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UNIVERSITY OF LIVERPOOL

Abstract
Faculty of Science and Engineering

Department of High Energy Particle Physics

Characterising the Optical Response of the SNO+ Detector

by Robert Stainforth

SNO+ is a liquid scintillator based neutrino experiment located 2039 m under-

ground in VALE’s Creighton mine, Lively, Ontario, CA. It is a re-purposing of the

original Cherenkov detector used in the SNO experiment to study neutrino oscilla-

tions. The advent of neutrino oscillations has revealed that neutrinos have a small

yet non-zero mass. However, the nature of this mass has yet to be determined. It

is possible that the neutrino is its own anti-particle, a Majorana fermion. If so,

such particles necessitate lepton number violating processes such as neutrinoless

double beta decay. SNO+ intends to search for the neutrinoless double beta decay

of 130Te. Other physics objectives include the study of low-energy solar neutrinos,

reactor anti-neutrinos, geo-neutrinos and sensitivity to nucleon decay and super-

nova neutrinos. To fulfil these objectives, SNO+ will operate over three detector

phases; water, scintillator and tellurium (loading of the scintillator with tellurium).

Prior to each phase, the experiment will undergo a full detector calibration. This

includes an optical calibration that seeks to characterise the optical response of the

detector using two types of in-situ light sources; one of these is called the laserball.

The laserball provides a pulsed, near-isotropic light distribution throughout the

detector. Laserball data is used in conjunction with a parameterised model that

characterises the optical response; the parameters are determined using a statis-

tical fit. This thesis presents an implementation of said model to all three phases

of the SNO+ experiment. A characterisation of the optical response in water is

presented using a combination of original laserball data from SNO and MC data

of the SNO+ detector. Thereafter, the two scintillator based phases are consid-

ered, wherein the increased attenuation of light due to absorption and reemission

introduced by the scintillator is addressed alongside a model of the scintillation

time profile.

http://http://www.liv.ac.uk
http://www.liv.ac.uk/science-and-engineering/
http://www.liv.ac.uk/particle-physics/
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1

Searching for a Neutrino Mass

I’m not quite sure what my son does, I think he chases neutrinos down a hole...

Melvin Stainforth

1.1 The Neutrino

The neutrino was postulated by W. Pauli, who in 1930 predicted the existence of a

light, neutrally charged elementary particle as a means to retain the conservation of

momentum, energy and spin in β-decay; Pauli believed that such a particle could

not be experimentally observed [1]. However, in 1956 the neutrino was indeed

detected after C. Cowan and F. Reines observed anti-neutrinos from a nuclear

reactor through β-capture [2]. This later became known as the Reines-Cowan

experiment for which F. Reines was awarded the 1995 Nobel prize [3] 1.

Within the same year as the Reines-Cowan result, work by T. Lee, C. Yang and

C. Wu [4, 5] respectively predicted and experimentally confirmed parity violation

in weak interactions, noting that all observed neutrinos and anti-neutrinos have

respectively, left- and right-handed helicity states. This motivated a phenomeno-

logical description of the neutrino, whereby it is considered the electro-weak part-

ner of the charged lepton, `αL. Collectively, both particles form components of

1By this time C. Cowan had unfortunately passed away (dec. 1974).

1
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the SU(2)L lepton doublet, LαL of the Standard Model (SM). Alongside the right-

handed charged lepton field, `αR the SM picture of leptons is as follows;

LαL =

(
ναL

`αL

)
, `αR, α = e, µ, τ. (1.1)

Here, the `αR field is considered a singlet due to the absence of right-handed

neutrinos in the SM. The neutrino is a spin-half particle and carries zero electrical

or coloured charge. There are three flavours of neutrino, να, α = e, µ, τ . A

constraint on the number of light neutrino flavours was found to be Nα,ν = 2.981±
0.012 following precision electro-weak measurements of the Z0 boson decay width

at LEP [6]. More recently, cosmological studies from recent Planck data have

provided a result consistent with LEP, Nα,ν = 3.36+0.68
−0.64 [7].

Neutrinos interact through charged-current (CC) and neutral-current (NC) electro-

weak interactions, coupling to charged and neutral leptons of the same flavour as

well as W± and Z0 bosons. At the tree level, there exist no flavour changing

neutral currents in the SM.

e, µ, τ νe, νµ, ντ

W ±

νe, νµ, ντνe, νµ, ντ

Z0

Figure 1.1: Left: The charged-current interaction vertex involving a neutrino,
a charged lepton and a W± boson. Right: The neutral current interaction

vertex involving a neutrino with a Z0 boson.

The neutrino is described as a massless particle in the SM. However, this has

been disproved following various neutrino experiments conducted within the last

half-century. These experiments have highlighted and confirmed the existence of

a phenomena known as neutrino oscillations. This arises from neutrinos having

a small but non-zero mass; a mass unaccounted for by the SM. At present, the
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origin of the neutrino mass is unknown - it is a known-unknown, prompting three

important questions:

Q1. What is the absolute mass scale of the neutrino?

Q2. What is the nature of the neutrino mass?

Q3. Through what mechanism does the neutrino mass arise?

The answers to these questions could be intrinsically linked, and any one solution

to these questions has implications in answering the questions which remain. For

example, neutrino masses under a Dirac formalism - like other SM particle masses

- could possibly be obtained through the Higgs mechanism. This assumption is

problematic, and as will be discussed, motivates an alternative consideration that

the neutrino is a Majorana particle; its own anti-particle which necessitates new

physics. However, the mechanisms through which Dirac and Majorana neutrino

masses are produced may be constrained by different symmetries that produce

masses on different scales.

In order to solve all three of these questions, it is arguably best to answer the

second question first. A verification of the Majorana nature of neutrinos would

point to new mechanisms beyond the standard model (BSM) (question 3) which

would be constrained by some new energy scale (question 1). Therefore, two

further questions should be considered;

QA. How does the physics associated with Majorana particles manifest?

QB. Through what experimental study could this physics be probed?

These two questions, and the pursuit of their answers, provide the phenomenolog-

ical motivation for the experimental method and objectives discussed henceforth.

1.2 Neutrino Oscillations

Neutrino oscillations exhibit lepton flavour violation. Phenomenologically, neu-

trinos oscillate between flavour eigenstates as they propagate. The first, albeit

then unbeknownst evidence of this phenomena followed investigations of the so-

lar neutrino flux which began in the 1960s by R. Davis and J. Bachall. At the
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time, Bachall was interested in the underlying reactions that drive the produc-

tion of thermonuclear energy inside the Sun. The Sun produces energy through a

series of nuclear fusion reactions and decays, converting protons (hydrogen) into

α-particles (helium ions), positrons and neutrinos. The overall reaction can be

written as follows;

4p→ 4He2+ + 2e+ + 2νe +Q [26.731 MeV], (1.2)

where Q is the release of thermal energy which escapes the Sun as light, attributing

to its luminosity. Positrons annihilate with nearby electrons producing photons

which are subject to intense scattering. The neutrinos escape the Sun quickly with

an energy spectrum reflective of the reaction that produced them. The objective

for Davis was to build a detector that could detect these neutrinos and to confirm

whether, at the time, the assumption in Equation 1.2 was correct. The detec-

tor Davis built became known as the Homestake experiment [8]. However, upon

measuring the solar neutrino flux, Davis measured a deficit when compared to

Bachall’s predictions. As far as neutrinos were understood at the time, neutrinos

from the Sun appeared to be missing when they arrived at Earth. This anomaly

became known as the Solar Neutrino Problem and marked the epoch of neutrino

spectroscopy in the decades and experiments that followed.

1.2.1 The Solar Neutrino Problem

The Homestake experiment was built by Davis in the period 1965-67. The name

Homestake derives from the location of the experiment in the Homestake gold

mine 1478 m below the surface of Lead, South Dakota, USA [9]. Homestake

collected initial data in 1968-70 and thereafter ran continuously until 1994 [8].

The detector consisted of a single large cylindrical tank filled with 615 tonnes of

tetrachloroethylene, C2Cl4. The experiment was designed to be sensitive to the

inverse β-decay process;

νe + 37Cl→ 37Ar + e−, Eν ≥ 0.814 MeV, (1.3)

where Eν is the neutrino energy threshold for the capture of the neutrino on the

chlorine nucleus. Davis was able to count the number of argon atoms produced

and subsequently make a calculation of the solar neutrino flux. The neutrino



Chapter 1: Searching for a Neutrino Mass 5

capture rate was measured in solar neutrino units (SNU) which is equivalent to

the number of neutrino interactions on 1036 37Cl atoms s−1. Initial findings of

the solar-neutrino induced capture rate set an upper limit that was less than a

third of that predicted by Bachall and collaborators [10, 11]. With 25 subsequent

years worth of data and reduced uncertainties the final Homestake measurement

supported the deficit originally reported [9];

Homestake [1968]: R37Cl ≤ 3.0 SNU, (1.4)

Bachall et al. [1968]: R37Cl = 7.5+3.0
−3.0 SNU, (1.5)

Homestake25yr.: R37Cl = 2.56± 0.16 (stat.)± 0.16 (sys.) SNU, (1.6)

Bachall et al. [1995]: R37Cl = 9.3+1.3
−1.3 SNU. (1.7)

Bachall’s prediction was based on a mathematical treatment of the Sun that was

parameterised to fit measurements of the Sun’s luminosity, radius and the ratio

of heavy-elements to hydrogen, known as the metallicity, on its surface. This is

now commonly known as the standard solar model (SSM). The SSM describes the

evolution of a star as its composition changes over time. Beginning with a high

abundance of hydrogen, larger elements are created through fusion reactions. The

increase in the abundance of these heavier elements causes the core to contract

under gravity. As part of this contraction, gravitational potential energy is released

in the form of radiation to the outer layer of the star, increasing the pressure

and hence the temperature. Consequently, this increase in temperature increases

the rate of further nuclear reactions and the overall luminosity. The outer layer

compensates for this increase in pressure and temperature by expanding, increasing

the radius of the star. This repeated process of core-contraction and energy release

continues to keep the star in a near-steady equilibrium state until the hydrogen is

ultimately consumed. The SSM is updated as relevant measurements and theories

of the Sun’s composition and mechanisms develop.

In reality, the process of nuclear fusion outlined in Equation 1.2 is driven by a

chain and cycle of several intermediate reactions that contribute to the overall

neutrino output of the Sun. The dominant series is known as the pp-chain which

begins as the fusion of two protons. There is also the pep-chain, but this is less

common. Figure 1.2 illustrates the steps involved in the pp- and pep-chains.

In addition to the pp- and pep-chains is the CNO-cycle, a cycle of fusion reactions

between carbon, nitrogen, oxygen and protons as shown in Figure 1.3. These
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Figure 1.2: [12] The pp- and pep-chains. Reactions marked with red denote
those which emit neutrinos. The majority of neutrinos emitted by the Sun are

from the initial pp-reaction.

reactions also produce neutrinos. A complete table of the solar neutrino types and

their respective energies is shown in Table 1.1.

It is of note that all solar neutrinos emitted as part of the reactions outlined here

are electron-neutrinos. This removed at least some of the uncertainty as to what

Homestake had actually measured, but further enforced the anomalous result. Due

to the 0.814 MeV energy threshold on the chlorine nucleus, Homestake was limited

to neutrino capture from primarily 8B-neutrinos. These constitute only a small

fraction of neutrinos emitted by the Sun. This prompted further measurements

by similar radiochemical experiments such as SAGE [14], GALLEX [15] and GNO

[16] in the period 1970-90s. These experiments used gallium instead of chlorine to
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Figure 1.3: [12] The series of fusion reactions between carbon, nitrogen and
oxygen in the CNO-cycle. Reactions marked with red denote those which emit

neutrinos.

