled by a pair

of flavor indices, by mass dimension d (suppressed above), and by direction indices. The

direction can be expressed in any coordinate system, but it is particularly convenient for

us to employ a spherical coordinate system to reflect the (approximate) symmetry of the

Earth’s orbit. In this system, the direction information is encoded in j and m indices that

reflect the spherical harmonic decomposition of the fields.

There are also relationships between different coefficients, which arise from imposing a

hermiticity condition on the theory [46]. This leads to the coefficients being Hermitian in

flavor space [49], and reduces the total number of independent degrees of freedom. For a

and c coefficients, results are typically presented in terms of the real and imaginary parts of

the coefficients with non-negative m. Since the m = 0 term is real, this is a total of 2j + 1

degrees of freedom.

More useful from a computational point of view is the effective Hamiltonian for the sys-

tem, which can be determined under the assumption that the Lorentz-violating contribution

is a small perturbation to the usual dynamics [46]. The full Hamiltonian is H = H(0) + δH,

where the Lorentz conserving Hamiltonian H(0) is given by equation (2.1) and the Lorentz

violating perturbing Hamiltonian is given by

δH =
1

|p|

 aeff − ceff −geff +Heff

−g†eff +H
†
eff −aTeff − c

T
eff

 , (3.6)
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where

aeff = pµa
µ
L − el + 2iεµε

∗
νg
µν
l , (3.7)

ceff = pµc
µ
L −ml + 2iεµε

∗
νH

µν
l , (3.8)

geff = i
√

2pµενg
µν
M+ +

√
2εµa

µ
l , (3.9)

and

Heff = i
√

2pµενH
µν
M+ +

√
2εµc

µ
l . (3.10)

This expression is written in a block matrix form, with a, c, g, and H standing for 3×3

matrices that determine the size of the Lorentz violating effects. p is the momentum and ε

is a polarization vector orthogonal to the momentum. The upper three coordinates are for

the three flavors of neutrinos and the lower three coordinates are for the antineutrinos. aL,

cL, gM+ and HM+ are combinations of the underlying a, b, c . . . operators that respect the

Standard Model gauge symmetry and are therefore the physically observable combinations.

The coefficients al, cl, el, gl, Hl, and ml are second-order effects induced by neutrino masses.

As such, their contributions are suppressed relative to the first-order terms roughly by the

ratio of the neutrino mass to the neutrino energy, approximately nine orders of magnitude

for solar neutrinos. Since this analysis is based on many fewer than 109 events, such effects

are negligibly small.

The aeff and ceff coefficients determine the anomalous mixing of neutrinos in a Lorentz

violating situation, while geff and Heff would induce neutrino-antineutrino mixing. (Because

of the degeneracy in mass between the neutrino and antineutrino states, this mixing has

qualitatively different features than mixing among neutrinos or antineutrinos.) Because it is

expected that a and c type operators and g and H type operators would arise from different

underlying physics, and because SNO is sensitive to these terms at widely different levels,

it is reasonable to perform an analysis for each of these types of terms separately. For the

purposes of this analysis, we will assume that geff and Heff are negligible.
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coefficient j number

(a
(3)
eff )jm 0, 1, 2 81

(c
(2)
eff )jm 1 27

(c
(4)
eff )jm 0, 1, 2 81

(g
(2)
eff )jm 1 36

(g
(4)
eff )jm 1, 2 96

(H
(3)
eff )jm 1, 2 48

Table 3.1: Renormalizable SME effects in neutrino sector. In each case m can take values
from −j to j. Adapted from reference [47].

In the most general case, each of these terms can be expanded in a series of operators of

increasing mass dimension [47]. For example,

aabeff =
∑
djm

|p|d−2 Yjm(p̂)
(
a

(d)
eff

)ab
jm

. (3.11)

Here Yjm are the usual spherical harmonic functions. This makes it clear that there are

in principle an infinite number of possible effects to consider. We therefore need some

criterion for selecting which ones to examine. A particularly straight-forward if slightly ar-

bitrary choice is to consider only renormalizable terms, since the list of these is relatively

modest. Renormalizable operators are often preferred in field theories because they have

well-controlled behavior at arbitrarily high scales. Insofar as we think of theories as effective

models, this is not a critical requirement, but there is also another reason to prefer renor-

malizable terms. They are also the lowest-dimension operators, which would generically

be expected to be the most important, with operators of increasingly higher mass dimen-

sion suppressed by additional powers of some high energy scale [47]. The list of allowed

renormalizable terms is reproduced here in Table 3.1.

In fact, we will consider only a subset of even these renormalizable terms. We have

already explained that we will not consider any neutrino-antineutrino mixing effects, which

eliminates the geff and Heff terms. In addition, we will not search for any signals for which
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the leading-order contribution comes with the mass-suppression due to helicity flips. This

includes the c
(2)
eff , g

(2)
eff , and

(
a

(3)
eff

)
2m

modes [47]. This leaves the three modes of c
(4)
eff and two

modes of a
(3)
eff to be considered in this analysis. The correction to the neutrino Hamiltonian

that we will use is therefore

δH =
1

|p|
∑
jm

|p|Yjm(p̂)(a
(3)
eff )jm −

1

|p|
∑
jm

|p|2 Yjm(p̂)(c
(4)
eff )jm , (3.12)

where j is 0 or 1 for the a term and 0, 1, or 2 for the c term.

The coefficients aeff and ceff have mass dimension 4 − d [47], so the d = 3 terms have

dimensions of GeV while the d = 4 terms are dimensionless. One can see that this gives the

two terms in the Hamiltonian (equation 3.12) the correct dimensions.

We will use this correction to the Hamiltonian in Chapter 5 to derive the specific signals

to search for in the analysis, but let us stop at this point and discuss in qualitative terms the

kinds of effects to which this Hamiltonian gives rise. The fact that we are adding a new term

δH to the neutrino mass matrix means that we will perturb the neutrino mixing parameters,

in much the same way that a matter potential does. However, in our case, this perturbation

is not constant, but depends on the neutrino momentum p. Since we are studying solar

neutrinos, the momentum is determined by geometrical considerations: it must point from

the Sun to the Earth, rotating over the course of the year. The time dependence of the signal

thus derives from the spherical harmonic terms in equation (3.12). Since j is 0, 1, or 2 for

the terms of interest, the changes to the mixing angles will vary either once or twice per year,

or will be constant in time (these are examples of the isotropic effects already mentioned).

The effects can also be classified according to the energy dependence of the change, which

differ for a and c terms.
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CHAPTER 4

SNO DETECTOR

The Solar Neutrino Problem was a longstanding difficulty in neutrino physics. The problem

began in 1968 with the initial result [50] of Ray Davis’s solar neutrino detector located in

Homestake mine, which found the flux of solar neutrinos to be significantly lower than what

was predicted by the Standard Solar Model of the day [51]. The Davis detector relied on the

inverse beta decay interaction on Chlorine:

νe + 37Cl→ 37Ar + e− . (4.1)

The 37Ar created in this reaction is radioactive with a month-long half-life, which allowed

Davis to measure its rate of production by extracting the Argon from his detector and count-

ing its decay rate. The initial result found roughly half the number of neutrino interactions

expected by theory, with the discrepancy growing to about a factor of three after many years

of additional running [52] and refinements to theory [53].

This large discrepancy showed that at least one of the experiment, the solar model,

or the neutrino model were incorrect. A number of modified solar models were proposed

[54] that predicted a lower temperature in the solar core to reduce the 8B production rate

appropriately. Another possibility was that the neutrinos produced in the Sun are lost

either through a decay process or a flavor change before they reach the detector. The

idea of neutrino oscillation had been raised by Pontecorvo in 1967 [23], but there was no

experimental evidence in its favor and the neutrino was still widely assumed to be massless,

although interest in oscillation was growing as a result of the incorrect measurement of the

neutrino mass at 20 eV in 1980 [55].

A number of experiments were proposed to check the Homestake result with different

detection techniques and by looking at different pieces of the solar neutrino energy spectrum

in an attempt to further constrain the Standard Solar Model. By the 1990s, Kamiokande
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[56] had measured solar neutrinos at higher energies, and SAGE [57] and GALLEX [58] at

lower energies. All reported results inconsistent with the solar model.

These experiments relied on the same charged current interaction measured at Homes-

take, or, in the case of Kamiokande, on the elastic scattering interaction that provides only

weak information about the non-electron flavor neutrino content. To decisively address the

fundamental question of whether a flavor change was taking place, it would be necessary to

measure the inclusive active neutrino flux from the Sun. Herb Chen in 1984 originated the

idea [59] that separate measurements of the neutral current and charged current interactions

of solar neutrinos would disentangle the issues of the solar flux and possible neutrino oscil-

lation. Measuring the neutral current would allow for a test of the Standard Solar Model

irrespective of neutrino oscillations, while a comparison of the ratio of the two rates would

be able to test for neutrino oscillations regardless of whether the Standard Solar Model was

correct. Since solar neutrinos have little energy to impart via the neutral current, its detec-

tion is challenging, but Chen knew that it had been observed with reactor neutrinos through

the dissociation of deuterium in 1979 [60]. He therefore proposed a kiloton scale heavy water

Cerenkov detector modeled on the recently constructed IMB detector.

This idea was realized in the Sudbury Neutrino Observatory, which decisively resolved

the Solar Neutrino Problem with data collected between 1999 and 2006 [15]. Through its

neutral current measurement, it found the flux of active neutrinos to be consistent with that

predicted by the Standard Solar Model, while its measurement of the charged current was

also consistent with the Homestake result. This demonstrated clearly that flavor change

was responsible for the observed deficit of electron neutrinos. Art McDonald was awarded

the Nobel prize in physics in 2015 for this work, along with Takaaki Kajita for observing

oscillations in atmospheric neutrinos at Kamiokande. In this chapter we will discuss the

design, calibration, and simulation of the SNO detector, and the physics to which it was

sensitive.
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4.1 Detector Design

The SNO detector is built underground in an active nickel mine in Sudbury, Ontario at a

depth of 6800 feet. This depth dramatically reduces the flux of cosmic rays and helps to

maintain the radiopurity of the detector, which in turn allows for an unusually low energy

threshold by the standard of water Cerenkov detectors. The detector is suspended in a

barrel-shaped cavity excavated from the rock, illustrated in Figure 4.1.

The SNO detector [61] consists of several nested volumes. The innermost target volume

is held inside a 12 m diameter spherical acrylic vessel (AV). About 2.5 m beyond the AV is a

geodesic sphere (PSUP) designed to support the 9800 8-inch inward looking photomultiplier

tubes (PMTs). In a PMT, a photon incident on the cathode generates a photoelectron

through the photoelectric effect. The photoelectron is then accelerated through a dynode

stack to create an amplifying cascade of electrons that can be detected as a macroscopic

current. Essentially all the data in the experiment are collected with these PMTs viewing

the target volume. To enhance the PMT coverage achieved, each PMT was fitted with a

“concentrator” or mirrored bowl designed to steer as much incident light as possible onto the

phototube surface [62]. Including the concentrators increased the coverage of the detector

from 31% to 54% [15].

The space between the PMTs and the AV, and also from the PMTs outward to the walls

of the cavity, is filled with ultrapure water which serves as shielding to radiation coming

from the PMT glass and from the rock walls of the cavity. This is necessary in spite of

the precautions taken to produce clean glass for the PMTs and to reduce the radioactivity

originating in the rock by five orders of magnitude by applying ten layers of urylon [15].