Solar Neutrino Types

Source Process 〈Eν〉 [MeV] Emax
ν [MeV] 〈Qν〉 [MeV]

pp p+ p→ 2H + e+ + νe 0.2668 0.423±0.03 13.0987
pep p+ e− + p→ 2H + νe 1.445 1.445 11.9193
hep 3He + p→ 4He + e+ + νe 9.628 18.778 3.7370
7Be 7Be + e− → 7Li + νe 0.3855 (10%) 0.3855 12.6008

0.8631 (90%) 0.8631 12.6008
8B 8B→ 8B∗ + e+ + νe 6.735±0.036 15±0.090 6.6305

13N 13N→ 13C + e+ + νe 0.7063 1.1982±0.0003 3.4577
15O 15O→ 15N + e+ + νe 0.9964 1.7317±0.0005 21.5706
17F 17F→ 17O + e+ + νe 0.9977 1.7364±0.0003 2.363

Table 1.1: Solar neutrino types as produced by the pp- and pep-chains. Shown
also are the neutrinos produced as part of the CNO-cycle. 〈Eν〉 denotes the
mean neutrino energy, Emax

ν denotes the maximum and 〈Qν〉 denotes the average
thermal energy released alongside a neutrino. Values of the 8B-neutrino energies

are from [13], all others are from [12].

observe the following inverse β-decay reaction;

νe + 71Ga→ 71Ge + e−, Eν ≥ 0.233 MeV. (1.8)

The lower energy threshold of 0.233 MeV made these experiments sensitive to the
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more abundant pp-neutrinos, 〈Eν〉 = 0.2668 MeV. A combined analysis of the

SAGE, GALLEX and GNO results [17] further confirmed the Homestake result

reporting a deficit around one half of that theoretically predicted [12];

SAGE+GALLEX+GNO: R71Ge = 66.1± 3.1 (stat.+sys.) SNU, (1.9)

SSM [2004]: R71Ge = 131+12
−10 SNU. (1.10)

The main disadvantage of Homestake and the gallium experiments was that they

could only count neutrino interactions; they did not provide information on the

neutrino energy or direction; one interaction was indistinguishable from another.

In order to observe the real-time information of neutrinos on a per-interaction

basis, a different type of detector technology known as Cherenkov detectors would

need to be used. It would be through measurements made by Cherenkov detector

experiments that the observed solar neutrino deficit would be explained alongside

the first measurements of their energy spectra.

1.2.1.1 Cherenkov Detectors

Cherenkov detectors are designed to detect Cherenkov radiation; the emission of

photons when a charged particle travels faster than the local phase velocity of light

through a medium. This phenomena was first observed by P. Cherenkov in 1934

for which he later received the Nobel prize in 1958 [18]. Cherenkov radiation is

produced inside detectors by the tracks of relativistically charged particles arising

from some interaction. In the context of neutrino studies, one such example is the

elastic scattering of a neutrino off of an electron;

να + e− → να + e−, α = e, µ, τ. (1.11)

For all three flavours this process can be mediated by a neutral-current interac-

tion (Z0-boson exchange). However, the νe + e− → νe + e− cross-section also

receives contributions from charged-current interactions (W±-boson exchange).

From electro-weak calculations, the cross-section for this process is therefore 6.43

times larger for electron-neutrinos, νe than for non-electron type neutrinos, νµ,τ

[12].
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As the neutrino scatters, it transfers a fraction of its momentum to the electron.

For a sufficiently energetic neutrino, the recoiled electron will begin to travel rel-

ativistically; emitting Cherenkov radiation along its path (often referred to as a

track). The electron is scattered through an angle θν with respect to the original

direction of the neutrino. The kinetic energy of the recoiled electron, Te is related

to θν through the following expression [19];

Te = Eν − E ′ν = Eν

(
1− 1

1 + Eν
mec2

(1− cos θν)

)
, (1.12)

where Eν and E ′ν are the respective initial and recoiled neutrino energies and me is

the electron mass. The electron target in Cherenkov detectors is typically water.

The number of Cherenkov photons emitted is given by the following expression

[20];

d2N

dxdλ
=

2παZ2

λ2

(
1− 1

(nβ)2

)
, (1.13)

where x is the distance travelled by the charged particle, λ is the wavelength of the

photon, Z is the charge of the particle, α the fine structure constant (= 1/137),

β = v/c and n is the refractive index of the medium. In water, approximately

340 photons cm−1 are emitted within a wavelength range between 300 and 600 nm

[12]. The photons are emitted at a characteristic angle about the axis defined by

the track of the charged particle, forming a cone of light [18];

cos θC =
1

nβ
, (1.14)

θC ∼ 41o for n = 1.33 [Water] .

The above expression can be used to derive the energy threshold, Ec for Cherenkov

radiation to be produced [21];

Ec ≥ m

 1√
1− 1

n2

− 1

 , (1.15)

where m is the mass of the charged particle. The energy threshold for electrons

in water is Ee
c = 260 keV.
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In order to observe Cherenkov radiation, detectors make use of highly sensitive

photo-detectors called photo-multiplier tubes (PMTs). PMTs provide informa-

tion on the amount of light produced within the detector, as well as its arrival

time at the PMT itself. PMTs therefore make detectors sensitive not only to the

particle momentum, type and direction, but also the location of the original inter-

action point from where the charged track began. In the case of elastic scattering,

momentum information of the charged track is related to the original neutrino

momentum through the expression in Equation 1.12.

1.2.1.2 The Kamiokande Experiment

One of the first Cherenkov detectors to study neutrinos was the Kamiokande

experiment. Kamiokande started running in 1983 and was originally built to search

for proton decay. The detector consisted of approximately 3000 tonnes of water

surrounded by ∼1000 PMTs in a cylindrical cavity 1 km underground in the

Kamioka mine, Japan. After several years the detector was upgraded to study

solar neutrinos through the elastic scattering process outlined in Expression 1.11.

Despite an energy threshold of 260 keV for electron recoils in water, Kamiokande

was limited to energies Te ≥ 6.6 (8.8) MeV at 50% (90%) efficiency [22]. This

was because of radioactive nuclei - predominantly radon, which emanated from

the rock that surrounded the detector - which decayed to produce backgrounds.

Kamiokande was therefore particularly sensitive to the solar 8B-neutrino spectrum,

〈Eν〉 = 6.735 MeV. A comparison of the sensitivity of Cherenkov detectors to

solar neutrinos compared to Homestake and the gallium experiments is shown in

Figure 1.4.

Kamiokande published its first measurements of the solar 8B-neutrino flux in 1989

after collecting data for 450 live days [22]. Again, the same anomalous deficit as

originally reported by Homestake was observed. Kamiokande measured less than

one half of the flux that Bachall had predicted a year before [24];

φ
(
Kamiokande450 d.

)
φ (SSM [1988])

= 0.46± 0.13 (stat.)± 0.08 (syst.) . (1.16)

Although Kamiokande was unable to account for the missing solar electron-neutrinos,

it was able to provide important energy and directional information, see Figure 1.5.

Kamiokande provided the first real-time detection of neutrino interactions and
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Figure 1.4: Shown are the different types of solar neutrino flux as detailed
in Table 1.1. Dashed lines for the 13N, 15O and 17F fluxes represent model
predictions [23]. Overlaid are the sensitivies of the Homestake experiment,
37Cl:Eν ≥ 0.814 MeV, the gallium experiments, 71Ga:Eν ≥ 0.233 MeV and
water Cherenkov detectors, Eν & 5 MeV; the sensitivity of which is subject to

background rejection.

Figure 1.5: [22] Kamiokande solar 8B-neutrino results. (a) The recorded
directions of recoiled electrons with a kinetic energy ≥ 10.1 MeV. (b) The
recorded number of solar 8B-neutrino induced electron recoils with energies
≥ 9.3 MeV. The dotted line is the best fit to the data which lies at 46% of the

theoretically predicted value (based on solar models).



Chapter 1: Searching for a Neutrino Mass 12

continued to have a central role in an era of neutrino spectroscopy; providing

measurements of neutrinos from sources aside from the Sun. These included neu-

trinos produced in the Earth’s atmosphere and supernova 1987A. Kamiokande left

a lasting legacy of neutrino studies in Japan which continues today through its

successor, the Super-Kamiokande (SK) experiment. An order of magnitude larger

than Kamiokande (50,000 tonnes of water and over 11,000 PMTs) the experiment

began in 1996 and provided precision measurements on the solar 8B-neutrino flux

[25].

By 1999, the anomalous solar electron-neutrino deficit had been reinforced by a

series of experiments spanning three decades since the original Homestake result.

Despite using several detector technologies across different experiments, the solar

neutrino problem remained unsolved. The strongest hypothesis at the time was

that neutrinos were subject to some type of time or energy variation. This meant

that a fraction of electron-neutrinos were not missing, but had reached detectors

as a different type, oscillating to different flavour eigenstates such as muon- or tau-

neutrinos. Measurements of elastic scattering up until this point had been flavour

independent. Consequently, to test the theory of neutrino oscillations, an experi-

ment was required that could distinguish between electron and non-electron type

neutrino interactions. The experiment to do this was called the Sudbury Neutrino

Observatory. By accounting for these missing neutrinos this experiment would

provide conclusive evidence that supported neutrino oscillations as a solution to

the solar neutrino problem.

1.2.1.3 The Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) was a second generation Cherenkov

detector experiment located 2039 m underground in the Creighton mine in Lively

near Sudbury, Ontario, CA. It was built in the 1990s and began collecting data

in 1999. The detector was spherically shaped, featuring a 12 m diameter acrylic

vessel surrounded by ∼9000 inward looking PMTs. The PMTs were held in place

by a steel geodesic sphere 17.8 m in diameter [26]. Many of these original detector

components are to be reused for SNO+. A detailed description of the original

SNO detector and the upgrades made for SNO+ are outlined in Chapter 2.

A unique feature of SNO was that it used D2O, heavy water, as the target mate-

rial to study Cherenkov radiation. Heavy water features a deuterium atom (2H)
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on each water molecule. This is in contrast to the conventional water which had

previously been used in Cherenkov detectors (featuring the naturally abundant 1H

atom). By using D2O, SNO was able to measure the following neutrino interac-

tions;

Charged-Current (CC) : νe + 2H→ p+ p+ e−, (1.17)

Neutral-Current (NC) : να + 2H→ p+ n+ να,

↪→ n+ 2H→ 3H + γ [6.25 MeV] , (1.18)

Elastic Scattering (ES) : να + e− → να + e−. (1.19)

SNO resolved measurements into contributions from CC, ES and NC interactions

using probability distribution functions (PDFs) parameterised by the kinetic en-

ergy of the electron, Te, the electron deflection angle, θν and a fiducial volume cut.

An energy threshold of Te ≥ 5.0 MeV meant that SNO was sensitive primarily to

solar 8B-neutrinos.

It is the inclusion of the CC and NC interactions for the disintegration of deu-

terium that is important to note. The CC interaction is sensitive only to electron-

neutrinos, whereas the NC interaction is sensitive to all three neutrino flavours.

Measuring the rate of CC and NC interactions therefore allows flux contributions

from electron and non-electron neutrino types to be separated. Assuming appro-

priate normalisation, the NC contributions to the flux can thus be considered to be

a measure of the effective total flux of all neutrino types; electron and non-electron

types;

φNC = φe + φµ,τ , where φe = φCC. (1.20)

The contributions to the ES flux follow the ratio of 6.43 : 1 for electron to non-

electron neutrino types;

φES = φe +
1

6.43
φµ,τ . (1.21)

Assuming no distortions of the solar 8B-neutrino energy spectrum, SNO tested

a no-oscillation hypothesis of the 8B-neutrino flux, publishing its first combined

measurements of the flux contributions to all three CC, NC and ES interactions
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in 2002 [27];

φCC = 1.76+0.06
−0.05 (stat.)+0.09

−0.09 (syst.) 106 cm−2 s−1, (1.22)

φNC = 5.09+0.44
−0.43 (stat.)+0.46

−0.43 (syst.) 106 cm−2 s−1, (1.23)

φES = 2.39+0.24
−0.23 (stat.)+0.12

−0.12 (syst.) 106 cm−2 s−1. (1.24)

As an example, the NC measurement can be expressed in terms of the electron

and non-electron neutrino components by use of Equation 1.20;

φe = 1.76+0.05
−0.05 (stat.)+0.09

−0.09 (syst.) 106 cm−2 s−1, (1.25)

φNC
µ,τ = 3.41+0.45

−0.45 (stat.)+0.48
−0.45 (syst.) 106 cm−2 s−1. (1.26)

The measured rate for the NC reaction is shown to be in good agreement with the

SSM, see Figure 1.6.
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Figure 1.6: [27] The flux of solar 8B-neutrinos detected as electron, φe or
non-electron, φµ,τ types. The width of the coloured bands represent ±1σ errors
in the measured flux. The measured values of φe and φµ,τ intersect at the point
shown. The dashed line represents the SSM predicted value of which the φNC

flux is consistent.

This was a pioneering result. The ratio φe/φµ,τ = 0.52 strongly refutes the no-

oscillation hypothesis at 5.3σ with close to 50% of the total flux being contributions

from non-electron neutrino types [27]. SNO had provided conclusive evidence
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supporting the theory of neutrino oscillations as a solution to the solar neutrino

problem.

SNO continued to run until 2006, operating over three phases. The first was the

deuterium phase as described, ending in June 2001. The second involved adding 2

tonnes of NaCl to the D2O. The idea being to use chlorine to capture the thermal

neutrons produced by deuterium disintegration through the NC interaction;

Neutral-Current (NC) : να + 2H→ p+ n+ να,

↪→ n+ 35Cl→ 36Cl + γ′s [Σγ = 8.57 MeV] . (1.27)

The thermal neutron capture cross-section on chlorine is larger than deuterium

(σ (35Cl) ' 44 b, σ (2H) ' 0.5 b) [28]. This subsequently gave improved statistics

for the measurements of the NC interaction. The capture on chlorine also emits

several gammas with a distinctive isotropy. When compared to the distribution

of Cherenkov light, this allows for better discrimination between the NC and CC

interactions. The salt phase ran for 391 live days, ending in October 2003.

The third and final phase of SNO saw the deployment of 36 vertical strings of
3He counters; an array of neutral current detectors (NCDs) into the detector.

Each string was 9-11 m in length. The NCD phase ran for 385 live days between

November 2004 and November 2006. By this time neutrino studies were concerned

with precision measurements in order to obtain values of the parameters which

characterised neutrino oscillations, see Section 1.2.3. The use of NCDs allowed

SNO to make measurements of the NC interactions using a method independent

to that from the previous two phases. Neutrons from the NC interactions were

detected in an NCD as follows [29];

n+ 3He→ p+ 3H + 0.764 MeV. (1.28)

The wire in each 3He counter was kept at a high voltage meaning the energetic

proton and tritium pair induced an avalanche of secondary ionisation whose current

could be read out as a signal.

Support for neutrino oscillations as a solution to the solar neutrino problem was

strong. However, several other theories to explain it remained in contention [30].

As will be discussed, the theory of oscillations is parameterised by mixing angles,
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θ that characterise the amplitude of the oscillation between neutrino flavours, and

phases, ∆m2 that control the rate at which this oscillation occurs. In addition,

neutrinos travelling through matter, such as the Sun, are subject to resonant os-

cillation effects (discussed in Section 1.2.4). At the time, one hypothesis was that

solar neutrinos underwent matter effects in the Sun that were subject to a large

mixing angle (LMA). To test the LMA-matter solution, information about the

phase, ∆m2 was required. Given the naturally large distance over which solar

studies had detected neutrinos, they were only sensitive to the mixing angle; the

phase was effectively averaged over. It was therefore desirable to design an exper-

iment that was sensitive to this phase in order to test the LMA-matter solution

to the solar neutrino problem.

1.2.1.4 KamLAND

KamLAND was designed to specifically test the LMA-matter solution using a ter-

restrial source of neutrinos. Located in the Kamioka mine, the detector consisted

of a 6.5 m radius vinyl balloon filled with 1000 tonnes of liquid scintillator sur-

rounded by ∼1900 PMTs in an 18 m diameter steel spherical support sphere [31].

KamLAND studied anti-neutrinos produced in a variety of nuclear reactors in

Japan over an average distance of 180 km from the detector. By using scintillator

as its target material, the energy of the analysis threshold was lower than that of

water Cherenkov experiments, Te ≥ 2.6 MeV. KamLAND observed anti-neutrino

interactions through the inverse β-decay process;

νe + p→n+ e+,

↪→ n+ p→ 2H + γ [2.22 MeV]. (1.29)

Coincidence detection of both the e+ and the 2.22 MeV γ allowed KamLAND

to significantly reduce background contributions. Given the energy of the reac-

tor anti-neutrinos, ∼3-5 MeV and the shorter distance from which the detector

was situated to the source, KamLAND was sensitive to the cyclic nature of the

oscillation as determined by the phase, ∆m2, see Figure 1.7. After 145.1 live

days between March and October 2002, KamLAND observed a deficit in electron
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anti-neutrinos above 3.4 MeV, refuting a no-oscillation hypothesis [32];

φνe [Measured]

φνe [No Oscillation]
= 0.611± 0.085 (stat.)± 0.041 (sys.) . (1.30)

As KamLAND collected further data, the uncertainties on the spectral information

of the oscillation were reduced, and hence values of ∆m2 were determined with

better precision.

the expected no-oscillation !e flux by more than a factor of
2. In Fig. 1(b) the signal counts are plotted in bins of
approximately equal !e flux corresponding to total reactor
power. For !m2 and tan2" determined below and the
known distributions of reactor power level and distance,
the expected oscillated !e rate is well approximated by a
straight line. The slope can be interpreted as the !e rate
suppression factor and the intercept as the reactor-
independent constant background rate. Figure 1(b) shows
the linear fit and its 90% C.L. region. The intercept is
consistent with known backgrounds, but substantially
larger backgrounds cannot be excluded; hence this fit
does not usefully constrain speculative sources of antineu-
trinos such as a nuclear reactor at the Earth’s core [6]. The
predicted KamLAND rate for typical 3 TW geo-reactor
scenarios is comparable to the expected 17:8! 7:3 event
background and would have minimal impact on the analy-
sis of the reactor power dependence signal. In the follow-
ing we consider contributions only from known
antineutrino sources.

Figure 2(a) shows the correlation of the prompt and
delayed event energy after all selection cuts except for
the Edelayed cut. The prompt energy spectrum above
2.6 MeV is shown in Fig. 2(b). The data evaluation method
with an unbinned maximum likelihood fit to two-flavor
neutrino oscillation is similar to the method used previ-
ously [1]. In the present analysis, we account for the 9Li,
accidental, and the 13C"#; n#16O, background, rates. For
the (#,n) background, the contribution around 6 MeV is
allowed to float because of uncertainty in the cross section,

while the contributions around 2.6 and 4.4 MeV are con-
strained to within 32% of the estimated rate. We allow for a
10% energy scale uncertainty for the 2.6 MeV contribution
due to neutron quenching uncertainty. The best-fit spec-
trum together with the backgrounds is shown in Fig. 2(b);
the best fit for the rate-and-shape analysis is !m2 $
7:9%0:6

&0:5 ' 10&5 eV2 and tan2" $ 0:46, with a large uncer-
tainty on tan2". A shape-only analysis gives!m2 $ "8:0!
0:5# ' 10&5 eV2 and tan2" $ 0:76.

Taking account of the backgrounds, the Baker-Cousins
$2 for the best fit is 13.1 (11 d.o.f.). To test the goodness of
fit we follow the statistical techniques in Ref. [7]. First, the
data are fit to a hypothesis to find the best-fit parameters.
Next, we bin the energy spectrum of the data into 20 equal-
probability bins and calculate the Pearson $2 statistic ($2

p)
for the data. Based on the particular hypothesis 10 000
spectra were generated using the parameters obtained
from the data and $2

p was determined for each spectrum.
The confidence level of the data is the fraction of simulated
spectra with a higher $2

p. For the best-fit oscillation pa-
rameters and the a priori choice of 20 bins, the goodness of
fit is 11.1% with $2

p=d:o:f: $ 24:2=17. The goodness of fit
of the scaled no-oscillation spectrum where the normaliza-
tion was fit to the data is 0.4% ($2

p=d:o:f: $ 37:3=18). We
note that the $2

p and goodness-of-fit results are sensitive to
the choice of binning.

To illustrate oscillatory behavior of the data, we plot in
Fig. 3 the L0=E distribution, where the data and the best-fit
spectra are divided by the expected no-oscillation spec-
trum. Two alternative hypotheses for neutrino disappear-
ance, neutrino decay [8] and decoherence [9], give
different L0=E dependences. As in the oscillation analysis,
we survey the parameter spaces and find the best-fit points
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Figure 1.7: [33] The oscillation spectra of electron anti-neutrinos in Kam-
LAND. The data (black) is in agreement with an oscillation spectrum generated,

at the time, using the best-fit parameters available.

1.2.2 Atmospheric Neutrino Anomaly

Another early indicator of neutrino oscillations came from the Kamiokande exper-

iment in 1988. When studying the flux of atmospheric neutrinos produced in the

Earth’s atmosphere (discussed in Section 1.2.5) Kamiokande observed electron-like

events consistent with predictions, but a deficit in muon-like events, detecting only

59 ±7% of what was expected [34]; this became known as the atmospheric neutrino

anomaly. Further studies by Kamiokande suggested that such an anomaly could

not be described by oscillation between electron and muon neutrinos (νe ↔ νµ),

and so an alternative channel, νµ ↔ ντ,x was investigated [35, 36]. The larger scale

of the Super-Kamiokande experiment increased the statistical significance of this
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original result, demonstrating that the deficit in the atmospheric muon neutrino

flux was consistent with neutrino oscillations, see Figure 1.8.
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FIG. 4. The ratio of the number of FC data events to FC
Monte Carlo events versus reconstructed L!En . The points
show the ratio of observed data to MC expectation in the
absence of oscillations. The dashed lines show the expected
shape for nm $ nt at Dm2 ! 2.2 3 1023 eV2 and sin2 2u !
1. The slight L!En dependence for e-like events is due to
contamination (2–7%) of nm CC interactions.

experiment [4]. The Super-Kamiokande region favors
lower values of Dm2 than allowed by the Kamiokande
experiment; however the 90% contours from both ex-
periments have a region of overlap. Preliminary stud-
ies of upward-going stopping and through-going muons
in Super-Kamiokande [24] give allowed regions consis-
tent with the FC and PC event analysis reported in this
paper.
Both the zenith angle distribution of m-like events

and the value of R observed in this experiment signifi-
cantly differ from the best predictions in the absence
of neutrino oscillations. While uncertainties in the flux
prediction, cross sections, and experimental biases are
ruled out as explanations of the observations, the present
data are in good agreement with two-flavor nm $ nt

oscillations with sin2 2u . 0.82 and 5 3 1024 , Dm2 ,
6 3 1023 eV2 at a 90% confidence level. We con-
clude that the present data give evidence for neutrino
oscillations.
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Figure 1.8: [37] Results from Super-Kamiokande: The points shown denote
the ratio of observed electron- and muon-like events to the MC prediction as-
suming no oscillations. The dashed line denotes the value from a two-neutrino

mixing scenario, νµ ↔ ντ,x, to which the data agrees well.

1.2.3 Neutrino Mixing and Oscillations

B. Pontecorvo first discussed the possibility of neutrino oscillations in 1957 [38].

Pontecorvo proposed that each neutrino flavour state is a linear superposition of

three light neutrino mass states, each with a different mass (eigenvalue);

|να〉 =
3∑

k=1

U∗αk|νk〉, α = e, µ, τ. (1.31)

The coefficients Uαk are elements of a unitary matrix, U known as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) mixing matrix, the structure of which is anal-

ogous to the CKM mixing matrix between the three quark generations. U is

parameterised by three mixing angles, θ12, θ23, θ13 and a charge-parity (CP) phase,
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δCP;

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 , (1.32)

where cij ≡ cos θij and sij ≡ sin θij [39]. In vacuum, the temporal evolution of the

mass states is governed by the time-dependent Shrödindger equation;

H0|νk〉 ≡ i
d

dt
|νk〉 = Ek|νk〉. (1.33)

As each mass is different, these states evolve in time with varying phases, leading

to transitions between flavour states with a non-zero probability. The general form

of the neutrino oscillation probability can be written as follows;

Pνα→νβ(L,Eν) =
3∑

k,j=1

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
kjL

2Eν

)
, (1.34)

where Eν is the neutrino energy and L is the propagation distance, often referred

to as the baseline. The probability depends on θ12, θ23, θ13, δCP and two linearly

independent mass-squared differences;

∆m2
21 = m2

2 −m2
1, (1.35)

∆m2
31 = m2

3 −m2
1. (1.36)

In the context of neutrino oscillation experiments, the phenomena is best illus-

trated by considering mixing between just two neutrino generations. In such a

scenario, the flavour eigenstates are related to the mass eigenstates by the follow-

ing unitary transformation;(
|να〉
|νβ〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(
|νi〉
|νj〉

)
. (1.37)
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By use of Equation 1.34, an expression for the neutrino disappearance probability,

Pνα→νβ in vacuum can be obtained;

Pνα→νβ (L,Eν) = sin2 (2θ) sin2

(
∆m2L

4Eν

)
, (1.38)

where the complementary survival probability is simply Pνα→να = 1−Pνα→νβ . The

disappearance probability therefore has a maximum amplitude of sin2 (2θ) which

completes one full oscillation over a length;

Losc =
4πEν
∆m2

. (1.39)

This implies that for an appropriate neutrino energy, experiments observing neu-

trino oscillations over different baselines will be sensitive to different values of

∆m2. In general, long baseline experiments are sensitive to small values of ∆m2,

and short baselines are sensitive to larger values of ∆m2. If the baseline of an

experiment is much greater than the oscillation length, the total probability will

be averaged over the oscillating phase characterised by ∆m2, see Figure 1.9.