Since the target was filled with heavy water, it would tend to sink in the surrounding

light water, and was therefore suspended from above by a set of hold-up ropes anchored to

the deck over the cavity. In addition to the inward looking tubes, there are a small number

of outward looking (OWL) tubes used to help veto cosmic backgrounds. The volume inside

the PSUP is optically isolated from the exterior with tarping.
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Figure 4.1: The SNO detector. In blue, the acrylic (target) vessel, with hold-up ropes in
black. PMT support structure shown as geodesic sphere. At top, the deck with electronics
and DAQ.
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The collection efficiency of a PMT depends on the presence of any externally applied

magnetic field, since these will change the path traversed by electrons in the tube. In order

to achieve the best possible operating conditions for the PMTs, it is necessary to cancel the

magnetic field of the Earth within the detector. This is achieved with Helmholtz (“compen-

sation”) coils built into the walls of the cavity which were tuned to achieve cancellation by

about a factor of 3. This was estimated to increase the PMT collection efficiency by about

10% [63].

The PMTs are powered and read out through individual cables that extend from the

PSUP to the deck above the cavity. The PMT waveforms are not digitized. Instead, each

channel has a discriminator, typically set to trigger on the signal from a single photoelectron,

and when the discriminator fires, the signals are integrated over three different time and

sensitivity scales and held in analogue memory along with the trigger time. When a so-

called Global Trigger is issued, these integrated values are digitized and read out to disk.

SNO uses an analogue trigger system to identify interesting time periods for which to

record data. There are a number of different trigger types that can be selected independently.

The most fundamental of these for the physics analyses is the so-called “nhit” trigger, which

selects periods of phototube signal coincidences. If enough of the channel descriminators

record threshold crossings within a rolling 93 ns window, a Global Trigger is sent to read

out the detector. Other triggers include the Esum trigger which fires on the total charge

observed in the phototubes, a pulser that fires triggers at a fixed frequency, as well as triggers

for the OWL tubes, and external triggers.

SNO was calibrated using a number of different known sources. These were generally held

in a decay chamber and deployed into the detector on ropes from the deck. A manipulator

system could be used to pull the sources off the central axis of the detector to measure

position-dependent effects. Key for this analysis was the 16N source which provided the

primary energy calibration [64]. This source provides a 6.13 MeV γ which is tagged by

its associated β decay. The β is observed directly in the source chamber with a plastic
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Figure 4.2: 16N energy calibration data shown in black, with white points indicating predic-
tion of (tuned) Monte Carlo simulation. Figure from reference [64].

scintillator detector. This allows a characterization of the energy response of the detector

in the energy range relevant for solar 8B neutrino interactions. The detector response to

this source is illustrated in Figure 4.2. The source was also used to determine position

reconstruction resolution. The energy scale at higher energy was verified with a 8Li source

with an endpoint of 13.0 MeV that roughly matches the 8B neutrino energy spectrum [65].

19.8 MeV γs from a 3H source were also used in D2O phase [66]. The neutron response was

calibrated with a 252Cf source [67] and a 241AmBe source.

The optical calibration was performed with light injection, using a laser ball deployed

in the detector to diffuse light generated externally at wavelengths between 337 and 620 nm

[68]. By investigating the likelihood of detecting light in a particular PMT as a function of

the position of the laserball, the attenuation lengths of the light and heavy water and the

angular response of the PMTs were determined [69].
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In addition, the readout electronics also require calibration, to determine the charge and

time scales of the digitizers, and to set the discriminator thresholds. This is achieved through

a sequence of signal injection tests that are run periodically on the detector.

Since the solar neutrino interactions take place at energies within the range of natural

radioactivity, extreme measures had to be taken to ensure the radiopurity of the detector.

Reducing the number of γs was particularly critical for preventing a large background from

the photodissociation of deuterium which could mimic the neutral current interaction. This

partially motivated the deep location selected for the experiment, since the low rate of cosmic

rays ensures little cosmogenic activation. In addition, the light and heavy water had to be

purified extensively, and special materials were used in both the plastic lining of the cavity

and the PMT glass to reduce overall background levels. Assays showed that the radioactivity

in the heavy water reached a level of 5× 10−16g/g for U and 8× 10−16g/g for Th [70], well

below the target levels, with modestly higher levels for the light water.

4.2 Observable Processes

SNO is a water Cerenkov detector. It can detect light coming from the passage of charged

particles above the Cerenkov threshold of heavy water, which in practice means electrons,

including electrons scattered by gammas. Events are reconstructed in terms of electron

equivalent energy.

For neutrino events, there are three distinct kinds of events that can be observed. Al-

though they cannot be distinguished on an event-by-event basis, their individual contribu-

tions can be statistically separated. The three processes are elastic scattering (ES), the

neutral current (NC), and the charged current (CC):

νe + d→ p+ p+ e− − 1.44 MeV (CC),

ν + d→ p+ n+ ν − 2.22 MeV (NC),

ν + e− → ν + e−(ES) .

(4.2)
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The neutral current process is accessible to neutrinos of any flavor, and was used in

SNO to determine the total solar neutrino flux. The Feynman diagram representation of the

interaction is shown in Figure 2.3. Obviously the quark is not free in the detector, but is

rather confined in a nucleon. In most cases, this momentum transfer to a bound quark would

not produce a signal in the detector, but neutrinos with energies of at least 2.2 MeV can

scatter against a deuteron in the heavy water with enough force to dissociate the proton and

neutron. The proton is below Cerenkov threshold and cannot be observed, but the neutron

will eventually capture, in turn producing gammas which will Compton scatter electrons

which are finally observed through their Cerenkov radiation.

In the initial D2O phase, neutron capture was typically on deuterium, which is not

particularly efficient, and many neutrons were lost, eventually capturing in the acrylic or

light water. This inefficiency provided the motivation for the two subsequent phases of the

experiment. The details of neutron capture in each phase will be discussed in the next

section.

The charged current process involves the conversion of a neutrino into a charged lepton.

The Feynman diagram representation is shown in Figure 2.3. Because 8B neutrinos have

a maximum energy far less than the mass of a muon, only electron-flavor neutrinos can

participate in this interaction, and the interaction therefore provides a direct measure of the

electron flavor survival probability. The resulting electron is observed through its Cerenkov

radiation.

The last relevant neutrino interaction in the SNO detector is the elastic scattering of elec-

trons. The Feynman diagram is shown in Figure 2.2. Neutrinos of any flavor can participate

in this interaction, but electron neutrinos preferentially couple because of the crossed dia-

gram. The rate of this interaction can thus provide a third constraint on the two parameters

of interest (the νe flux and the νx flux).
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4.3 Experimental Phases

The SNO experiment proceeded in three phases, each of which are represented roughly

equally in the data set. The first, called the “d2o” phase, lasted from 1999 until 2001.

During this phase, the acrylic vessel was filled with pure heavy water (2H2O or D2O). This

phase generated the purest data sample as the radiobackgrounds were very low and the

optics of the concentrators were still ideal.

Following this came the second “salt” phase, when the heavy water was doped with

NaCl, table salt. The purpose of this step was to take advantage of the significantly higher

neutron capture cross section on chlorine in comparison to deuterium to increase the number

of neutral current events observed. It also improved signal to background discrimination

because of the higher energy γs released in neutron capture on chlorine in comparison to

deuterium. However, inclusion of the salt also introduced some Na specific backgrounds and

worsened the detector resolution because of increased scattering. The salt phase lasted from

2001 until 2003.

Finally, in the third (“NCD”) phase, neutron counting devices (NCDs) were deployed in

the detector to provide an independent measurement of the neutral current event rate. Data

was taken with the NCDs present between 2004 and 2006. In the first two phases, the data

consisted exclusively of PMT hit times and charges. The NCD phase introduced a new type

of data, which was the energy detected in the NCDs themselves.

The neutron counting devices were proportional counters filled with an 85:15 partial

pressure mixture of 3He and CF4, deployed in the detector on strings over a square-meter

area of the inner detector volume [71]. 3He has a very large neutron cross section, which

produces two charged ions (p and T), which produce an electromagnetic shower in the gas.

The charge is collected on an anode wire. The NCDs had two readout systems, a high-

speed (shaper ADC) path that was intended to allow the collection of timing information in

the case of a supernova neutrino burst, and a low-speed multiplexed discriminator (MUX)

path that could distinguish between neutron candidates and other background signals, most
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prominently alpha decay.

In addition to the Cf and AmBe calibration sources used in the other phases, the neutron

detection efficiency of the NCDs was studied by mixing 24Na into the heavy water as an

isotropic source. This showed an efficiency of 26 ± 1 %. This calibration was performed

only twice since it incurred significant loss of livetime in waiting for the Na to decay away

(half-life 15 hours) [71].

4.4 Monte Carlo Simulation

SNO developed a highly detailed Monte Carlo simulation of their detector, called SNO Monte

Carlo and Analysis (SNOMAN) [61]. The simulation is a detailed microphysical model built

from the EGS4 [72] package for electron and γ propagation, MCNP [73] for neutron capture,

LEPTO [74] for muons, and FLUKA [75] and GCALOR [76] for hadrons [77]. The simulation

was tuned in detail to match the results of calibration runs.

Each experimental run was modeled in SNOMAN using the exact conditions present in

the real detector. For example, the list of active channels and trigger settings could be set

to reflect the real running conditions. In this way, detector effects could be studied in detail.

Samples of all the signal and background events are available with statistics equivalent to

many years of livetime. These Monte Carlo simulations are used extensively in this analysis

to model both the signal and background in the parameter space of interest.

4.5 Data and its Interpretation

The SNO data consist of events, which are time periods (400 ns in length) selected by the

trigger system already described. Each event contains a clock time, information on which

triggers fired, and one or more PMT “hits”, which represent PMTs whose signals crossed

their discriminator thresholds. As has already been discussed, the data recorded for each hit

is an estimate for the time of the hit relative to the trigger time and four integrated PMT
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charges, differing in the gain and time period of integration.

From these elements we must reconstruct what happened in the event. Determining

the energy, position, and direction of the particles with the best possible resolution is a

challenging problem; SNO developed a number of different algorithms for this with differing

strengths and weaknesses. However, there are a few simple principles that can provide some

useful intuition in thinking about the data.

The first is the principle that the energy of the event is roughly proportional to the

number of PMTs hit. We are detecting primarily the Cerenkov emission of electrons as they

slow down and are stopped through ionization collisions in the water. For electrons in the

relevant energy regime of 2 to 20 MeV, the time to stopping, and thus the number of photons

emitted, is approximately proportional to the initial energy. The number of photons actually

detected is Poisson distributed, which sets a lower bound on the possible energy resolution

of the detector. In practice, SNO detected roughly 7 photons per MeV of initial electron

energy.

The second is that position reconstruction is possible from the light arrival times and the

known positions of the PMTs. This is essentially a geometry problem. The light originated

in a relatively small region of the detector, perhaps a few centimeters in radius at most.

The light mostly travels on straight paths to the PMTs; of course some light is scattered

or reflected along the way, but for the most part this light arrives sufficiently late relative

to the prompt light that the two types can be distinguished. The problem is then one of

tracing back hypothetical lightcones from the points of observation to try to find a point of

intersection that can explain most of the hits in the detector.