Figure 1.9: [12] The averaging of the neutrino oscillation probability, Pα→β
(solid line) over the ∆m2 phase (dashed line) with L/Eν .

From the above formalism it is clear that neutrino oscillations in vacuum are

sensitive to only the mass squared differences, and hence do not reveal an absolute

mass scale of the three neutrino masses, m1,m2 and m3. As determined by the

solar experiments, ∆m2
21 is positive definite through confirmation of the matter

effects in the sun. The sign of ∆m2
31 has not yet been determined to a sufficient
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level of significance, so far only the relative sizes of the two parameters has been

deduced; |∆m2
31| � |∆m2

21|. This means that two mass hierarchies are possible;

Normal Hierarchy (NH): ∆m2
31 > 0 : m3 � m2,m1, (1.40)

Inverted Hierarchy (IH): ∆m2
31 < 0 : m3 � m2,m1. (1.41)

The values of all six parameters θ12, θ23, θ13,∆m
2
21,∆m

2
31 and δCP are determined

by experiment. Experiments are designed with the ratio L/Eν in mind, strate-

gically situating their sensitivities to oscillation maxima and minima in order to

probe the parameter space.

1.2.4 Neutrino Oscillations in Matter

Within ten years of the Homsestake result a theory of neutrino oscillations in mat-

ter had been developed, later known as the Mikheyev-Smirnov-Wolfenstein (MSW)

effect. First introduced by L. Wolfenstein in 1978, the MSW effect describes the

resonance enhancement of neutrino oscillations involving electron-neutrino states

in matter [40]. This arises because matter is composed of atoms; nuclei and

electrons, rather than nuclei and muon or tau particles. As a result, electron-

neutrinos are subject to both charged- as well as neutral-current interactions when

propagating through matter; muon- and tau-neutrinos are restricted to only the

neutral-current interaction. The charged-current interaction therefore subjects the

electron-neutrino to an additional non-zero potential, ACC which contributes to

the Hamiltonian as expressed in Equation 1.33;

ACC = ±2
√

2EνGFNe, (1.42)

where GF is the Fermi constant and Ne is the electron density of the matter.

The value of ACC is positive for electron-neutrinos and negative for electron-anti-

neutrinos. This potential term manifests as a new mass-squared difference, ∆m2
M

and mixing angle, θM, different to those in vacuum, which control the evolution

of the oscillating neutrino state in matter. For the case of two-neutrino mixing as
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previously discussed, these can be written as follows;

∆m2
21,M =

√
(∆m2

21 cos (2θ12 − ACC))
2

+ (∆m2
21 sin (2θ12))

2
, (1.43)

tan (2θ12,M) =
tan (2θ12)

1− (ACC/∆m2
21 cos (2θ12))

. (1.44)

An interesting scenario is when,

ACC → ∆m2
21 cos (2θ12)⇒ tan (2θ12,M)→∞, (1.45)

giving rise to a resonance in the mixing which corresponds to complete transitions

of the initial flavour states 2. This is equivalent to the following electron number

density of the matter;

Ne =
∆m2

21 cos (2θ12)

2
√

2EνGF

. (1.46)

It is of experimental interest that the potential is reversed for electron anti-

neutrinos (ACC → −ACC), leading to different values of ∆m2
21,M and θ12,M. In

a full three-flavour mixing paradigm, the transition probability between any two

flavour states is dependent on all six of the neutrino oscillation parameters: θ12,

θ23, θ13, ∆m2
21, ∆m2

31 and δCP. Two outstanding issues which have yet to be

experimentally determined are the mass hierarchy i.e. the sign of ∆m2
31 as pre-

viously mentioned, and the value of δCP. By studying the neutrino oscillation

channels νµ → νe and νµ → νe at the ∆m2
31 baseline, experiments are sensitive to

a residual probability difference between these two channels which is attributed to

sub-leading matter effects and CP-violation. This residual term being proportional

to ∆m2
31 and δCP [41, 42];

Pνµ→νe − Pνµ→νe =
16 |ACC|
∆m2

31

sin2

(
∆m2

31L

4Eν

)
c2

13s
2
13s

2
23

(
1− 2s2

13

)
− 2 |ACC|L

Eν
sin

(
∆m2

31L

4Eν

)
c2

13s
2
13s

2
23

(
1− 2s2

13

)
− 4∆m2

21L

Eν
sin2

(
∆m2

31L

4Eν

)
sin δCPs13c

2
13c23s23c12s12. (1.47)

2This is effectively what happens to neutrinos produced in the Sun.
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As the complexity of the above expression suggests, resolving the sign of ∆m2
31

and the value of δCP is difficult. However, for a sufficiently long baseline, L the

above expression becomes more sensitive to the value of δCP. Next generation

experiments such as DUNE/LBNF [43] and Hyper-Kamiokande [44] have been

proposed to make this measurement.

1.2.5 Neutrino Oscillation Experiments

As mentioned, neutrino oscillation experiments are attuned to the ratio L/Eν in

order to probe the oscillation parameter space which controls the rate of neutrino

appearance and disappearance. This is done either by controlling the baseline, L,

the neutrino energy, Eν or both. For studies of natural neutrino sources e.g. solar

and atmospheric neutrinos, this ratio is effectively fixed and the measured flux

is relatively small. Instead, by using an artificially intense neutrino source e.g.

nuclear reactors or an accelerator based neutrino beam, a category of experiments

known as baseline experiments are able to situate their detectors at a fixed short-

or long-baseline from the source. Through a combination of solar, atmospheric,

short- and long-baseline experiments, a complete determination of the neutrino

oscillation parameters is possible.

Determination of θ12 and ∆m2
21

Solar and short-baseline reactor neutrino studies (Eν ∼ O(MeV)) are sensitive to

the mass squared difference ∆m2
21 and the mixing angle θ12. Studies of electron-

neutrino disappearance of the solar 8B-neutrino flux by SK and SNO provide

accurate measurements for θ12. In addition, KamLAND has contributed to this

solar parameter space with precision measurements of ∆m2
21 by looking at electron

anti-neutrino disappearance.

Determination of θ23 and ∆m2
31

Early values of ∆m2
31 and θ23 originally came from measurements of νµ-disappearance

in atmospheric data by SK [37]. This was itself prompted by the earlier indication

of a missing atmospheric neutrino flux by Kamiokande as discussed in Section 1.2.2.

Neutrinos are produced in the atmosphere as the result of hadronic interactions
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of cosmic rays (mostly protons) with nuclei in the Earth’s atmosphere e.g.

p+X → Y + π±,

↪→ π± → µ+ νµ, (1.48)

↪→ µ→ e+ νe + νµ, (1.49)

where X and Y are nuclei. The charge conjugated versions of the above in-

teractions occur with equal frequency, providing an atmospheric flux ratio of(
φνµ + φνµ

)
/ (φνe + φνe) ' 2. These atmospheric neutrinos are produced over

a broad energy spectrum between 0.1-100 GeV, that peaks around 1 GeV. To

leading order, the atmospheric parameters ∆m2
31 and θ23 characterise the proba-

bility of νµ-disappearance. The SK result was obtained by observing νµ and νe

quasi-elastic scattering off of nuclei (e.g. oxygen) through charged-current inter-

actions, categorising events as either muon-like or electron-like. By demonstrating

that a two neutrino mixing hypothesis for the νµ ↔ νe channel was incompat-

ible with data, SK inferred the νµ ↔ ντ channel as the cause for the observed

νµ-disappearance.

Currently, the most precise measurements of the atmospheric parameters are from

accelerator based long-baseline experiments. These experiments use accelerator

facilities to artificially create an intense beam of νµ or νµ. The accelerator collides

protons into a target (e.g. graphite or beryllium), producing many mesons, mostly

pions (and some kaons). The pions are focussed into a beam directed at the far de-

tector using strong magnets, and proceed to decay as in expressions 1.48 and 1.49.

By using magnets to focus either particles or anti-particles, accelerator baseline

experiments can be ran in neutrino or anti-neutrino modes. The leading mea-

surements of ∆m3
31 come from two recent accelerator long-baseline experiments,

MINOS and T2K [45, 46]. The latter of these two has also provided the current

best measurement of θ23 [47].

An outstanding issue with the measurement of θ23 is which octant its value is

in. In a two-neutrino mixing picture, the measurement of the νµ ↔ ντ channel

is actually sensitive to sin2 (2θ23); it is surjective in θ23. Consequently there are

two qualifying values of θ23, see Figure 1.10. Current data favours different octant

values based on the nature of the neutrino mass hierarchy.
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Determination of θ13

Until relatively recently, the value of θ13 was the least well known of the mixing

angles, some theories even considered it to be zero (θ13, δCP = 0, see tri-bimaximal

mixing [48]). This changed however in the years 2010-11 as the T2K experiment

reported six events in the νµ → νe channel after its first two runs of collecting

physics data. The electron-neutrino appearance was an indication of θ13 6= 0 and

as such T2K provided an early indication to the value of θ13 at a 90% confidence

level; 0.03(0.04) < sin2 (2θ13) < 0.28(0.34) for normal (inverted) hierarchies [49].

A statistically more significant result followed with the advent of the Daya-Bay

experiment; a short baseline experiment studying reactor anti-neutrinos. Daya-

Bay provided evidence for θ13 6= 0 at 5.2σ after collecting 55 live days worth of

data between the end of 2011 and early 2012. Daya-Bay probed the νe survival

probability which for short baselines can be approximated as follows;

Pνe→νe ' 1− sin2 (2θ13) sin2

(
∆m2

13L

4Eν

)
. (1.50)

Note that the structure of this expression is simply the complement of the oscil-

lation probability in Equation 1.38. Further to the Daya-Bay result, not only was

θ13 non-zero, but it was also larger than originally anticipated, θ13 ∼ 9o. Given

the relationship between θ13 and δCP in the PMNS matrix, the size of θ13 provides

a good opportunity to probe δCP in future long-baseline experiments. Current

values for the neutrino oscillation parameters (including primitive esitmates for

δCP) from a combined global analysis are shown in Figure 1.10.

Three decades after the original Homestake result, experiments have ultimately

confirmed flavour transmutation in the neutrino sector. Through various tech-

nique, and by studying neutrino fluxes from different sources, a more complete

understanding of neutrino oscillations as well as the eponymous particle itself has

been revealed. Most prominently, these studies have led to the conclusion that

the neutrino has a small but non-zero mass i.e. mν 6= 0. Neutrino oscillations

therefore provide evidence of physics beyond the standard model. This is a pio-

neering discovery that has led to the recognition of the original work done by R.

Davis at Homestake and M. Koshiba at Kamiokande. In 2002, they were awarded

the Nobel prize for the detection of cosmic neutrinos; those from the Sun and

supernova 1987A [52]. More recently, A. McDonald and T. Kajita received the
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Figure 1.10: [50] Current estimates for the neutrino mixing oscillation pa-
rameters. Values are taken from [51]. The estimates include those with, and
without short baseline reactor (RSBL) neutrino data. Values are shown for both

currently possible mass hierarchies; normal (red) and inverted (blue).

same accolade in 2015 for their respective work on the SNO and T2K experiments

which contributed to the discovery of neutrino oscillations.
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1.3 Nature of the Neutrino Mass

The existence of a neutrino mass provides ample motivation to conjecture the

mechanism by which this mass arises, and to search for any inherent new physics

that manifest. However, before such searches begin, determining the nature of the

neutrino itself is essential. Nature being the phenomenological description of the

neutrino, either as a Dirac or Majorana particle.