Although Cerenkov threshold for an electron in heavy water is only about 0.4 MeV,

in practice, SNO could not reliably detect signals below 3.5 MeV. In part this was due

to instrumental backgrounds at low energies and inefficiencies in the trigger, but the main

limiting factor was the ability to read out the large volume of data generated at low energies.
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CHAPTER 5

LORENTZ VIOLATION SIGNAL

In order to perform an analysis searching for effects generated by the Lorentz symmetry

violating operators introduced in Chapter 3, we must determine the way in which those

operators would change the signal we observe in SNO. We have already described this in

general: there will be an energy-dependent seasonal variation in the neutrino mixing angles.

In SNO, the signal would consist of seasonal variations in the charged current event rate,

while the flux, and therefore the neutral current event rate, would remain fixed. In this

chapter, we will derive the details of such a signal. We will also consider all other non-exotic

seasonal changes to the neutrino signal that can be expected, such as those stemming from

the orbital eccentricity of the Earth, and from seasonal variations in the nighttime electron

neutrino regeneration in the Earth.

5.1 Signal Derivation

The Lorentz symmetry violating operators discussed in Chapter 3 could give rise to a huge

variety of signals, particularly if they are large compared to the conventional mass term

[78]. However, the massive three-neutrino model is a good description of neutrino behavior

in a variety of experiments spanning many decades of energy, so it seems safe to assume

that any Lorentz violation effects, should they exist, are small perturbations on that model.

We specifically assume here, as was discussed in Chapter 3, that g and H are zero, and we

consider only the leading-order corrections. The Hamiltonian can then be written

H = H0 + δH , (5.1)
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where H0 contains the conventional mass and matter effects, and δH is

δH =
∑
jm

Yjm(p̂)
(

(a
(3)
eff )jm − E(c

(4)
eff )jm

)
. (5.2)

This is the expression that was derived in equation (3.12) after making the identification

|p| = E, which is valid for any neutrino we might detect. The full Hamiltonian H will be

diagonalized by a perturbed mixing matrix U , which can be written U = U (0) + δU . We

define for convenience

U = (1 + ∆)U (0) , (5.3)

so that

δU = ∆U (0) . (5.4)

Then recognizing that (I + ∆) diagonalizes U (0)δHU (0)†, we can use ordinary pertur-

bation theory to conclude that, to first order, the matrix elements of ∆ are given by the

corrections to the eigenstates of H(0). For offdiagonal terms,

∆kj =

(
U (0)δHU (0)†

)
kj

Ej − Ek
=
∑
a,b

U
(0)
ja U

(0)∗
kb

Ej − Ek
δHab , (5.5)

where Ei is the energy of the ith unperturbed mass state, and a and b are flavor indices. For

the diagonal entries ∆jj = 0 since corrections to the norms of the eigenvectors first appear

at second order. In this section, a, b, c, and d will represent flavor indices, with i, j, k, and

l used for mass state indices.

Combining this expression with equation (5.4) we see

δUic =
∑
j

∆ijUjc =
∑
abj

U
(0)
ja U

(0)∗
ib U

(0)
jc

Ej − Ei
δHab . (5.6)

In this and subsequent expressions, it should be understood that the sum does not extend
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over diagonal entries (i.e., j 6= i).

We can use this corrected mixing matrix to compute the corrections to the survival

probability. To first order, the transition probabilities will be (following equation 2.14)

Pba =
∑
i

∣∣∣(U (0) + δU
)
ia

(
Û (0) + δÛ

)
ib

∣∣∣2
= P

(0)
ba + 2

∑
i

(∣∣∣U (0)
ia

∣∣∣2 Re
(
Û

(0)
ib δÛ

∗
ib

)
+
∣∣∣Û (0)
ib

∣∣∣2 Re
(
U

(0)
ia δU

∗
ia

))
.

(5.7)

Plugging in our expression for δU , we obtain the correction to the probability:

δP
(1)
ba = 2

∑
cdkl

∣∣∣U (0)
ka

∣∣∣2 Re

Û (0)
kb

Û
(0)∗
lc Û

(0)
kd Û

(0)∗
lb

Êl − Êk
δHcd


+
∣∣∣Û (0)
kb

∣∣∣2 Re

U (0)
ka

U
(0)∗
lc U

(0)
kd U

(0)∗
la

El − Ek
δHcd

 .

(5.8)

Finally, we substitute equation (5.2) to get our final expression for the changes to the oscil-

lation probabilities:

δP
(1)
ba = 2

∑
Jm

Re

{
YJm(p̂)

∑
cd

((
a

(3)
eff

)cd
Jm
− E

(
c
(4)
eff

)cd
Jm

)
×

∑
kl

∣∣∣U (0)
ka

∣∣∣2 Û (0)
kb

Û
(0)∗
lc Û

(0)
kd Û

(0)∗
lb

Êl − Êk
+
∣∣∣Û (0)
kb

∣∣∣2 U (0)
ka

U
(0)∗
lc U

(0)
kd U

(0)∗
la

El − Ek

 .

(5.9)

The final sum over kl is just a function of energy that depends on the neutrino mixing

matrix in both vacuum and in the Sun. However, it is independent of the size of the Lorentz-

violating effects and the direction of propagation. As such, it can be calculated once and for

all. This specifies the (energy-dependent) linear combination of Lorentz-violating fields to

which the experiment is sensitive. After factoring out the dominant linear energy dependence,

we denote this by wcd:
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Figure 5.1: Weight functions weejk for the nine flavor combinations as a function of energy.
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(5.10)

With this definition, the survival probability can then be written compactly as

P
(1)
ba = Re

∑
Jm

YJm(p̂)
∑
cd

wbacd

(
E
(
a

(3)
eff

)cd
Jm
− E2

(
c
(4)
eff

)cd
Jm

)
. (5.11)

The Lorentz-violating effects come in groups of nine labelled by pairs of flavor indices,

weighted by the weight functions weecd. I have computed these electron neutrino survival

weights over the energy range relevant for solar neutrinos, namely 1 - 20 MeV. The shape of

the weight functions is shown in Figure 5.1. It can be seen that the different contributions

become relatively constant at energies above 6 MeV, after the MSW transition has saturated.

The effects in each group of nine are therefore highly degenerate.
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There are two possible approaches to handling this near-degeneracy. Either we restrict

ourselves to a domain in which the signals are truly degenerate, compute the linear combi-

nation of coefficients to which we are sensitive, and set a single limit on that combination,

or we keep all nine signals distinct and try to fit for them simultaneously.

SNO has never included data below 3.5 MeV in published analyses, because the data

there is dominated by backgrounds, and energy resolution and instrumental effects make

efforts to lower the energy threshold increasingly difficult. It is clear from Figure 5.1 that

the shapes of the different weights are not very different above 3.5 MeV. To quantify whether

there is any chance of disentangling these components, I performed a rough sensitivity study.

I assumed a best case scenario in which SNO is sensitive to the neutrino energy spec-

trum itself (without the smearing from interactions present in practice), with perfect energy

resolution, and without background. I randomly drew ten thousand 8B events with energies

above 3.5 MeV and distributed them randomly throughout a three year period. No Lorentz-

violating effects were imposed. I then fit the data with my model for a group of nine effects

to determine to what extent the different behaviors could be distinguished. I selected the

group of effects I expected to be most easily distinguished – those with annual modulation

frequency and linear gross energy dependence.

In spite of these optimistic choices, I found that the global correlation of each parameter

was at least 0.985. This confirmed that there is no power to distinguish the different effects.

It is therefore necessary for the analysis to take the other approach, namely to search for the

single linear combination of these effects to which the detector is sensitive. For this analysis,

we will apply a lower energy threshold of 7 MeV. This puts the analysis firmly in the regime

where the weights have no energy dependence, and also reduces the risk of contamination

from backgrounds.

To zeroth order, the linear combination of weights to which SNO is sensitive can be

read off of Figure 5.1, but a more detailed treatment, taking into account the Standard Solar

Model (see next section) and the detector efficiency, is appropriate. To do this, we model the
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contribution to the signal from each of the components through the Monte Carlo simulation

of the detector. For each event, we randomly select an origin point in the Sun according to

the distribution shown in Figure 5.3 and use this to calculate the survival probability.

For setting limits, the SNO weight combination will be computed using the fit result for

each mode separately. The final results are reported in Chapter 7. To give some impression

of what the combination will be like, we report here the result as determined by the mixing

parameters from the global neutrino fit:

c
(4)
SNO = 10−2meV−2×

(
0.38c

(4)ee
eff − 0.64c

(4)eµ
eff − 0.59c

(4)eτ
eff

+ 0.39c
(4)µe
eff − 0.30c

(4)µµ
eff − 0.42c

(4)µτ
eff

+0.14c
(4)τe
eff + 0.04c

(4)τµ
eff − 0.08c

(4)ττ
eff

)
.

(5.12)

a
(3)
SNO would be defined exactly the same way, substituting c

(4)
eff with a

(3)
eff in the above ex-

pression. These definitions allow us to write the change to the survival probability in a very

compact way:

P
(1)
ee = Re

∑
Jm

YJm(p̂)
(
E
(
a

(3)
SNO

)
Jm
− E2

(
c
(4)
SNO

)
Jm

)
. (5.13)

This is the expression of pratical utility for this analysis.

An impression of what a signal of this type would look like in the detector is shown in

Figure 5.2. This assumes a signal in the
(
a

(3)
SNO

)
10

mode at the level of 10 GeV−1.

5.2 Solar Model

An accurate solar model is important for this analysis because the details of the matter

effect in the Sun, and therefore the exact combination of effects to which the detector is

sensitive, depend on the energy spectrum of the neutrinos and on their point of origin within

the Sun. For this analysis, I have used the BS 2005 (AGS, OP) model, which is the most
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Parameter Global Fit PDG Without SNO

∆m2
21/10−5 eV2 7.37 ± 0.17 7.54 ± 0.19

∆m2
32/10−3 eV2 2.48 ± 0.06 2.48 ± 0.08

sin2 θ13/10−2 2.16 ± 0.10 2.10 ± 0.11

Table 5.1: Best values available for mixing parameters without using data from SNO.

recent Standard Solar Model [37]. The relevant features are the energy spectrum of the 8B

neutrino flux, the radial distribution of 8B origin points within the Sun, and the radial profile

of the electron density in the Sun. (These latter two distributions are relevant because they

determine the matter potential, and therefore the mass eigenstate content of the neutrino.)

Plots of these two quantities are shown in Figure 5.3.

5.3 Mixing Parameters

Computation of the SNO combination and of the signal pdf more generally relies on knowl-

edge of the neutrino mixing matrix. Since these parameters have been determined in part

based on data from SNO itself, care must be taken that any external constraints applied

exclude information from SNO to avoid double counting. We discuss the handling of this

issue in this section.

The solar mixing angle is floated in the analysis, so we need not consider that parameter.

It turns out that the other parameters have all been measured in independent experiments

whose individual values and uncertainties do not differ very much from the global fits [34],

so this effect does not make a large difference.

For the solar mass splitting, there is a measurement from Kamland alone [26] that is

essentially identical to the PDG combined result. For the other parameters, we simply use

the PDG recommended values, since these do not incorporate SNO data. The values are

summarized in Table 5.1. (Note that θ23 is omitted because it is not relevant in the adiabatic

approximation).
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Table 5.2: Table of independent observables, and the terms in the theory that contribute to
each.