1.3.1 Dirac Neutrino Masses

SM neutrinos are members of an SU(2)L doublet, LαL (as in Expression 1.1), whose

massless states are described by single left-handed chiral fields, ναL. These fields

satisfy the Weyl equation;

iγµ∂µναL = 0. (1.51)

In order to obtain a mass one can treat neutrinos as Dirac particles alongside

the other SM fermions whose masses are obtained through the Higgs mechanism.

These Dirac masses require couplings of both left- and right-handed fields in the

Lagrangian mass term, L DM
ν of the form;

−L DM
ν = mναLναR, α = e, µ, τ ναL = ν†αLγ

0. (1.52)

Consequently, for such field couplings to be possible for neutrinos, an extension

to the SM is required in the form of additional right handed neutrino fields, ναR.

These fields are singlets under SU(2)L ×U(1)Y and are often referred to as sterile

as they do not participate in weak interactions and have zero isospin (I = 0) and

hypercharge (Y = 0). The SM can be arbitrarily extended by any number of

sterile fields. In the natural extension with three additional right-handed fields,

ναR (α = e, µ, τ) the diagonalised Higgs-lepton Lagrangian reads;

−L DM
Higgs-lepton =

(
v +H√

2

)[ ∑
α=e,µ,τ

y`α`αL`αR +
3∑

k=1

yνkνkLνkR

]
+ H.c. , (1.53)
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where H is the Higgs field, v is the Higgs vacuum expectation value (VEV), ∼246

GeV and H.c. is the hermitian conjugate term. The y`α and yνk terms are real

and positive elements of two separate diagonalised matrices of Yukawa couplings.

Here, νk are the massive neutrino fields which are related to να by the unitary

transformation in Equation 1.31. The following neutrino masses arise from the

Higgs mechanism following electro-weak symmetry breaking;

mk =
yνkv√

2
, k = 1, 2, 3. (1.54)

These masses are proportional to the Higgs VEV, as are the charged lepton masses.

However, limits on the neutrino mass bound its size to no more than 2 eV [53].

Given the size of the Higgs VEV, yνk is thus required to be O(10−12) GeV. This is

problematic since the SM does not account for the size of the Yukawa couplings.

Other than convenience, there is no just cause for including such small values

of yνk . The Higgs mechanism then is unsatisfactory in explaining the source of

the neutrino mass. If instead the neutrino is assumed to behave as a Majorana

particle, then the origin of its mass may become closer to being understood.

1.3.2 Majorana Neutrino Masses

The motivation behind Majorana particles lies in considering the following ques-

tion:

Q. What is the smallest component formalism required

to describe a massive fermion?

In 1937, E. Majorana looked to answer this question in response to P. Dirac’s four

component spinor theory of electrons and positrons [54]. Majorana devised that

massive fermions could in fact be described by two-component spinors, alleviating

the constraint of two additional negative energy states present in Dirac’s theory.

This is achieved provided the fermion field, ψ = ψL + ψR satisfies the Majorana

condition;

ψ = ψc with ψc = Cψ
T
, C = iγ0γ2, (1.55)
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where ψc is the charge conjugated field and C is the charge conjugate operator.

The reduction of four component Dirac spinors into the two component theory

proposed by Majorana requires that the left- and right-handed fields, ψL and ψR,

be somehow related. In fact, it can be shown that ψcL is right handed and ψcR is

left handed, i.e.

PLψ
c
L = 0, PRψ

c
R = 0, PR

L
=

1

2
(1± γ5) . (1.56)

Equation 1.55 manifestly imposes equality between particles and anti-particles,

meaning physically, Majorana particles must be neutrally charged. With a non-

zero mass inferred by neutrino oscillations, and being the only known neutral

fermion, the neutrino is the best current candidate for being a Majorana particle

and provides reason to consider Majorana mass terms.

Similarly to Dirac mass terms, Majorana masses arise from the coupling of left-

and right-handed fields,

−LMM
ν =

1

2
m
(
ναLν

c
αL + νcαLναL

)

=
1

2
m
(
ναLCναL

T − νTαLC†ναL
)
, (1.57)

where the factor of 1/2 is to avoid double counting, as the left- and right-handed

fields are related. However, these ναL fields are members of an SM doublet, LαL.

Hence, each mass term behaves as an isospin triplet (I3 = 1) with hypercharge Y =

−2. Consequently, the above mass term does not leave the Lagrangian invariant.

In fact, construction of a Majorana mass using only SM fields requires two Higgs

doublets, Φ forming the non-renormalisable dimension-5 operator, (LH)2 [55];

(LH)2 =
g

M

(
LTαLτ2Φ

)
C†
(
ΦT τ2LαL

)
+ H.c. . (1.58)

Here, τ2 is the Pauli matrix and g/M is a new coupling of dimension E−1 which

is required to maintain the correct dimensions of the Lagrangian. The following

Majorana mass is generated,

mν =
gv2

M
. (1.59)
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To be in agreement with the current bounds on the neutrino mass, the coupling

g/M must be O(10−15) GeV), suppressed by some large mass, M existing near

the energy scale of Grand Unification Theories (GUT), ∼1015 GeV. However, it

should also be acknowledged that this is the only Majorana mass which can be con-

structed using the low-energy theory that the Standard Model outlines. Therefore,

there is no reason to exclude similar masses from a possible BSM source existing

at higher energies. In many phenomenological models, Majorana contributions

to the neutrino mass of the form in Equation 1.57 come from sterile fields, ναR

whose Majorana mass terms behave as singlets of the SM symmetries, leaving the

Lagrangian invariant. These Majorana contributions feature in what are known as

type-I see-saw mechanisms, in which the smallness of the neutrino mass is resolved

through the existence of heavy sterile neutrinos [56]. This is of particular interest

to phenomenologists, as these heavy neutrinos can be used propagate leptogenesis

and subsequently CP violation in cool-down models of the early universe [57].

1.3.3 Lepton Number Violation

A Majorana neutrino will interact differently than a Dirac neutrino. Specifically, a

particle being its own anti-particle will mediate new physics such as lepton number

violation (LNV). The concept of lepton number is illustrated by considering the

following local U(1) gauge transformations of the lepton fields [12];

νkL → eiφνkL, νkR → eiφνkR, k = 1, 2, 3, (1.60)

`αL → eiφ`αL, `αR → eiφ`αR, α = e, µ, τ. (1.61)

Invariance of the Lagrangian under these transformations conserves lepton num-

ber. Leptons have a lepton number of L = +1 and anti-leptons have a lepton

number of L = −1. By considering the behaviour of the left-right field cou-

plings in the Dirac and Majorana mass terms of equations 1.52 and 1.57 under

these transformations, it is observed that Dirac neutrinos conserve lepton number

whereas Majorana neutrinos do not;

Dirac : νkLνkR −→ νkLe
−iφνkRe

iφ = νkLνkR, (1.62)

Majorana : νcαRναR = −νTαRC†ναR −→ −ei2φνTαRC†ναR. (1.63)
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Phenomenologically, Majorana masses would modify the PMNS matrix. Mathe-

matically, an n × n unitary matrix (such as the PMNS matrix) is parameterised

by n(n− 1)/2 mixing angles and n(n+ 1)/2 complex phases. For n = 3 this leads

to three mixing angles and six phases. However, in the case of Dirac particles

five of these phases can be eliminated through a rephasing of the lepton fields,

and thus reduce the parameterisation to three mixing angles and just one phase,

δCP. However, it is clear that a rephasing of the Majorana fields as above can-

not be performed to the same extent. Consequently, if neutrinos are Majorana

particles there can exist additional Majorana CP-violating phases in the mixing

matrix. These are associated with the neutrino masses, modifying the PMNS by

multiplying it with a diagonal matrix of Majorana phases, D = diag(1, eiα1 , eiα2)

i.e. U → UD.

All SM interactions conserve lepton number, however, it is only an accidental

symmetry of the theory. Due to the construction of the Majorana fields presented

here, wherein the left- and right-handed fields are related to one another, the field

transformations leave an overall residual phase. Majorana particles then mediate

lepton number violation. One LNV process is called neutrinoless double β-decay

(0νββ-decay). Yet to be experimentally observed, verification of such a process

would further elucidate the nature of the neutrino and its mass. This is discussed

in Section 1.4.1.

1.4 Detection of the Neutrino Mass

The study of atmospheric, solar, reactor and accelerator based neutrino sources has

provided sufficient evidence of at least three neutrino mass eigenstates. However,

the study of oscillations does not discern the nature, Dirac or Majorana or the

absolute scale at which these eigenstates exist. In general, there are three methods

through which the neutrino mass scale can be inferred; cosmological studies, direct

detection and 0νββ-decay.

The neutrino mass scale is of interest in cosmological models in the form of the

neutrino eigenstate mass sum, Σν
imi. The sum is often used as a parameter which

drives structure formation in the early universe from which a large abundance of

relic neutrinos were left over. Current models combined with recent Planck data

constrain Σν
imi ≤ 0.23 eV [7]. Similar to the relic photons of the cosmic microwave
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background, relic neutrinos are expected to constitute a similar cosmic neutrino

background (CNB). The CNB has yet to be experimentally verified, although its

existence has been inferred through several other cosmological observables [58].

The PTOLEMY experiment, currently in a prototype phase intends to search for

relic neutrinos through neutrino capture on tritium [59].

Interpretation of a neutrino mass through cosmological data is highly analysis and

model dependent, and ultimately only provides an upper-bound on the sum of the

masses. An alternative route is through direct mass detection by studying weak

decays of the form;

X → Y + e− + νe. (1.64)

Here, the determination of the mass is purely kinematic and model independent.

Relative to the recoiling nucleus, the electron and neutrino share the majority

of the energy released; the Q-value. The energy is distributed between the two

particles statistically, characterised by the distribution of emitted electron energies

known as the β-spectrum. Even if the electron takes all of the available energy,

some residual energy must remain for the rest mass of the neutrino and hence

the end-point of the β-spectrum should have a well defined cut-off. This was

originally noted by Fermi [60]. Naturally, the frequency of electrons with such

high energies is small, and hence detection through this method requires equisite

energy resolution. From end-point measurements, the average squared neutrino

mass is determined [53];

m2 (νe) =
3∑
i=1

|Uei|2m2
i . (1.65)

As the particles are released in their flavour eigenstates (i.e. electron), the ob-

served mass is the coherent sum of the electron anti-neutrino mass eigenstates.

Figure 1.11 illustrates the differences in the β-spectrum endpoint region between

a massive and massless neutrino scenario. It is important to note that for mas-

sive neutrinos, there is both an end-point cut-off and a distortion in the overall

spectrum itself. The KATRIN experiment plans to perform an end-point study

of tritium. Tritium is ideal for such studies because of its small Q-value = 18.58

keV, meaning that distortions from massive neutrinos are a larger fraction of the
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total spectrum. KATRIN is expected to have a sensitivtiy to a neutrino mass of

200 meV (90% C.L.) [61].

Figure 1.11: Illustrative diagram of the β-spectrum for electron energies, E
relative to the Q-value, E0 in two neutrino mass scenarios; massless (red) and
massive (blue). In the massive regime there is a well defined cut-off 1eV from
E0. In the massless case the spectrum is continous up to E0. Plot is a modified

version of that originally appearing in [62].