5.4 Observables

Even after grouping the nearly-degenerate parameters into effective parameters, we are left

with four parameters of dimension 3 and nine of dimension 4. Those of dimension 3 produce

signals that cycle at most once per year, and grow linearly with energy. Those of dimension 4

grow quadratically with energy (and are therefore independent of the dimension 3 operators),

and have signals that cycle at most twice per year. Simple considerations from Fourier

analysis show that there can be at most three and five independent observables in these two

cases. We therefore decompose the signals into their Fourier modes and summarize these

combinations in Table 5.2. These are the signals for which we will search directly in this

analysis.

46



For the purpose of providing intuition about what these signals would look like in the

SNO detector, it is necessary to propagate the changes to the survival probability through the

nuclear interactions and detector effects. This can be achieved by reweighting the SNOMAN

Monte Carlo data.

The charged current events must be modified by the total change to the survival prob-

ability, while the elastic scattering events are modified by a reduced amount (roughly 5/6).

There is no change to the neutral current events, since these are flavor-independent.

For each SNOMAN 8B event, I randomly sampled a solar origin point according to the

Standard Solar Model, and used this to calculate its survival probability. The set of all eight

signals is shown in Figure 5.4. These templates are meant only for illustration, and are not

used explicitly in the final fit. The fit instead uses pdfs for solar events that include both the

Standard Model and Lorentz violating effects together, but these pdfs are calculated using

the same SNOMAN files and the Lorentz violating effects are the same as those calculated

here. One difference between the pdfs used in the fit and the templates shown here is that

in the fit, the details of the Standard Solar Model are not folded in. It is not necessary

to include these effects in the fit because they do not change the shape of the signal, but

only impact our interpretation of the signal in terms of the linar combination of effects they

reflect.

We have now finished our derivation of the signal that would be produced in SNO by

Lorentz violation. Before we can move on to develop an analysis to look for these signals,

we must first consider whether there are any conventional effects that would also produce

a similar signal that must be controlled for. In fact there are two conventional effects that

give rise to seasonal variations in the number of solar electron neutrinos detected in SNO:

the eccentricity of the Earth’s orbit, and the matter effect in the Earth. We address these

issues in the next two sections.
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Figure 5.4: The eight independent Lorentz violating observables as they would appear in the
first two phases of the experiment. L0, L1, and L2 are proportional to E, while the other
signals are proportional to E2, and can therefore be seen to be shifted slightly toward higher
energies.
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5.5 Day-Night Effect

During the day, solar neutrinos impact SNO from above, while during the night, they traverse

the Earth and enter from below. Although this does not reduce the neutrino flux at night,

the presence of electrons in the Earth has an effect on neutrino mixing just as it has in the

Sun. Because the density of the Earth is much lower than in the solar core, the effect is

considerably weaker, but it does push the ν2 state back toward νe. The effect is therefore

called electron neutrino regeneration [20].

This Earth matter effect therefore leads to a difference in the electron neutrino survival

probability between day and night. The leading-order consequence of this fact is that there

will be more electron flavor neutrinos during the winter when the night is longer than during

the summer. Since this is a seasonal variation in the effective survival probability, it is

important that we control for this effect.

There is also a second-order effect stemming from the fact that the amount of regeneration

itself varies depending on the exact path through the Earth taken by the solar neutrinos.

We will show below that this effect has little impact on the analysis.

Estimates for both the instantaneous and the year-averaged nighttime survival probability

were taken from reference [79]. It turns out that the year-averaged effect depends only on

the local electron number density in the vicinity of the detector. This can be understood

as a stationary phase approximation for the rapidly oscillating phase accumulated by the

neutrinos along different paths through the Earth. The correction factor can be expressed

as pnight = pday

(
1+δ
1−δ

)
, where

δ =
− cos 2θm sin2 2θ

1 + cos 2θm cos 2θ

EV

∆m2
. (5.14)

As before, V is the effective matter potential, this time reflecting the electron number density

in the vicinity of the detector. In reference [79], it is shown that using the range V =

(1.1 ± 0.1) × 10−10 meV more than covers any errors between the exact result and this
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Figure 5.5: Year-averaged survival probability in day (black) and night (red).

approximation. The shape of the effect is shown in Figure 5.5. Averaged over the year, the

survival probability is about 0.9% higher at night than during the day for the events selected

for analysis. The energy-dependent nighttime correction is explicitly applied in the analysis.

To investigate the time variation of the regeneration effect, I have used another approxi-

mation introduced in reference [79] to compute the effect:

P =
1

2
+

1

2
cos 2θSun cos 2θSudbury + cos 2θSun sin 2θ

n−1∑
j=1

∆θj cos(dEjLj) . (5.15)

Here

dEi =

√(
∆m2

2E

)2

− 2

(
∆m2

2E

)
Vi cos 2θ + V 2

i , (5.16)

where Vi is the matter potential in each layer, Li is the pathlength traveled in each layer,

θSun and θSudbury are the matter-perturbed mixing angle θ12 at the electron densities found

in the Sun and in Sudbury, respectively, and ∆θi ≡ θi+1 − θi, where θi solves

sin 2θi =
∆m2 sin 2θ

4EdEi
. (5.17)
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Layer Outer Radius Mean Density Inner Density Outer Density

(km) Electron Density (mol/cm3)
Inner Core 1221 6.0 - 5.95
Outer Core 3480 5.0 5.7 4.5
Lower Mantle 5700 2.4 2.8 2.1
Upper Mantle 6370 1.8 2.0 -

Table 5.3: Earth model parameters

To apply this estimate, I designed a model of Earth consisting of four layers of constant

density, with different densities at the layer interfaces to ensure a more accurate contribution

to ∆θi. This model was based on the Preliminary Reference Earth Model [80], but simplified

the density profile for computational ease. The parameters of my model are given in Table

5.3.

As noted in reference [81], the size of the effect depends on both the time and day of

year, with the largest effects being concentrated in the hours about midnight and the weeks

around the summer and winter solstices, again because of a stationary phase effect. To verify

that the calculation made with the simplified Earth model could reproduce the more detailed

computation, I reproduced the energy dependence of the day-night asymmetry averaged over

different seasonal periods. The result, shown in Figure 5.6, corresponded with the published

plots at the level of 10%, and some degree of difference is expected from the fact that my

calculation is made for the latitude of Sudbury, which is different from the latitudes shown

in the paper.

We use this model to calculate the day-by-day effect on the solar neutrinos observed in

SNO. As a worst case scenario, we present in Figure 5.7 the day-by-day survival probability

at midnight. The effect is as large as 10%.

In practice, the effect is much reduced because (i) there is kinematic smearing of the

neutrino energy during interactions, (ii) the energy resolution of the detector is considerably

worse than the scale of the effect, (iii) averaging over other times of the night tends to
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Figure 5.7: Survival probability including Earth matter effect at midnight.
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reduce the effect, and (iv) day-to-day variations are mostly washed out on the seasonal

scales relevant for this anaylsis.

The effect is reduced to about 3% after convolving with the detector response, which

is illustrated in Figure 5.8. Because of the fine scale of this effect, it was considered inap-

propriate to include this model in the fit, since small changes to the density profile could

completely change the value of the effect on each day because of the rapid oscillations. In-

stead, we treated it as a systematic uncertainty. The data from Figure 5.8 were used to

draw fake data samples to evaluate the size of the systematic uncertainty introduced by

neglecting this effect. From this exercise, we learned that the effect on the Lorentz violating

parameters is negligibly small (3 - 9% of the statistical uncertainty), and that a small bias

is introduced to the mixing parameters (about 3% for the solar flux, and about 1% for the

survival probability). This can be understood from the fact that since the data are not sam-

pled exactly uniformly throughout the year, the nighttime survival probability in practice

is not the year-averaged nighttime survival probability. Again, it seems dangerous to try to

correct for this given that our model for the Earth’s interior is not perfect, so we will live

with this small uncertainty.

In practice, for each day we calculate the fraction of livetime taken during day and

night and compute a day-average survival probability based on the year-averaged nighttime

survival probability.

5.6 Orbital Eccentricity

Another known source of seasonal changes to the solar neutrino flux is the eccentricity of the

Earth’s orbit. We must be careful to account for this seasonal change in the Sun to Earth

distance. This also affects the rate at which the solar direction changes over time. The

Earth’s orbital characteristics are well known, with eccentricity ε = 0.0167 and perihelion

on January 3 [82]. Since flux falls with the inverse square of the distance, this leads to a

roughly 3% annual modulation in the solar neutrino flux.
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Figure 5.8: Seasonal Day Night Effect after convolving with the detector response function.

Keplerian motion is conveniently described [82] in terms of a variable called the eccentric

anomaly, E, which evolves monotonically in time and is related roughly to the angular

position of the Earth around its orbit. The eccentric anomaly is computed numerically by

solving Kepler’s equation:

E = M − ε sin(E) (5.18)

where M is a timelike coordinate that evolves from 0 to 2π over an orbital period.

Using the eccentric anomaly, the angle of the Earth around its orbit and its distance from

the Sun can be calculated analytically:

φ = 2 arctan

(√
1 + ε

1− ε
tan(E/2)

)

r = a(1− ε cos(E)) .

(5.19)

Here a is the semimajor axis of Earth’s orbit (1 AU or 1.50 × 1011 m).
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To convert this angle to the φ and θ of the Sun-centered frame defined earlier, we project

along the axis of the Earth’s inclination (Ω = 23.5◦):

Φ = arctan(tanφ cos Ω)

Θ = arccos(sinφ sin Ω) .

(5.20)

The change in flux due to the Earth’s orbital eccentricity is already handled in the

SNOMAN Monte Carlo, but this effect must also be explicitly included when calculating the

signal.
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CHAPTER 6

ANALYSIS

We now come to a description of the analysis technique. In general, the problem to address

is how to evaluate the likelihood of various physical models in light of experimental evidence.

Often, the models can be specified as a function of a number of physical parameters (for

example the neutrino mixing angles), the values of which we wish to constrain. The fitting

technique used in this analysis is based on the principle of maximum likelihood [83]. The

likelihood approach can be most clearly understood in a Bayesian framework, in which

the likelihood can be considered the posterior distribution of the parameters of interest

after applying the experimental data to a flat prior. The formal definition of the likelihood

is the probability of observing the data given particular physical parameters values, L =

P (data|theory). We can then relate the probability of the data to the quantity of interest

(the probability of the parameter values) using Bayes theorem:

P (theory|data) =
P (data|theory)P (theory)

P (data)
∝ L , (6.1)

where the last equality holds if we assume a flat prior for our physical parameter values

(P (theory)).

Results are typically reported in terms of the values that maximize this likelihood function

(the values of the parameters that would make the experimental result more likely than any

other choice of parameters would). The estimation of uncertainties is particularly straight-

forward once the likelihood function can be evaluated, since proper coverage is ensured by

finding the points at which the likelihood has decreased by a specific amount relative to its

maximum [83].

In general the likelihood function can take any number of forms, but one of the more

common approaches, which is applied here, is to bin the data into a historgram and compute

the probability of observing the particular number of counts observed in each bin. Assuming
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independent observations, the probabilities of the individual bins factor so L =
∏Nbins
i=1 Li.