1.4.1 Neutrinoless Double β-Decay

Neutrinoless double beta decay is a hypothesised lepton number violating process

mediated by BSM physics; this includes Majorana neutrinos. 0νββ-decay involves

the emission of two electrons following the decay of a parent nuclei;

0νββ : (A,Z)→ (A,Z + 2) + 2e−, (1.66)

with atomic mass, A and proton number, Z. This process violates lepton number,

∆L = +2. This is in contrast to conventional double β-decay (2νββ-decay) in

which two electron anti-neutrinos and two electrons are emitted;

2νββ : (A,Z)→ (A,Z + 2) + 2e− + 2νe, (1.67)

for which lepton number is conserved, ∆L = 0. 2νββ-decay occurs in isotopes

where it is energetically more favourable for two nucleons within the nuclei to

decay rather than one (standard β-decay). If neutrinos are indeed Majorana in
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nature, a small branching fraction of the decays of these isotopes should be through

0νββ-decay. The tree-level Feynman diagrams for 2νββ-decay and 0νββ-decay are

shown in Figure 1.12. In 0νββ-decay the neutrino acts as a fermionic propagator

between the two electron vertices. This is only possible if the neutrino is a Majo-

rana fermion; the two anti-neutrino vertices of the 2νββ-decay process are joined,

where an anti-neutrino emitted from one vertex is absorbed as a neutrino with

matching helicity by the other i.e. νe = νe. This is prohibited by the massless de-

scription of neutrinos in the SM, νe 6= νe whose purely left- and right-handed fields

result in a mismatch between positive and negative helicities. Both these issues are

resolved by a massive Majorana neutrino, mν 6= 0, νe = νe. The helicity matching

is made possible only through suppression of the state by a factor of mν/E at

one of the vertices. This description of 0νββ-decay, mediated by a light Majorana

neutrino, is known as the light neutrino exchange model. Ultimately, 0νββ-decay

is a process in which only two electrons are emitted; a different, perhaps more ex-

otic, BSM theory could similarly mediate the process. Hence 0νββ-decay studies

are not technically a neutrino mass experiment in the same vein as experiments

such as KATRIN are.

The 0νββ-decay rate is as follows [56];

Γ0νββ = G0νββ (Q,Z)
∣∣∣M 0νββ

A,Z

∣∣∣ 〈mββ〉2, (1.68)

where G0νββ (Q,Z) is the phase space factor which describes the physics of the final

emitted states; it is proportional to Q5.
∣∣∣M 0νββ

A,Z

∣∣∣ is the nuclear matrix element

(NME), describing the energetic transition of the nuclei between its initial and

final state, and 〈mee〉 is the effective neutrino mass;

〈mββ〉 =
3∑
i=1

|Uei|2mi =
∣∣|Ue1|2m1 + |Ue2|2m2e

i2α1 + |Ue3|2m3e
i2α2
∣∣ , (1.69)

where the above assumes the light neutrino exchange model as described. In this

scenario the effective mass is dependent on the parameters of neutrino oscillation

physics, where α1 and α2 are the additional Majorana phases. Note the additional

dependency on α1 and α2 in comparison to Equation 1.65. Whilst end-point studies

are not sensitive to a Majorana phase, they provide constraints on measurements of

the effective Majorana neutrino mass from 0νββ-decay experiments. As illustrated

in Figure 1.13 the 〈mββ〉 parameter space is different for either normal or inverted
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Figure 1.12: Top: tree level Feynman diagram of 2νββ-decay allowed within
the SM framework. Bottom: lepton number violating, 0νββ-decay permitted by
the Majorana neutrino acting as a propagator between the two leptonic vertices.

hierarchies. Furthermore, from Equation 1.68 it is evident that the half-life of the

process is also related to the effective mass of the neutrino, t0νββ1/2 ∝ 1/Γ0νββ ∝
〈mββ〉−2. Therefore an experimental observation of 0νββ-decay probes both the

nature and (effective) mass scale of the neutrino. Depending on the true state of

the mass hierarchy, and assuming a lightest neutrino mass of 0.01-0.05 eV, the

half-life can range from 1026−27 years for IH, and 1028−29 years for NH based on

the isotope [63].

It is important to emphasise the uncertainty inherent to the expression in Equa-

tion 1.68. The NME is obtained from nuclear physics calculations. These are

many body calculations in which the wavefunctions of the decaying nucleons can

be configured into one of many states. The NME is calculated by solving the Dirac

equation for these wavefunctions in a mean background field (the local potential
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within the nuclei). The small overlapping of these wavefunctions induce large

changes in the Hamiltonian and hence the NME. Subsequently, the uncertainties

on the NME can have a factor 2-3 uncertainty, which is itself different depending

on the nuclear model assumed [56].

Figure 1.13: The 〈mββ〉 parameter space with lightest neutrino mass. Plot is
a modified version of that originally appearing in [56].

As with standard β-decay, the electrons emitted in 2νββ decay are similarly dis-

tributed according to a ββ-spectrum, where some of the energy is taken by the

two neutrinos. Experimentally then, the signature of 0νββ-decay is the recon-

structed sum of the emitted electrons being close to the Q-value of the decay i.e.

(T1 + T2)/Q ' 1, this is shown illustratively in Figure 1.14.

1.4.2 Neutrinoless Double β-Decay Experiments

Previous searches for 0νββ-decay have provided no tangible evidence for it, al-

though some claims have been made [64]. Currently, the best results are based

on putting limits on the isotope 0νββ-decay half-life, t0νββ1/2 and the effective Ma-

jorana neutrino mass, 〈mββ〉. A summary of the most recent limits are given in

Table 1.3. The large uncertainties associated with the values of 〈mββ〉 shown are

related to the discrepancies between the NME assumed. The current generation

of experiments make use of a variety of detector technologies using different candi-

date isotopes; a summary is provided in Table 1.2. There is no single ideal isotope
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Figure 1.14: The distribution of electron energies in 2νββ- and 0νββ-decay.
In 0νββ-decay the electrons share the total available phase space energy (Q-

value). The size of the 0νββ peak is exaggerated for illustrative purposes.

for 0νββ-decay experiments. Rather, the choice of isotope is informed by the ex-

perimental set-up3. Idealistically, an experiment seeks to maximise the sensitivity,

S0νββ through a combination of source mass M , exposure time, texp., detector ef-

ficiency, ε and energy resolution, σE whilst minimising possible backgrounds, B

[65, 66];

S0νββ ∝ ε
Natoms

A

(
Mtexp.

BσE

)1/2

, (1.70)

where Natoms is the number of atoms of the isotope and A is the atomic number.

1.4.2.1 Detector Technologies

A variety of experimental methods have been, or are currently considered, to

search for 0νββ-decay. A brief overview of recent experiments that have either

finished, continue to run, or are to begin shortly is now given alongside the exper-

imental method they employ. The current generation of experiments have used

an isotope mass on the order of 10-102 kg, demonstrating a technique that could

potentially be scaled to a larger version as part of a next-generation of 0νββ-decay

experiments using 102-103 kg mass. The sensitivities of such future experiments

3. . . and financial resources available i.e. cost of isotope enrichment.
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0νββ-decay Isotope Candidates and Experiments

Isotope Nat. Abd. % Q-Value [MeV] Experiment
48Ca 0.187 4.27 CANDLES [67], SuperNEMO [68]
76Ge 7.8 2.04 GERDA [69], MAJORANA [70]
82Se 9.2 2.99 NEMO-3 [71], SuperNEMO [68]
96Zr 2.8 3.35 NEMO-3 [72]

100Mo 9.6 3.04 NEMO-3 [73]
116Cd 7.6 2.81 NEMO-3 [71]
130Te 34.5 2.53 SNO+ [74], CUORE [75]
136Xe 8.9 2.46 EXO-200 [76], KamLAND-Zen [77]
150Nd 5.6 3.37 NEMO-3 [78], SuperNEMO [68]

Table 1.2: [56] Summary of candidate 0νββ-decay isotopes with corresponding
natural abundances and Q-values. Shown also are recent experiments which
have either previously, intend to, or are currently studying these isotopes for

evidence of 0νββ-decay.

Current Limits on t0νββ1/2 and 〈mββ〉

Isotope Experiment t0νββ1/2 [yr] 〈mββ〉 [meV]
76Ge GERDA > 2.1× 1025 <200-400 [79]
82Se NEMO-3 > 3.2× 1023 <940-2500 [80]

100Mo NEMO-3 > 1.0× 1024 <470-960 [80]
130Te CUORICINO > 2.8× 1024 <300-710 [81]
136Xe EXO-200 > 1.1× 1025 <190-450 [76]
136Xe KamLAND-Zen > 1.3× 1025 <140-280 [77]

Table 1.3: The current respective lower and upper limits on isotope half-lives,
t0νββ1/2 and the effective Majorana neutrino mass, 〈mββ〉 from recent 0νββ-decay

experiments.

is also discussed, and illustrated in Figure 1.15 in terms of the effective Majorana

neutrino mass 〈mββ〉.

High Purity Gemanium Detectors - GERDA & MAJORANA

The principle behind high purity germanium (HPGe) detector based experiments

is that the isotope (76Ge) is both the source and detection medium. A conventional

Ge-detector consists of a cylindrical configuration of germanium crystals that are

coaxial (i.e. annular in cross-section) to electrical readouts on the inner and outer

surfaces. Germanium is a semi-conductor with an electron-band structure such

that excited electrons can induce a current. Doping of the germanium accordingly

allows for the formation of n-p junctions; an interface between electron-rich and

electron-deficient forms of germanium in which the transport of charge takes place.
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Figure 1.15: Current and future sensitivities of experiments to 0νββ-decay.
Values are based on 5 years worth of running with the respective experiment
isotope. Sensitivities are subject to change based on the detector efficiency and

the nuclear model assumed.

The nature of this transportation - and hence the detector read-out - varies based

on the type incident ionising radiation which excited the electrons e.g. light/heavy

charged particles or photons. Given this, pulse-shape discrimination of the read-

out can be performed for particle identification [82].

HPGe detectors are suited to 0νββ-decay experiments for a variety of reasons; the

germanium source is intrinsically low in backgrounds, the detector construction

allows for excellent energy resolution (∼2-5 keV) and the industrial production

of Ge-detectors is well established. Indeed, some of the current most stringent

limits on 0νββ-decay are from 76Ge experiments that have, or continue to make

use of HPGe detectors. The most recent being from the GERDA experiment [83],

located at Laboratori Nazionali del Gran Sasso (LNGS). During its first phase,

GERDA reused a combination of enriched and natural HPGe detectors from the

Heidelberg-Moscow, ANG and IGEX collaborations, totalling a source mass of

17.7 kg of 76Ge. The GERDA HPGe detectors were bathed in a cryostat of liquid

argon. The first phase lasted for an exposure time of 21.6 kg yr. GERDA is

currently being refurbished for a second phase, which aims to run at an exposure

time of 100 kg yr with a source mass of 20.8 kg [83].
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The upcoming MAJORANA experiment also plans to use HPGe detectors to study

0νββ-decay. It is currently at the demonstrator stage, using 29 kg of enriched

∼87% 76Ge and 15 kg of natural germanium [84]. It plans to run for an exposure

time of 100 kg yr. A novel feature of MAJORANA over GERDA is that the

HPGe detectors are stored in a vacuum in order to reduce the background rate.

The MAJORANA and GERDA collaboration intend to work cooperatively in a

future tonne scale 76Ge experiment with an expected sensitivity to an effective

Majorana neutrino mass of 〈mββ〉 ' 20 meV [70].

Cryostat Bolometers - CUORICINO & CUORE(-0)

Bolometers are used to measure the change in temperature of a material. Under

ideal conditions, a bolometer can in principle be made such that it is sensitive

to the small changes in temperature arising from the radioactive decay of nuclei

in a material. This was the principle of the CUORICINO experiment, located at

LNGS.

CUORICINO ran from 2003-08, and studied the decay of 130Te. The CUORICINO

bolometers consisted of TeO2 crystals cooled in a cryostat to 8-10 mK; at this

temperature, the Debye law predicts a specific heat capacity in the crystals of

cQ = 2.3 × 10−9 J K−1. Given this, an energy deposition of a few keV results

in a measurable temperature difference. Such a measurement requires excellent

resolution; CUORICINO was able to achieve a resolution of 7 keV at the 130Te

Q-value. The detector consisted of a stacked tower of 44 125 cm3 and 18 54 cm3

crystals arranged in arrays over 13 planes. Most of these crystals contained natural

tellurium except four; two enriched at 75% 130Te and another two at 82.3% 130Te

[81]. CUORICINO collected data over an exposure time of 19.6 kg yr with 40.7 kg

of tellurium equivalent to 11.6 kg 130Te.

CUORICINO was a prototype for a larger scale experiment, CUORE. CUORE

intends to use 988 TeO2 crystal bolometers arranged into 19 CUORICINO-type

towers with a total source mass of 750 kg of tellurium which is equivalent to

∼200 kg of 130Te. One of the largest challenges is to keep ∼1000 bolometers at

a temperature of 10 mK, for which a cryostat has been specially constructed.