Since this product is computationally cumbersome, in practice its logarithm is used:

lnL = ln

Nbins∏
i=1

Li =

Nbins∑
i=1

ln(Li) . (6.2)

For Poisson-distributed data like ours, the likelihood of observing a particular number n

events in a particular bin depends only on the number ν expected due to the model [19],

lnL =

Nbins∑
i=1

ln

(
νnii
ni!

e−νi

)

=

Nbins∑
i=1

ln
(
νnii
)
− ln (ni!) + ln

(
e−νi

)
=

Nbins∑
i=1

ni ln(νi)− νi ,

(6.3)

where the term
∑Nbins
i=1 ln(ni!) is dropped at the end because it is a constant (does not depend

on the parameters).

For our test of Lorentz invariance, we developed a binned likelihood fit in five observable

parameters: time, energy, radial position, direction relative to the Sun, and an isotropy

parameter used to discriminate against backgrounds. The solar mixing angle, solar neutrino

flux, and a Lorentz violation parameter are allowed to float. Although there are eight signals

to consider (see Table 5.2), these are handled one at a time, assuming the others are zero. The

negative log likelihood is minimized using MINUIT and confidence intervals are calculated

using MINOS [84].

This analysis is built upon the previous work of the SNO collaboration. In particular, it

is closely modeled on the three phase analysis [85], which represented the final 8B neutrino

result from SNO. This in turn combined the results of the low energy threshold analysis [86]

of the first two phases with a higher energy threshold analysis of the last NCD phase [87].
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For this analysis, we will be examining data only above 7 MeV. This allows lower-energy

data used in previous studies of backgrounds to be included as external constraints.

In this chapter we begin by discussing which data are included in the analysis. We then

cover the fit itself in more detail, including the information incorporated as constraints, and

the systematic uncertainties that have been considered.

6.1 Data Selection

Data in SNO were segmented into hours-long periods called runs. The highest level of data

selection is the choice of which runs to keep and which to reject. This analysis uses the run

selection first finalized for the three phase analysis of the SNO dataset. The run selection

required the detector to be operating in a stable state with compensation coils and the trigger

system active, with the full collection of digitizers powered on, and with few of the tubes

offline. It also rejected calibration runs, very short runs, and runs in which the data were

very bursty. The shift reports were also reviewed to ensure that no unsual conditions were

noted by the detector operators.

Within a given run, there is a further reduction of the data on an event-by-event basis.

The event selection proceeds in several steps. Events are first reconstructed spatially and

in energy, and corrections derived from the detector calibration are applied. Each event is

evaluated on the basis of a number of data cleaning cuts intended to eliminate instrumental

backgrounds. Finally, analysis cuts in radius and energy are applied to select events for

analysis.

For the first two phases, the reconstruction algorithm used in this analysis is the Path

Fitter (“FTP”) [88]. This algorithm uses a maximum likelihood technique that considers the

different possible “paths” that a photon could take in propagating from the reconstructed

vertex to the PMT (direct, scattered, reflected, etc.). This was the best estimate to the

ideal pdf that could be calculated on reasonable timescales. A different fitter (“FTN”) [89]

was needed for the NCD phase to account for the shadowing of the PMTs caused by the
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Cut Name Description
Retrigger Any event within 5 µs of its predecessor
QVT Events led by anomalously high charge hit
Q/nhit Events with too many low charge hits
Crate isotropy Events concentrated in single crates and cards
AMB Events with anomalous charge shapes
FTS Events with nonphysical hit times
OWL Events with light in the external water
Junk Orphans, ECA, and events with repeated hits
Neck Events with light in the neck
Esum Events triggering only esum
QCluster Events with lonely hits with odd charges
Muon follower short All events for 20 s after a muon
In time channel Events with a large number of early or late hits
Flasher geometry Rejects flashers
Nhit burst 6 non-retrigger large events within 4 s
Owl trigger Events with high charge in the external water
Muon follower blindness Blind version of muon follower short, where applied
Missed muon follower short Events within 250 ms of a large event

Table 6.1: Low-level data cleaning cuts applied in the analysis for all phases.

Cut Name Description
Shaper burst At least 4 NCD events within 100 ms
Mux burst At least 4 signal-like NCD events within 100 ms
Run boundary Events within 1.1 s of run boundaries
Shaper overflow Events within 5 ms of an NCD shaper ADC overflow

Table 6.2: Low-level data cleaning cuts applied in the analysis for the NCD phase.

NCD strings. FTN used a more robust algorithm that did not explicitly distinguish between

different “path” hypotheses for individual hits.

The major instrumental backgrounds are so-called “flasher” events, which are believed to

be caused by electrostatic discharge in the phototubes producing real light in the detector.

Such events can be rather easily cut by their unique time-and-charge structure.

A number of low level data cleaning cuts were applied to data from all phases, which

are summarized in Table 6.1. There were additional cuts that are applied only in the NCD

phase, listed in Table 6.2. More detail on these cuts can be found in [90].
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There is also a list of 66 events which were excluded from the LETA analysis (and are

likewise excluded here) because they came as part of a burst (see [91]).

After applying these data cleaning cuts and corrections, a number of high-level cuts are

used [92] to reduce the final dataset used in the fit:

• -0.12 < β14 < 0.95

• ITR > 0.55 for NCD phase

• Qptnhit > 0 and 0.74 - ITR < 1.16√
Qptnhit

• 0.89 < θij < 1.60

• Qij > 0.4

β14 is a discriminant used to distinguish between signal and background events on the basis

of the isotropy of the detected light. β14 is defined β14 = β1 + 4β4 where

βl =
2

N(N − 1)

∑
ij

Pl
(
cos θij

)
. (6.4)

The sum here runs over all unique pairs of hit PMTs, with θij the angle between them, and

Pl the Legendre polynomial of the lth degree.

Finally the following analysis cuts are imposed:

• 7.0 MeV < E < 20.0 MeV

• r < 5.5 m

These cuts are used to significantly suppress the number of physical background events in

the sample, by restricting the analysis to the cleanest inner volume of the detector, and

by looking at energies well above the natural radioactivity present in trace amounts in the

detector.
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Threshold Systematic Statistical Total

10−23 GeV 10−23 GeV 10−23 GeV
5.5 MeV 3.2 6.0 6.8
6.0 MeV 2.6 6.2 6.8
6.5 MeV 2.1 6.4 6.7
7.0 MeV 1.7 6.5 6.7
7.5 MeV 1.3 6.8 6.9
8.0 MeV 0.9 7.0 7.0

Table 6.3: Estimated statistical and systematic uncertainties as a function of lower energy
threshold for a coefficients. Results for c coefficients had a similar energy dependence.

Phase
Dataset D2O Salt NCD
All events 128421085 114974237 175121813
Physics 8771553 4245798 16415321
Analysis 1167 2297 1537

Table 6.4: Data reduction by phase. Physics shows the number of events passing both the
data cleaning and high-level cuts; Analysis are those that additionally reconstruct within
the fiducial volume at energies above 7 MeV.

The 7 MeV lower energy threshold was selected to optimize the total sensitivity of the

measurement, balancing the loss of signal against the reduction in systematic uncertainty

coming from possible background fluctuations (since backgrounds are heavily weighted to-

ward lower energies). The interplay between these contributions is shown in Table 6.3.

To give some impression of the data reduction involved, in Table 6.4 we show the number

of events in each phase after various stages of data cleaning.

6.2 Fit Framework

The fit uses a binned maximum likelihood approach. The prediction of the model for each

bin is calculated on the basis of probability density functions (pdfs) describing the shapes of

the various signals and backgrounds across the bins. These pdfs are estimated using Monte

Carlo data from SNOMAN on a phase-by-phase basis that incorporates changes in the optics
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Phase Variable Binning
D2O and Salt Time 2540 daily bins

Energy 10 bins from 7.0 to 12.0 MeV
1 bin from 12.0 to 20.0 MeV

Cos Direction 8 bins from -1 to +1
Volume-weighted radius 5 bins from 0 to 5.5 m
β14 15 bins from -0.12 to 0.95

NCD Time 1380 daily bins
Energy 10 bins from 7.0 to 12.0 MeV

1 bin from 12.0 to 20.0 MeV
Cos Direction 25 bins from -1 to +1
Volume-weighted radius 10 bins from 0 to 5.5 m

Table 6.5: Binning used in fit for each phase

and the event rates. The observables and binning varies in different phases based on earlier

work [85, 86, 87], summarized in Table 6.5.

The contributions within the analysis region from signal and background events (assum-

ing nominal values for the fit parameters) are shown in Figure 6.1. The fit itself uses fully

three- or four-dimensional pdfs, but to visualize this, the plot shows the projections along

each of the axes.

The data from the NCDs are included in the form of a constraint of 1114.6 ± 79 neutron

events detected in the NCDs during the third phase of the experiment. This result comes

from the pulse shape analysis of the NCD data [85], a highly detailed analysis of the data

that was largely able to discriminate the neutrons from the alpha backgrounds present in

those detectors.

The background levels are fixed in the fit, with uncertainties on their normalizations

entering as systematic uncertainties. This is because the background levels are so low that

there is no power to measure them in the analysis sample. The uncertainty contributed by

this approach is insigificant to the total uncertainty budget (see Table 6.7). This will also

be cross-checked by one of the sideband analyses discussed in Section 6.5.
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Figure 6.1: Estimated contributions from signal (blue) and background (red) events within
the analysis region, assuming nominal fit parameters. The distributions are taken from
Monte Carlo. The left column is a sum of d2o and salt phases, with panels (from top)
showing energy, solar angle, radius, and β14. The right column is NCD phase with panels
(from top) showing energy, solar angle, radius, and NCD data.
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6.2.1 Fake data generation

I developed two different routines for generating fake data samples, which were used for

testing the fit routine and for estimating the size of the bias introduced by various systematic

effects. The same Monte Carlo data used to generate the pdfs of the fit were sampled with

various systematic changes applied. The shifted pdfs could then be randomly sampled to

produce statistical samples, or a mean distribution could be extracted to determine biases.

To verify that the fit routine is unbiased, I used this fake data generator to make two

ensembles of 100 statistical samples, one with no systematic variations applied, and one in

which Lorentz violating effects were present at roughly the 1σ level.

The fit was run on these samples and the results collected as shown in Figures 6.2 –

6.4 for the sample with Lorentz violations present (the results are similar for the sample

without Lorentz violations imposed). We found the results to be completely consistent with

an unbiased result. Furthermore, the pulls have appropriate widths, verifying that the error

estimates returned by the fit are also accurate.

6.3 Backgrounds and Constraints

In this analysis, we benefit from the extensive studies performed by the SNO collaboration

in the past to estimate background levels. We use previously published constraints that were

established outside of the analysis window used in this study for each of the different sources

of backgrounds. These constraints are summarized in Table 6.6.

In the D2O phase, the detector had very good energy resolution that helped to reduce

backgrounds at high energies. The main background for this analysis is the irreducible atmo-

spheric neutrino background. There are additional contributions from residual radioactivity

in both the heavy water (internal) and light water (external), as well as the acrylic vessel.