Assuming optimal background rejection, CUORE is sensitive to an effective Ma-

jorana neutrino mass of 〈mββ〉 = 26-40 meV [75]. Prior to CUORE, between

2013-2015, a single CUORE-style tower, CUORE-0 collected data in order to test



Chapter 1: Searching for a Neutrino Mass 41

the background reduction techniques envisioned for CUORE [85]. CUORE-0 had

a comparable source mass as CUORICINO.

Time Projection Chamber - EXO-200

Time projection chambers (TPC) are particle detectors that make use of electric

and magnetic fields in order to drift charge induced by ionising radiation passing

through a liquid or gas. TPCs allow for a fully three-dimensional reconstruction

of a particle track, and have been used in previous neutrino experiments, such as

ICARUS [86] and the T2K near-detector, ND280 [87].

The EXO-200 experiment is an example of a liquid xenon TPC used to search for

the 0νββ-decay of 136Xe, located at the waste isolation pilot plant in New Mexico.

EXO-200 makes use of 110 kg of liquid xenon enriched to 80.6% 136Xe inside of a

40 cm diameter, 44 cm long cylindrical TPC separated into two drift regions by a

cathode at the centre. The TPC provides good trajectory information, collecting

both charge and scintillation light simultaneously [88]. In doing so, the detector

is able to distinguish tracks separated by more than ∼1 cm, with an individual

position resolution of ∼1 mm. At the 136Xe Q-value the energy resolution is 1.53%

[76]. The experiment recently published results after an exposure time of 100 kg yr

in the period 2011-13 providing the most stringent limits on the 0νββ-decay half-

life of 136Xe, see Table 1.3.

EXO-200 is itself a proof of concept for a larger liquid xenon based experiment,

nEXO. The current proposal for nEXO is to use 5000 kg of 90% enriched liq-

uid Xe136 in a large single-drift region TPC. After five years at optimal running,

nEXO’s sensitivity to an effective Majorana neutrino mass would be in the region

〈mββ〉 ' 7-18 meV [89].

Tracking & Calorimetry - NEMO-3 & SuperNEMO

A unique approach to a 0νββ-decay search came in the form of the NEMO-3

experiment. NEMO-3 ran between 2003-10 and was located in the Modane under-

ground laboratory in France. The detector consisted of a cylindrical configuration

of gaseous drift cells and plastic scintillator blocks interlaced with foils of the can-

didate isotope. Surrounding this were PMTs connected to the scintillator blocks

by light guides [90]. The foils were distinctly modular to the surrounding detection

medium. This allowed for simple installation and replacement of the foils meaning

multiple isotopes could be deployed. The combination of tracking and calorimetry
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enabled NEMO-3 not only to measure the energy deposits of radioactive decays in

the detector, but also the event topology by measuring the angular distribution of

the emitted particles. NEMO-3 deployed multiple isotopes including; 48Ca, 82Se,
96Zr, 100Mo, 116Cd, 130Te, and 150Nd. The majority of these were for 2νββ-decay

measurements. The most used for a 0νββ-decay search was 100Mo at 6.92 kg,

running for a live time of 4.96 yr to an exposure time of 34.3 kg yr [73].

The next generation version of NEMO-3, superNEMO is currently being con-

structed and intends to make use of the same tracking and calorimetry principles

used by its predecessor. SuperNEMO plans to deploy multiple isotopes as 20 5 kg

foils. As an example, with 150Nd, SuperNEMO will be sensitive to an effective

Majorana neutrino mass of 〈mββ〉 ' 70 meV after an exposure time of 500 kg yr

(5 years live time). Assuming a successful 0νββ-decay signature, the event topol-

ogy information of the events can be studied to test for exotic physics beyond the

standard light neutrino exchange interpretation of 0νββ-decay [68].

Liquid Scintillator - KamLAND-Zen & SNO+

Liquid scintillator has previously been used as a detection medium for neutrino

oscillation studies, examples include; KamLAND [32], Borexino [91], LSND [92],

MiniBooNE [93] and Daya-Bay [94]. Given its relatively cheap availability and

high light yield, it is also suited for use in 0νββ-decay searches.

Prior to EXO-200, the best limits on the 0νββ-decay half-life using 136Xe came

from KamLAND-Zen. KamLAND-Zen was a re-purposing of the short-baseline

reactor anti-neutrino detector used in KamLAND (see Section 1.2.1.4). Inside of

KamLAND’s liquid scintillator filled vinyl balloon, a smaller 1.54 m radius balloon

containing 320 kg of enriched Xe136 gas dissolved in scintillator was deployed [77].

KamLAND-Zen ran for a live time 114.8 days between December 2013 and May

2014, equivalent to an exposure time of 108.8 kg yr of 136Xe. To date, KamLAND-

Zen is the largest 0νββ-decay search (by source mass) to have been conducted.

SNO+ is another liquid scintillator based 0νββ-decay experiment. It intends to

take advantage of the naturally high abundance of 130Te and exploit the large

pre-existing SNO Cherenkov detector. SNO+ plans to load 780 tonnes of liquid

scintillator with 0.3% natural tellurium, corresponding to ∼800 kg of 130Te. One

disadvantage of 130Te is that the Q-value coincides with several backgrounds (see

Section 2.2). However, through characterisation of the scintillator emission profile,



Chapter 1: Searching for a Neutrino Mass 43

most of this background can be rejected. The hypothetical sensitivity to the 0νββ-

decay of 130Te for an effective Majorana neutrino mass of 〈mββ〉 = 200 meV is

shown in Figure 1.16 with a region of interest (ROI) of 2.47-2.70 MeV.

One advantage of the loading technique employed by SNO+ is that it can be scaled

to a higher loading-%. A second phase of SNO+ with upgraded high quantum-

efficiency PMTs and a 3% loading of natural tellurium would increase sensitivity

to an effective Majorana neutrino mass in the region 〈mββ〉 ' 19-46 meV [74].
Advances in High Energy Physics 13
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Figure 6: Summary stacked plot of all backgrounds
and a hypothetical 0νββ signal corresponding to a mass
mββ = 200 meV for 5 years data taking. Events are
shown in the FV of 3.5 m, for 0.3% natural tellurium
loading and 200 Nhits/MeV light yield. Tββ is the effec-
tive kinetic energy.

a Bayesian or a frequentist definition of 90% confidence
level. With the natural tellurium concentration of 0.3%
(by weight) in Phase I, corresponding to about 800 kg of
130Te, a 20% FV cut, and five years of data taking, SNO+
can set a lower limit on the half-life of T0νββ

1/2 > 9×1025 yr

(90% CL). This corresponds to a limit on the effective
Majorana neutrino mass, mββ , of 55 – 133meV, using
a phase space factor G = 3.69 × 10−14 yr−1 [45] and
gA = 1.269; the range is due to differences in nuclear
matrix element calculation methods [44, 46, 47, 48, 49].

5.3. Higher tellurium concentration in the future. One
of the main advantages of the SNO+ technique is the
possibility of moving toward higher sensitivities by in-
creasing the loading. R&D efforts have demonstrated
that with 3% (by weight) tellurium loading, a light yield
of 150Nhits/MeV can be achieved using perylene as a
secondary wavelength shifter. In SNO+ Phase II, this
loss in light yield will be compensated by an upgrade
to high quantum efficiency PMTs and improvements to
PMT concentrators. These improvements will increase
the light yield by a factor of ∼ 3. A preliminary study
shows that SNO+ Phase II can set a lower limit on the
0νββ half-life of T 0νββ

1/2 > 7 × 1026 years (90% C.L.), for

a mββ range of 19–46meV [43].

6. Solar Neutrino Physics

SNO+ has the opportunity to measure low energy solar
neutrinos with unprecedented sensitivity. This is due to
the reduced production rate of cosmogenic isotopes at

the SNOLAB depth and requires that the intrinsic back-
ground sources are low enough.

At scintillator purity levels similar to that of Borex-
ino Phase I [21, 27], the unloaded scintillator phase of
SNO+ provides excellent sensitivity to CNO, pep, and
low-energy 8B neutrinos. With the scintillator sourced
from a supply low in 14C, SNO+ could also measure pp
neutrinos with a sensitivity of a few percent. Due to
the relatively high end-point of the spectrum, 8B νs with
energy above the 130Te end-point can also be measured
during the 0νββ-decay phase.

The first measurement of the flux of neutrinos from
the sub-dominant CNO fusion cycle would constrain the
metallicity of the solar interior, and thus provide criti-
cal input to the so-called solar metallicity problem: the
current disagreement between helioseismological observa-
tions of the speed of sound and model predictions, due
to uncertainties in the heavy element (metal) content of
the Sun. Historically, model predictions for the speed of
sound were in excellent agreement with observation – one
of the primary reasons for confidence in the Standard So-
lar Model during the period of uncertainty surrounding
the solar neutrino problem. However, recent improve-
ments in solar atmospheric modeling – including transi-
tioning from one-dimensional to fully three-dimensional
models, and including effects such as stratification and
inhomogeneities [50] – produced a lower value for the
heavy element abundance of the photosphere and, thus,
changed the prediction for the speed of sound. The the-
oretical prediction for the CNO flux depends linearly on
the core metallicity, and can be further constrained by a
precision measurement of the 8B flux, due to their similar
dependence on environmental factors. A measurement of
CNO neutrinos would thus resolve this uncertainty, and
also advance our understanding of heavier mass main-
sequence stars, in which the CNO cycle dominates over
the pp fusion chain.

Precision measurements of the pep flux and the low-
energy 8B spectrum offer a unique opportunity to probe
the interaction of neutrinos with matter, and to search
for new physics. The shape of the νe survival probabil-
ity in the transition region between vacuum oscillation
(≤ 1 MeV) and matter-enhanced oscillation (≥ 5 MeV)
is particularly sensitive to new physics effects, such as
flavor-changing neutral currents or mass-varying neutri-
nos, due to the resonant nature of the MSW interaction.
The pep neutrinos are a line source at 1.44MeV, thus of-
fering the potential for a direct disappearance measure-
ment partway into this vacuum-matter transition region.
However, due to their production region closer into the
core of the Sun, the effect of new physics on the 8B neu-
trino spectrum is significantly more pronounced. Thus,
the most powerful search combines a precision measure-
ment of the pep flux with a 8B spectral measurement.

Borexino has published the first evidence for pep neu-
trinos [35], with a significance of just over 2σ from zero.

Figure 1.16: [74] SNO+ sensitivity for a hypothetical 0νββ-decay signal (red)
at 〈mββ〉 = 200 meV for five years worth of data taking with 0.3% loading
of natural tellurium in liquid scintillator. Tββ is the sum of the reconstructed
electron energies. Shown also are a variety of backgrounds which SNO+ must

address, including the tail of the 2νββ spectrum (grey).

As is evident in Figure 1.16, the 0νββ-decay ROI is populated by a number of

background processes, including the tail of the 2νββ-decay spectrum. The 0νββ-

decay is less of a well defined peak (as in Figure 1.14) and is smeared due to the

anticipated energy resolution of the detector. Given the sensitivity required to

detect a positive signal, which could possibly be smaller than that in Figure 1.16,

an accurate understanding of the detector and its materials is required; a full de-

tector calibration. One component of the calibration is determining the optical

response of the detector. This is the focus of the work discussed here. Chapter 2

provides a summary of the SNO+ detector and experimental objectives, introduc-

ing a calibration hardware system called the laserball. Chapter 3 discusses the
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use of scintillator in SNO+; its intrinsic, chemical and optical properties. Using

laserball data, a model which characterises the optical response of the detector and

the scintillator timing profile is introduced in Chapter 4. Chapter 5 follows with

an outline of the production and processing of SNO and simulated SNO+ laser-

ball data discussed under the context of RAT; the SNO+ Monte-Carlo, and OCA;

the software implementation of the optical response model written by the author.

Chapters 6 and 7 discuss the results of a statistical fit of the optical model to data

in water (Chapter 6) and scintillator (Chapter 7). This body of work concludes in

Chapter 8 with a summary of the work presented.



2

The SNO+ Experiment

The scientist begins by carrying out experiments whose aim is to make carefully

controlled and meticulously measured observations at some point on the frontier

between our knowledge and our ignorance.