In the two latter categories, backgrounds either travelled into the fiducial volume or were

misreconstructed there.
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Figure 6.2: Bias and pull in Lorentz violation parameter in ensemble of 100 fake data samples
generated with the parameter at 0.003.
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Figure 6.3: Bias and pull in sin θ12 in ensemble of 100 fake data samples generated with
sin θ12 = 0.555.
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Figure 6.4: Bias and pull in the solar neutrino flux in ensemble of 100 fake data samples
generated with solar flux parameter at 1.0.
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Background Phase Constraint Source
AV neutrons I 1.63 ± 0.48 [93]
Internal Tl I 1.67 ± 0.76 [85]
Internal Bi I 0.91 ± 0.30 [85]
Atmospherics I 5.51 ± 1.03 [85]
External Tl I 0.46 ± 0.15 [85]
External Bi I 0.00 ± 0.01 [85]
AV Tl I 0.50 ± 0.50
AV Bi I 0.08 ± 0.08
AV neutrons II 27.21 ± 9.39 [94]
Internal Tl II 22.89 ± 13.20 [85]
Internal Bi II 16.22 ± 9.57 [94]
Atmospherics II 7.62 ± 1.46 [85]
External Tl II 3.70 ± 1.15 [85]
External Bi II 1.54 ± 0.37 [85]
AV Tl II 6.62 ± 6.62
AV Bi II 1.85 ± 1.85
Na24 II 2.58 ± 0.63 [85]
Atmospherics III 6.25 ± 1.24 [85]
External n III 4.47 ± 2.25 [85]
K2 III 2.97 ± 0.48 [85]
K5 III 3.61 ± 0.66 [85]
D2O pd III 2.10 ± 0.32 [85]
NCD pd III 1.79 ± 0.61 [85]
Atmospherics IIIb 13.6 ± 2.70 [85]
External n IIIb 40.90 ± 20.60 [85]
K2 IIIb 32.80 ± 5.30 [85]
K5 IIIb 45.50 ± 8.40 [85]
D2O pd IIIb 31.00 ± 4.70 [85]
NCD pd IIIb 35.60 ± 12.17 [85]

Table 6.6: Background levels and constraints. The levels are scaled according to Monte
Carlo from the rates estimated in [95]. The constraints come from a variety of other studies;
care has been taken to ensure that they do not rely on data in included in this analysis.
For the previously unconstrained AV backgrounds we have assumed 100% normalization
uncertainties. Phase IIIb corresponds to the NCD data.
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In the Salt phase, the backgrounds from radioactivity were considerably elevated, mainly

because the slightly reduced energy resolution increased the number of events misrecon-

structed at higher energies. The salt itself also contributed an additional background through

decays of 24Na.

In the NCD phase, there were additional sources of substantial background. There were

a number of hotspots present on the NCD ropes, the most prominent of which are denoted

as K2 and K5 after their positions on the ropes. There were additionally photodissociation

backgrounds.

In total, above 7 MeV, only 120 ± 20 background events are expected in the sample of

5001 events, or about 2%.

6.4 Systematic Effects

The effect of many possible systematic uncertainties were considered. A rough estimate

for the size of these effects was garnered by determining the bias introduced by fitting the

Monte Carlo data with shifted pdfs. This procedure allowed us to determine whether any

effects were so severe that they needed to be floated in the fit, and also provided a basis for

estimating the total sensitivity of the analysis as a function of the energy threshold, which

was used to select the threshold.

The systematics can be classified into three groups: pdf normalizations, pdf shape un-

certainties, and time variations. The contributions (estimated in Monte Carlo) from each of

the studied effects are given in Tables 6.13 – 6.15. The total contribution from each of the

three categories is summarized in Table 6.7. Details of the specific implementation of each

of these effects can be found in Appendix A.

We found that most of the systematics considered, for example, the uncertainty on the

various background normalizations, had minimal impact on the Lorentz violation fit, because

any effect that is constant in time will not mimic a signal. The most serious effects to

consider, then, are time variations. The uncertainty estimates given here were computed
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Category Uncertainty
Normalization 1%
Shapes 3%
Time Variations 27%

Table 6.7: Summary of systematic uncertainties (estimated as a fraction of expected statis-
tical uncertainty).

using the shifted Monte Carlo data as described previously.

To evaluate the full systematic uncertainty of the final fit, we calculate empirically the rms

deviation of the fit results performed with an ensemble of pdfs perturbed away from their

central values. This is convenient because it automatically captures correlations between

various systematics.

6.5 Background Stability

As was already mentioned, systematics arising from time variations are most dangerous to

this analysis. In particular, we need to rule out the possibility that a fake signal could be

produced by background rates changing over time. Time stability of background event rates

in SNO had not been studied in detail in the past, so sideband analyses were undertaken to

establish limits on such effects.

Only certain of the possible types of background events pose a serious concern in this

regard because several of the backgrounds had no physical means by which to vary. For

example, the background sources trapped in the PMT glass or the AV had no means of

entry or exit from the detector, and have sufficiently long half-lives so that their decay rate

did not change appreciably during the duration of data collection. Seasonal variation in

atmospheric backgrounds are also believed to be negligible at the relevant energy scale [96].

The two main backgrounds of concern were therefore the internal and external radioactive

backgrounds that could plausibly have varied in time because the water in the detector was

recirculated to achieve the high radiopurity levels needed, and to keep the detector cool.
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To address this concern, two different sidebands were defined to capture the rate of these

two backgrounds. A radial sideband was used to study the stability of external backgrounds,

while an energy sideband was used to look at internal backgrounds.

The radial sideband in the D2O and Salt phases is defined by:

• 6.19 m < r < 7.02 m

• U·R > 0

• 3.5 MeV < E < 20 MeV

• other cuts as in main analysis .

The radial cut accepts events only in the region outside but relatively near the acrylic vessel,

where good calibrations are available. The second cut selects only outward-going events (U

is the velocity vector), which selects against PMT backgrounds. The resulting sample is

roughly 90% light water radioactivity, with the remaining 10% split between AV and PMT

backgrounds [91] that are expected to be constant in time.

Events passing this selection were binned by day and normalized by the day-by-day

livetime. These normalized event rates were then fit to a model of a constant background

plus a time varying component, according to

y = A(1 + p sin(ωt+ φ)) . (6.5)

The overall normalization A and the fractional power p in the particular mode in question

were allowed to float. ω was set for either once- or twice-annual variations, and φ was either

0 or π/2. The best fit for p is taken to represent the estimate for the limit on time variation

in the mode in question. The data are shown in Figure 6.5, with a summary of the best fit

results in Table 6.8.

For the NCD phase, the analysis was complicated by the fact that the FTN energy

reconstruction algorithm was never tuned for events that reconstructed outside the fiducial
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Figure 6.5: External Sideband, D2O and salt phases. Julian day counts solar days, in this
case since January 1, 1975.

Mode Best Fit
sinωt -9.2% ± 0.5%
cosωt -12.3% ± 0.5%
sin 2ωt -12.5% ± 0.5%
cos 2ωt -4.5% ± 0.5%

Table 6.8: Best fit for variations in relevant Fourier modes for external background rates in
D2O and salt phases.
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Figure 6.6: Monte Carlo simulation of the nhit distribution of external events during NCD
phase as a function of reconstructed energy.

volume. As a proxy for this, we instead employed an nhit cut (at 24). Monte Carlo simulation

of events in the external region during the NCD phase was used to determine the appropriate

cut point (see Figure 6.6), and data from the internal sideband showed that there was no

need to allow this cut to vary with time (see Figure 6.7). The data with this nhit selection

applied are shown in Figure 6.8, with best fit results in Table 6.9. Additionally, the results

were found to be robust to the particular nhit cut applied (see Table 6.10).

The internal sideband is defined by:

• 3.5 MeV < E < 5.5 MeV

• r < 5.0 m

• all other cuts as in main analysis .

The data are handled in the same way described for the external sideband: binned by

day and normalized to livetime. Plots of the results are shown in Figures 6.9 and 6.10, with

the best fit results shown in Tables 6.11 and 6.12.
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Figure 6.7: Nhit distribution of NCD internal events with energies reconstructing between
3.9 and 4.1 MeV as a function of time. Note that this remains quite stable over the length
of the NCD phase.

This internal sideband is significantly enriched in the event type of interest, but it is

still only roughly 50% internal radioactivity, with large contributions from externals, AV

backgrounds, and solar neutrino events. Therefore, in order to set a meaningful limit on the

contribution to variation coming from internal radioactivity, we fit the resulting data rates

with a model that incorporated the expected background rates and the variation in solar

event rates due to the eccentricity of the Earth’s orbit. In this fit, the background levels

were allowed to float according to equation (6.5), while the solar neutrino flux was fixed at

the Standard Solar Model rate, unlike in the main analysis.

For the D2O and Salt phases, Monte Carlo data at low energies were available because

of the low energy threshold analysis that was performed on these data. This allowed a

comparison of the fitted background rate with the rate expected from external constraints,

which is shown in Table 6.11. The agreement is very good given (i) the uncertainty on the

background levels being used as a systematic uncertainty is significantly higher than the 8%
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Figure 6.8: External Sideband, NCD phase

Mode Best Fit
sinωt 34.9 ± 0.3%
cosωt -49.4 ± 0.3%
sin 2ωt 3.7 ± 0.3%
cos 2ωt 7.5 ± 0.3%

Table 6.9: Best fit for variations in relevant Fourier modes for external background rates in
NCD phase.

Nhit Cut
Mode 22 24 26
sinωt 35.0 34.9 35.3
cosωt -49.2 -49.4 -49.7
sin 2ωt 3.6 3.7 3.5
cos 2ωt 7.1 7.5 7.3

Table 6.10: Fit results for variation in NCD phase light water backgrounds were robust to
changes in the nhit cut threshold.
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Figure 6.9: Internal Sideband for D2O and Salt phases

Mode Background Variation Background Normalization
sinωt 0.9 ± 0.9% 91.9 ± 0.8%
cosωt -4.7 ± 0.9% 91.6 ± 0.9%
sin 2ωt -5.8 ± 0.9% 91.5 ± 0.9%
cos 2ωt 3.9 ± 0.9% 91.7 ± 0.8%

Table 6.11: Best fit results for variations in the relevant Fourier modes for internal back-
ground rates in D2O and salt phases.
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Figure 6.10: Internal Sideband for NCD phase

Mode Best Fit
sinωt -9.2 ± 0.5%
cosωt -12.3 ± 0.5%
sin 2ωt -12.5 ± 0.5%
cos 2ωt -4.5 ± 0.5%

Table 6.12: Best fit results for variations in the relevant Fourier modes for internal back-
ground rates in NCD phase.
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discrepancy observed, and (ii) the solar flux was not allowed to float. This estimate of the

background levels is not independent of the previous external constraints, but it does serve

as a useful cross-check that this analysis is consistent with previous work.

Among all the sidebands investigated, it is the external backgrounds during NCD phase

that show the largest variation at annual frequencies. To ensure that these dramatic varia-

tions are covered in our systematic uncertainty, we take the power observed in that sideband,

namely 50% (see Table 6.9), as our constraint. This figure was used in generating a fake

data set to estimate the contribution to the uncertainty deriving from these variations. We

found this effect to contribute an error 30% of the size of the statistical sensitivity of the

measurement.
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Background Phase Constraint Uncertainty (E mode) Uncertainty (E2 mode)
Bi D2O I 0.333 0.001 0.003
Tl D2O I 0.467 0.001 0.003
Bi H2O I 0.200 0.001 0.000
Tl H2O I 0.333 0.001 0.000
AV n I 0.267 0.001 0.003
Bi AV I 1.000 0.001 0.000
Tl AV I 1.000 0.001 0.000
Atm I 0.167 0.001 0.003
Bi D2O II 0.590 0.003 0.003
Tl D2O II 0.577 0.003 0.003
Bi H2O II 0.200 0.001 0.000
Tl H2O II 0.272 0.001 0.003
AV n II 0.345 0.003 0.003
Bi AV II 1.000 0.002 0.003
Tl AV II 1.000 0.002 0.003
Atm II 0.167 0.001 0.003
Na24 II 0.250 0.001 0.003
Atm III 0.200 0.001 0.000
Ext n III 0.524 0.001 0.000
K5 III 0.167 0.001 0.000
K2 III 0.111 0.001 0.000
D2O pd III 0.125 0.001 0.000
NCD pd III 0.667 0.001 0.000
Ext n IIIb 0.512 0.001 0.003
NCD pd IIIb 0.333 0.000 0.000
K2 IIIb 0.151 0.001 0.000
K5 IIIb 0.087 0.001 0.000
D2O pd IIIb 0.161 0.001 0.000
Atm IIIb 0.214 0.001 0.000

Table 6.13: Estimated systematic uncertainties arising from unknown background normal-
izations. The constraint column shows the fractional uncertainty in the normalization of
each source of background. The two uncertainty columns show the estimated contribution
to the systematic uncertainty, expressed as a fraction of the expected statistical uncertainty,
for the signals with linear and quadratic energy dependence. Phase IIIb refers to NCD
backgrounds.
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Source Constraint Uncertainty (E mode) Uncertainty (E2 mode)
E Scale (3 phases) 0.0041 0.004 0.006
E Scale (D2O) 0.0039 0.007 0.003
E Scale (Salt) 0.0034 0.008 0.003
E Scale (NCD) 0.0081 0.005 0.011
E Nonlinearity (3 phases) 0.0069 0.002 0.006
E Resolution (D2O) 0.041 0.006 0.003
E Resolution (e, Salt) 0.041 0.006 0.003
E Resolution (n, Salt) 0.018 0.006 0.003
β14 Scale (D2O) 0.0042 0.006 0.003
β14 Scale (e, Salt) 0.0024 0.006 0.003
β14 Scale (n, Salt) 0.0038 0.006 0.003
Direction Scale 0.12 0.006 0.003
n efficiency (ncd pmt) 0.028 0.006 0.003
n efficiency (ncd ncd) 0.024 0.006 0.003

∆m2
12 0.024 0.007 0.003

∆m2
23 0.036 0.007 0.003

Neutrino Hierarchy 0.006 0.003
Earth Matter Potential 0.1 0.006 0.003

Table 6.14: Estimated systematic uncertainties arising from unknown pdf shapes. The
constraint column shows the 1 σ uncertainty in each parameter. (Expressions relating these
parameters to the expected number of events are given in Appendix A.) The two uncertainty
columns show the estimated systematic uncertainty, expressed as a fraction of the expected
statistical uncertainty, for the signals with linear and quadratic energy dependence.

Source Constraint Uncertainty (ωt mode) Uncertainty (2ωt mode)
Background time variation 0.5 0.255 0.255
Seasonal Day-Night effect 0.030 0.086

Table 6.15: Estimated systematic uncertainties arising from time variations. For the vari-
ation in the rate of background events, we have applied a 1 σ constraint corresponding to
50% variations, based on the sideband analyses described in section 6.5. The seasonal day-
night effect was discussed in section 5.5. The two uncertainty columns show the estimated
systematic uncertainty, expressed as a fraction of the expected statistical uncertainty, for
signals with once annual and twice annual time dependence.
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CHAPTER 7

RESULTS AND INTERPRETATION

As has already been discussed, we report our results as limits on the signals in each of the

relevant Fourier modes, assuming that the others are zero. Each of these signals represents

a linear combination of different effects (see Tables 5.2 and 7.3). In Table 7.1, we report the

results of the fit for the solar mixing angle, the solar neutrino flux, and one Lorentz violating

signal for each of the eight cases. Systematic uncertainties were computed by applying an

ensemble of perturbed pdfs to the data and determining the variance of the fit results.

An example of one of the fits is shown in Figure 7.1. On the left are shown the data for

the D2O and Salt phases; NCD data are on the right. The different panels show projections

of the data and fit results along the axes of the different observables in the fit. The blue

shaded area (blue points in the bottom panels) indicate the best fit values. The overall

χ2 (11943/8765, p = 0.01) is dominated by a single event appearing in an unlikely bin.

Disregarding that bin, the fit agrees with the data with a reduced χ2 of 1.02 (8905/8764, p

= 0.30).

The large statistical fluctuations in the number of events observed on a day-by-day basis

obscure the bottom panels, which show the ratio of the total number of events observed

to the number expected in the best fit. The data are therefore rebinned over longer time

periods and presented in Figure 7.2. The figure shows that the data are quite uniform and

noise-like across all three phases of the experiment. The χ2 residuals for a flat fit are shown

in Table 7.2. There is a hint of short-term variation, particularly in the data binned at 5 day

intervals, possibly due to changing background levels or detector conditions, but this washes

out on seasonal time scales.

We can ask whether the results seem to be consistent with a normal distribution of

mean 0 and variance 1; that is, whether the data are consistent with showing no evidence

of Lorentz violations. Some of the results are correlated with one another; in particular,

the three pairs of fits that differ only in energy dependence are likely to return quite similar
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Mode LV Signal Solar Flux Mixing Angle

(106 cm−2s−1) sin θ12

E (7.0+7.2
−7.5

+5.9
−6.7) GeV−1 5.22± 0.27+0.17

−0.22 0.497 +0.088
−0.098±0.078

E sinωt (0.0+7.2
−7.3

+2.1
−2.2)× 10−1 GeV−1 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.010
−0.009

E cosωt (0.2+7.3
−7.4

+2.2
−2.3)× 10−1 GeV−1 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.010
−0.009

E2 (3.0+3.3
−3.4

+2.7
−3.1)× 102 GeV−2 5.22± 0.27+0.17

−0.22 0.537 +0.048
−0.049

+0.042
−0.037

E2 sinωt (0.7+6.4
−6.5

+1.7
−1.8)× 101 GeV−2 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.011
−0.008

E2 cosωt (−0.2+6.5
−6.6± 1.9)× 101 GeV−2 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.010
−0.009

E2 sin 2ωt (5.8+6.5
−6.4

+1.6
−1.8)× 101 GeV−2 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.010
−0.009

E2 cos 2ωt (−4.4+6.5
−6.6

+1.7
−1.8)× 101 GeV−2 5.15± 0.26+0.14

−0.17 0.577 +0.019
−0.018

+0.010
−0.009

Table 7.1: Lorentz violation best fit results. The first error is statistical and the second
systematic. The signals for each mode are expressed as combinations of the SNO coefficients,
see Table 5.2. To obtain limits on the individual parameters, one must divide by a geometric
factor from Table 5.2 and a weight coefficient from Table 7.3.

Binning Period χ2/ndf p
5 days 390 / 340 0.07
10 days 203 / 188 0.23
30 days 68 / 66 0.44

Table 7.2: χ2/ndf for the time residuals binned on different time scales. Although there is a
hint of short-period changes to the total event rate, these effects average away on seasonal
scales.

results. But because the data are sampled uniformly throughout the year to a reasonable

approximation, we can treat the five results with different time dependences as independent.

In this approximation, the results of the five ceff fits have a chi-square test statistic relative

to their statistical uncertainty of 2.06 (out of 5 degrees of freedom), which corresponds to

the 84th percentile.
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Figure 7.1: Fit for E2 sin 2ωt term
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Figure 7.2: Time residuals of the E2 sin 2ωt fit, binned over 5 (top), 10 (middle), and 30
(bottom) day periods. The blue points indicate the shape of the signal for the best fit. This
particular fit is selected so that the signal variation is visible. The signal fits at a level of 58
GeV−2, roughly a 0.9σ effect, and the most significant of the eight fit results.

84



Flavor Time fits E E2

ee 0.289 ± 0.013 ± 0.044 0.230 ± 0.082 ± 0.038 0.261 ± 0.043 ± 0.042
eµ -0.263 ± 0.047 ± 0.026 -0.427 ± 0.250 ± 0.045 -0.347 ± 0.138 ± 0.036
eτ -0.393 ± 0.003 ± 0.098 -0.392 ± 0.005 ± 0.040 -0.394 ± 0.005 ± 0.039
µµ -0.232 ± 0.009 ± 0.038 -0.189 ± 0.059 ± 0.031 -0.212 ± 0.031 ± 0.035
µτ -0.257 ± 0.034 ± 0.045 -0.121 ± 0.196 ± 0.039 -0.189 ± 0.105 ± 0.042
ττ -0.057 ± 0.004 ± 0.007 -0.041 ± 0.023 ± 0.007 -0.042 ± 0.019 ± 0.014

Table 7.3: Estimates for the weight coefficients in units of 10−2 meV−2 (1022 GeV−2). The
first error comes from the uncertainty of the best fit result, the second error is systematic.

7.1 Comparison to Existing Limits

The most fundamental advantage to testing Lorentz symmetry in a new system is the ability

to contribute a constraint on an independent linear combination of effects. In principle, with

enough such measurements, one could rule out Lorentz violations in a way completely free

from any assumptions. At present, the thicket of constraints is not sufficiently dense to enable

such a meta-analysis, so we continue to report limits on individual coefficients assuming that

the others are zero (and in this case also making the other assumptions already discussed,

viz., small perturbation, g, H zero).

To set limits on the flavor components of the fields used in the SME, we must first

compute the weight coefficients for our fits. These depend on the best fit for the mixing

angle. Reference to Table 7.1 will show that there are only three cases to consider, because

all of the fits with time-dependent signals returned identical central values and uncertainties

for the solar mixing angle. The estimates for the weight parameters are shown in Table 7.3.

For this purpose we have combined the weights known to control identical coefficients (due

to the hermiticity of the Hamiltonian in flavor space).

The results in Table 7.3 can be combined with the limits in Table 7.1 to reach estimates

for limits on the individual flavor components of the Lorentz violating operators. However,

both the weights and the fit results share a number of systematic uncertainties, so to ensure

the correct coverage, the limits we exhibit in Tables 7.4 - 7.6 were evaluated by calculating
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the weights and the fit results simultaneously for an ensemble of systematically varied pdfs.

This approach also ensures that the correlation between the Lorentz violation parameter and

the solar mixing angle is handled correctly (although at roughly 2% it is a very small effect).

As is usual, we assume that only one parameter contributes at a time.

Also shown in Tables 7.4 - 7.6 are the existing limits on the relevant Lorentz violating

parameters. We are able to set limits on 40 operators that were previously unconstrained,

and improve the existing limits on 15 additional parameters. This is one of the particular

advantages of looking at solar neutrinos, which provide sensitivity to all flavor components

simultaneously.

7.2 Natural Models

A major advantage of the SME framework is its categorization of all relevant effective oper-

ators, without recourse to a particular model for how these might be generated. This allows

the experimentally measured constraints to be applied not just to one particular model but

to any model anyone might wish to develop. However, this approach leaves one without

a sense of whether a particular result has ruled out any well-motivated models. This is

obviously a subjective question, but we will attempt to discuss this question in this section.

Probably the most straightforward estimate for the levels at which Lorentz violations

might be expected comes from a dimensional argument, first made in reference [14]. The

idea is that the new physics should be suppressed approximately in proportion to its natural

energy scale, with the size of the effects given by g mM , where g is a coupling constant, m

is the electroweak scale (say 100 GeV), and M is the scale of the new physics. Assuming

Lorentz violations stem from new physics at the Planck scale (say 1019 GeV), then we would

expect a “natural” model to involve effects at the level of 10−17 for dimension 4 parameters

and 10−19 GeV−1 for dimension 3 parameters. The question of where such a model loses its

“naturalness” is entirely subjective, but one might argue roughly two orders of magnitude

below these benchmarks.
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Coefficient This Work Previous Limit Reference

|aee00| 8.8× 10−20 GeV

|aeµ00 | 9.8× 10−20 GeV 9.2× 10−20 GeV [47]

|aeτ00| 6.5× 10−20 GeV 2.8× 10−19 GeV [*] [97]

|aµµ00 | 8.2× 10−20 GeV 2.2× 10−23 GeV [*] [98]

|aµτ00 | 7.5× 10−20 GeV 5.0× 10−24 GeV [*] [98]

|aττ00 | 2.7× 10−19 GeV 2.2× 10−23 GeV [*] [98]

|aee10| 4.3× 10−21 GeV

|aeµ10 | 4.2× 10−21 GeV 7.1× 10−20 GeV [47]

|aeτ10| 2.8× 10−21 GeV 5.5× 10−19 GeV [*] [97]

|aµµ10 | 5.4× 10−21 GeV

|aµτ10 | 5.1× 10−21 GeV

|aττ10 | 2.0× 10−20 GeV

|Re(aee11)| 2.3× 10−21 GeV

|Re(a
eµ
11)| 2.2× 10−21 GeV 8.1× 10−20 GeV [47]

|Re(aeτ11)| 1.5× 10−21 GeV 1.3× 10−19 GeV [*] [97]

|Re(a
µµ
11 )| 2.9× 10−21 GeV 6.9× 10−20 GeV [*] [99]

|Re(a
µτ
11 )| 2.8× 10−21 GeV 8.8× 10−23 GeV [*†] [100]

|Re(aττ11 )| 1.1× 10−20 GeV

|Im(aee11)| 2.5× 10−21 GeV

|Im(a
eµ
11)| 2.5× 10−21 GeV 8.5× 10−20 GeV [47]

|Im(aeτ11)| 1.7× 10−21 GeV 1.3× 10−19 GeV [*] [97]

|Im(a
µµ
11 )| 3.2× 10−21 GeV 6.9× 10−20 GeV [*] [99]

|Im(a
µτ
11 )| 3.1× 10−21 GeV 8.8× 10−23 GeV [*†] [100]

|Im(aττ11 )| 1.2× 10−20 GeV

Table 7.4: Comparison to existing limits for a coefficients. All a’s here are a
(3)
eff . All entries

without a previous limit noted were not previously constrained. Entries marked [*] are
technically set on the coefficient aL, but for reasons discussed in section 3.3, these are
probably good limits on aeff as well. 95% CL limits are stated except for results marked †
which are 3σ CL limits. Information collected from [44].
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Coefficient This Work Previous Limit Reference

|cee00| 2.3× 10−18

|ceµ00 | 2.5× 10−18 1.5× 10−19 [47]

|ceτ00| 1.6× 10−18 1.4× 10−16 [*] [97]

|cµµ00 | 2.9× 10−18

|cµτ00 | 2.7× 10−18

|cττ00 | 1.1× 10−17

|cee10| 3.9× 10−19

|ceµ10 | 3.7× 10−19 1.2× 10−19 [47]

|ceτ10| 2.5× 10−19

|cµµ10 | 4.8× 10−19

|cµτ10 | 4.5× 10−19

|cττ10 | 1.8× 10−18

|Re(cee11)| 2.0× 10−19

|Re(c
eµ
11)| 2.0× 10−19 1.3× 10−19 [47]

|Re(ceτ11)| 1.3× 10−19

|Re(c
µµ
11 )| 2.6× 10−19 1.3× 10−20 [*] [99]

|Re(c
µτ
11 )| 2.5× 10−19 7.2× 10−24 [*†] [100]

|Re(cττ11 )| 9.8× 10−19

|Im(cee11)| 2.2× 10−19

|Im(c
eµ
11)| 2.2× 10−19 1.4× 10−19 [47]

|Im(ceτ11)| 1.5× 10−19

|Im(c
µµ
11 )| 2.8× 10−19 1.3× 10−20 [*] [99]

|Im(c
µτ
11 )| 2.7× 10−19 1.3× 10−22 [*†] [100]

|Im(cττ11 )| 1.1× 10−18

Table 7.5: Comparison to existing limits for c00, c10, and c11 coefficients. All c’s here are

c
(4)
eff . All entries without a previous limit noted were not previously constrained. Entries

marked * are technically set on cL, but for reasons discussed in section 3.3, we believe these
to be applicable to ceff as well. All results are stated at 95% CL except those marked † which
are 3σ CLs. Data collected from [44].
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Coefficient This Work Previous Limit Reference

|cee20| 1.1× 10−18

|ceµ20 | 1.1× 10−18 2.0× 10−19 [47]

|ceτ20| 7.4× 10−19 7.8× 10−16 [*] [97]

|cµµ20 | 1.4× 10−18

|cµτ20 | 1.4× 10−18

|cττ20 | 5.4× 10−18

|Re(cee21)| 6.1× 10−19

|Re(c
eµ
21)| 6.1× 10−19 8.0× 10−20 [47]

|Re(ceτ21)| 4.0× 10−19

|Re(c
µµ
21 )| 7.7× 10−19 2.0× 10−20 [*] [99]

|Re(c
µτ
21 )| 7.2× 10−19 4.5× 10−24 [*†] [100]

|Re(cττ21 )| 2.9× 10−18

|Im(cee21)| 6.4× 10−19

|Im(c
eµ
21)| 6.3× 10−19 8.5× 10−20 [47]

|Im(ceτ21)| 4.2× 10−19

|Im(c
µµ
21 )| 8.1× 10−19 2.0× 10−20 [*] [99]

|Im(c
µτ
21 )| 7.7× 10−19 7.1× 10−22 [*†] [100]

|Im(cττ21 )| 3.1× 10−18

|Re(cee22)| 2.5× 10−19

|Re(c
eµ
22)| 2.4× 10−19 1.7× 10−17 [47]

|Re(ceτ22)| 1.6× 10−19 1.2× 10−17 [*] [97]

|Re(c
µµ
22 )| 3.1× 10−19

|Re(c
µτ
22 )| 3.0× 10−19 7.8× 10−24 [*†] [100]

|Re(cττ22 )| 1.2× 10−18

|Im(cee22)| 2.6× 10−19

|Im(c
eµ
22)| 2.6× 10−19 1.7× 10−17 [47]

|Im(ceτ22)| 1.7× 10−19 1.2× 10−17 [*] [97]

|Im(c
µµ
22 )| 3.3× 10−19

|Im(c
µτ
22 )| 3.1× 10−19 2.2× 10−21 [*†] [100]

|Im(cττ22 )| 1.2× 10−18

Table 7.6: Comparison to existing limits for c20, c21, and c22 coefficients. All c’s here are

c
(4)
eff . All entries without a previous limit noted were not previously constrained. Entries

marked * are technically limits set on cL, but we believe these can be applied to ceff for
reasons discussed in section 3.3. All results are stated at 95% CL except those marked †
which are stated at 3σ CLs. Data collected from [44].
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Reaching this level of sensitivity does not rule out the possibility of Lorentz symmetry

violations, of course. Besides a simple model with “unnaturally” small couplings, various

models can be written to further suppress the level at which such effects would be expected.

One such model category is known as countershaded models [101].
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CHAPTER 8

CONCLUSION

In this dissertation, we described a search for violations of Lorentz symmetry in the neutrino

sector using data from the SNO experiment. An understanding of the symmetries present

in nature is critical to our understanding of both conservation laws and the kinds of models

that might be useful in describing physical phenomena.

There is a long history of discovering violations of symmetries in particle physics, but in

this case, no evidence of Lorentz symmetry violations was found in an analysis of the data

from SNO. Limits on the size of any possible violations of Lorentz symmetry in the neutrino

sector were established, 40 of them on operators previously unconstrained by experiment,

and improved limits were set on an additional 15 parameters. This was made possible by

the use of solar neutrinos, which undergo flavor changes in the Sun due to the matter effect.

Since the limits are roughly at the level expected from new physics at the Planck scale, they

should provide useful constraints on the possible kinds of beyond-Standard-Model physics

that can be predicted by future theories.
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APPENDIX A

IMPLEMENTATION OF SYSTEMATIC UNCERTAINTIES

In this appendix, we specify how we have implemented the various systematic shape pertur-

bations to the pdfs. These follow the definitions used in reference [95], since we are using

the same estimates of systematic uncertainty used there. The normalization uncertainties

are applied by changing the number of events of each type expected. The time-related

uncertainties are explained in the main text.

We summarize in Tables A.1 - A.5 the way in which we perturb the various observables

when applying systematic corrections.

We have also allowed the mass squared differences, the mixing angles, and the matter po-

tential of the Earth to vary. In each case, these perturbations were applied as a multiplicative

change to the parameter of interest, e.g.,

∆m2
12
′

= ∆m2
12(1 + δm12) . (A.1)

Phase Correction Parameter Name Constraint
I β′14 = β14(1 + b1) b1 β14 scale 0.0042
II β′14 = β14(1 + b2e,n) b2e β14 scale (electrons) 0.0024

b2n β14 scale (neutrons) 0.0038

Table A.1: Corrections to the β14 observable
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Phase Correction Parameter Name Constraint
I E′ = E(1 + ecorr + e1) ecorr E Scale (3 phases) 0.0041

e1 E Scale (D2O) 0.0039
II E′ = E(1 + ecorr + e2) e2 E Scale (Salt) 0.0034
III E′ = E(1 + ecorr + e3) e3 E Scale (NCD) 0.0081

Table A.2: Energy scale correction.

Phase Correction Parameter Name Constraint

I, II, III E′′ = E′
(

1 + enl
E−5.05 MeV
13.95 MeV

)
enl E Nonlinearity 0.0069

Table A.3: Energy nonlinearity correction, applied only to electron-type events.

Phase Correction Parameter Name Constraint
I E′′′ = E′′ + Gauss(0, es1) es1 E Res. (D2O) 0.041
II E′′′ = E′′ + Gauss(0, es2e,n) es2e E Res. (e, Salt) 0.041

es2n E Res. (n, Salt) 0.018
III E′′′ = E′′ + es3e(E − Egen) es3e E Res. (e, NCD) 0.014
III E′′′ = E′′ + es3n(E − 5.646 MeV) es3n E Res. (n, NCD) 0.010

Table A.4: Energy resolution correction.

Phase Correction Parameter Name Constraint
I, II cos θ′Sun = 1 + (1 + c1)(cos θSun − 1) c1 Direction Scale 0.11
III cos θ′Sun = 1 + (1 + c3)(cos θSun − 1) c3 Direction Scale 0.12

Table A.5: Solar direction correction. If the corrected angle was outside the physical range of
+1 to -1, it was replaced by a uniformy distributed random number from inside the physical
range.
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