Popper, Bryan Magee

2.1 Detector Components and Materials

The SNO+ detector is a re-purposing of the original Cherenkov detector used in

the SNO experiment, and is located 2039 m underground in VALE’s Creighton

mine, Lively, Ontario, CA. A cross-sectional diagram of the original SNO detector

is shown in Figure 2.1. The detector is comprised of the following features:

• Cavity: The cavity is a barrel shaped 22 m wide by 34 m high recess in the

mine rock in which the SNO+ detector is contained [95]. The cavity walls

and floor consist of shotcrete coated with nine layers of a urylon liner with

a total thickness of 8 mm [96]. The cavity is filled with ∼7000 tonnes of

ultra-pure water.

• PMT support sphere (PSUP): The PMT support sphere is a geodesic

steel sphere approximately 17.8 m in diameter. It is designed to hold ∼9000

PMTs and encapsulate all the other detector components. The PSUP is

supported by cables connected to bolts on the ceiling and walls of the cavity.

45
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• Acrylic vessel (AV): The acrylic vessel is a thin, 55 mm thick, 12 m

diameter spherical volume. In SNO, the AV contained D2O, in SNO+ it will

be filled with liquid scintillator. The vessel is constructed out of a series

of acrylic tiles/panels bonded together as shown in Figure 2.3. The AV

is positioned concentrically inside the PSUP. At the top of the vessel is a

cylindrical neck that reaches a deck level above the cavity containing a clean

room area.

• Support ropes: The AV is suspended inside the PSUP with the use of

support ropes. These consist of 10 U-shaped loops of 3/4′′ tensylon rope that

are threaded through the equator of the AV to the outside the PSUP where

they are connected to the cavity ceiling.

• Belly plates: The support ropes are threaded through 10 square acrylic

layers that are located around the equator, the ‘belly ’ of the AV. The plates

are bevelled, and curved to match the spherical shape of the AV.

Figure 2.1: Cross sectional diagram of the original SNO detector. Shown is
the PSUP inside the cavity. Inside the PSUP is the acrylic vessel.

Not shown in Figure 2.1 is a recently installed AV hold-down rope net. The main

difference between SNO+ and SNO is the deployment of liquid scintillator instead

of D2O inside the AV. Liquid scintillator is less dense than water with a density

of 0.865 g cm−3 [97]. As a consequence, once filled with scintillator the AV will

have a buoyant tendency against the surrounding water in the outer AV region.

The AV hold-down rope net is an interwoven basket of 20 11/4′′ tensylon ropes laid

across the top of the AV and anchored to the floor of the cavity to keep the AV

in position [98]. A schematic diagram of the rope net is shown in Figure 2.2.



Chapter 2: The SNO+ Experiment 47

Figure 2.2: Wireframe diagram of the SNO+ detector. Shown is the location
of the AV hold-down rope net (red) relative to the AV (blue) and PSUP (green).

Figure is a modified version of that originally appearing in [74].

In addition to several detector upgrades, the original D2O purification facility from

SNO has been replaced with a scintillator plant for SNO+. The construction of

the scintillator plant is discussed in Section 3.6.

2.1.1 PMTs & Electronics

SNO+ contains approximately 9000 inward looking, 8′′ diameter Hamamatsu R1408

PMTs. These are the same PMTs as used in SNO. SNO+ has repaired or replaced

those which have since broken. The original choice for this model of PMT was

based primarily on the fast rise and fall time of the PMT pulse with a single

photoelectron timing resolution of ∼1.70 ns [26]. The PMTs are held within the

PSUP and centred towards the middle of the AV. These PMTs measure the re-

sultant light from particle interactions of interest inside the detector. In addition,

there are PMTs about the neck of the AV and 91 outward looking PMTs (OWLs)

located on the outer surface of the PSUP; these are used to detect light from

exterior sources such as cosmogenic muons travelling through the cavity.
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Figure 2.3: Technical drawing of the AV. Shown are the support ropes and
belly plates about the equator. The spherical vessel is constructed out of acrylic
panels that are bonded together. In reality there exist seven pipes which termi-
nate at different heights along the vessel, only three are shown for illustrative
purposes. Figure is a modified version of that originally appearing here [26].

The inward looking PMTs are surrounded by a series of concave petal-like reflectors

formed into a Winston cone. These reflectors act to collect light, redirecting it

onto the PMT face. A technical drawing of a PMT and it’s surrounding reflector

assembly is shown in Figure 2.4. The reflector assembly is an important component

which is the subject of an investigation and characterisation that is discussed in

Chapter 4.

The PMTs read out time and charge values that are used to identify physics events

in SNO+. Each individual PMT is connected to a channel with 16 12-bit analog-

to-digital converter (ADC) cells. Each channel is connected to a PMT interface

card (PMTIC). Each PMTIC contains eight channels which are connected to a

daughter board (DB). Each set of four DBs are connected to a mother board,
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PMT

Reflector 
assembly

Figure 2.4: [26] Technical drawing of a PMT and its surrounding reflector
assembly. Measurement units are in cm.

known as a front end card (FEC). Therefore each FEC interfaces with 8× 4 = 32

PMTs. There are approximately 300 FECs. Physically, the FECs are stacked into

19 crates on the deck level. Each crate interfaces with a centralised master trigger

card (MTC) via a crate trigger card (CTC) [99].

Light incident at a PMT will create a photoelectron at the PMT cathode. Under

a strong electric field this electron is accelerated through a stack of nine anodes

creating an electron shower that accumulates as charge, interpreted as a pulse.

As charge accumulates, the time-to-amplitude (TAC) slope of the pulse is used

to convert the ADC counts into a time value. If the pulse passes a discriminator

threshold value, it is known as a PMT hit. The accumulated charge (Q) values

under high-gain (H) over short (S) and long (L) integration times are known

as QHS and QHL respectively. Another value is also calculated over the long

integration time using low-gain (X) known as QLX.

Each DB performs an initial sum of the number of PMTs that pass their discrim-

inator threshold. The information from all DBs in a crate is sent to the CTC

where it is summed and subsequently sent to the analogue MTC (MTCA). The

MTCA performs a total sum of the number of hit PMTs across all crates. The

MTCA interfaces with a digital MTC (MTCD) that compares the total sum with

the trigger requirements for a global trigger (GT) e.g. Nhit threshold in a 100 ns
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window. If a GT is declared then the hit information of each PMT contributes

to the event. If no GT is declared within a nominal window (∼400 ns) then the

PMT time and charge information is reset.

The use of scintillator not only requires physical modifications to the detector, but

due to the increased light output of scintillation light compared to Cherenkov light

(factor of ∼50), the electronics have also been upgraded to handle the expected

increased event rate.

2.2 Operating Phases & Backgrounds

The SNO+ experiment will operate throughout three planned phases :

• Water phase: In this phase, water will fill both the inner and outer AV

regions. This phase allows for a first complete calibration of the detector

since the end of SNO in 2006. In addition, it also provides an opportunity

to search for nucleon decay through invisible decay modes [100].

• Scintillator phase: The water in the inner AV region will be replaced with

liquid scintillator. Once scintillator is in the detector, the energy threshold is

reduced. At this stage, SNO+ becomes a multi-purpose experiment, sensitive

to the following types of low-energy neutrinos;

– Solar neutrinos:

∗ pep-chain neutrinos, Eν = 1.44 MeV

∗ CNO-cycle neutrinos, Eν ∼ 0.7-1.7 MeV

– Geo-neutrinos: Eν ∼ 1.8-3.5 MeV

– Reactor anti-neutrinos: Eν ≥ 1.8 MeV

– Supernova neutrinos: Eν ≥ 0.2 MeV

• Tellurium phase: The tellurium phase is the primary phase of the SNO+

experiment. Natural tellurium (∼34% 130Te) will be loaded into the scin-

tillator in order to search for 0νββ-decay with a 2.47-2.70 MeV ROI. The

tellurium phase will begin with an initial loading of 0.3%, ∼800 kg of 130Te,

with the possibility to increase the loading-% in the future.
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The use of scintillator not only increases the detector sensitivity to physics of

interest, but also a sensitivity to a variety of background processes. In SNO, the

analysis threshold of Cherenkov events was greater than 4.5 MeV largely due to

an irreducible background wall of β- and γ-particles (α-particles also arose from

background processes, but did not directly produce Cherenkov light). This was

sufficient for the study of solar 8B-neutrinos, Eν ≥ 6 MeV. However, given that

the physics of interest in SNO+ is within the 1-3 MeV range, the processes that

contribute to this background wall need to be identified and removed. Unwanted

physics interactions that produce these β-, α- and γ-particles in the ROI are mostly

due to the decay of radioactive isotopes. They can be found within the materials

from which the detector was constructed e.g. PMTs, PSUP, cavity rock and the

acrylic vessel. These are known as external backgrounds. Alternatively they can

also be found within the detector media itself e.g. water and scintillator. These

types are known as internal backgrounds. The isotopes are predominantly the

daughter nuclei of the uranium-238 (238U) and thorium-232 (232Th) chains. 238U

and 232Th are long lived isotopes that occur naturally in almost all materials.

The decay chains of 238U and 232Th are shown in Figure 2.5. In both cases the

background problem arises once the chain reaches radon-222/210 (222/210Rn) which

is a gas at 12o (the expected water temperature inside the cavity). Radon therefore

emanates into the detector; it is short-lived (tRn-220
1/2 = 55.6 sec, tRn-222

1/2 = 3.82 days)

and proceeds to decay further through a series of β, γ and α emissions until ter-

minating at lead-206/208 (206/208Pb). Of primary concern is bismuth-212 (212Bi),

which has a half-life of tBi-212
1/2 = 60.6 mins, decaying 36% of the time into thallium-

208 (208Tl) by α emission. 208Tl proceeds to decay to 208Pb through the emission

of a 2.61 MeV γ that falls within the 0νββ-decay ROI. The other 64% of the time,
212Bi decays to polonium-212 (212Po) through β emission. Background events of

this type can be rejected through tagging of the subsequent 212Po decay to 208Pb

by α emission using particle identification of the scintillator timing profile. This

is discussed in Section 3.4.5.

Other radioactive backgrounds not part of the 238U and 232Th chains include 40K,
85Kr and 14C. In addition, the 2039 m rock overburden provides a shielding of 6010

metres of water equivalent (m.w.e), reducing the through going rate of cosmogenic

muons to about three per hour (0.27 µ m−2 [95]). Ultimately, for SNO+ to be

sensitive to any of the objective physics events, it needs to operate in a sufficiently

background free environment. For 238U and 232Th chains the target purity levels of
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Figure 2.5: [101] The decay chains of 238U (left) and 232Th (right). Once each
of the chains reaches 222/210Rn it decays through a series of β, γ and α emissions
into daughter nuclei, terminating at 206/208Pb which is stable. Energies are
shown in MeV for β- and α-particles and in keV for γ-particles. The emission
of β-, α- and γ-particles contribute towards the background event rate in SNO+.

the scintillator are 1.6×10−17 g/g and 6.8×10−18 g/g respectively [102]. To ensure

these targets are met, a strict procedure to all commissioning work associated with

the scintillator circulation and purification has been enforced. This includes the

construction of the scintillator plant which is discussed in Section 3.6.

Outside of radioactive backgrounds, another type of background are instrumental

backgrounds. Instrumental backgrounds are interferences or characteristics of the

detector electronics that reduce the efficiency of interpreting event information;

they are non-physics related. There are a variety of instrumental backgrounds,

but static discharge and breakdowns in the electronics are most common [103].
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2.3 Detector Calibration

Prior to collecting physics data a full calibration of the detector is required. The

calibration is divided into four main procedures that collectively calculate the

necessary offsets associated with the detector electronics and PMTs, as well as

characterise the response of the detector to different energy and light sources;

• Electronics calibration (ECA): The ECA is the first necessary calibration

step in order to convert PMT information into physics information. When a

PMT is not hit, the ADC information can be read out to provide the zero-hit

value for the channel. In general the ADC read-out will vary from PMT to

PMT. The ECA therefore calculates the pedestal values of the ADC counts

for each of the charge integrations; QHS, QHL and QLX for when the PMT

is not hit. PMTs whose pedestal values vary frequently between calibrations

can subsequently be flagged as unreliable. The ECA also determines the

TAC which is used to convert the pulse shape into a time value [104].

• PMT calibration (PCA): The PCA calibrates the walk and gain at each

PMT;

– Walk calibration: The PMT walk is the rise time of the leading edge of

the pulse between the creation of the photoelectron at the photocathode

and the time at which the pulse passes the discriminator threshold. The

walk is unique to each PMT.

– Gain calibration: The purpose of the gain calibration is to charac-

terise each PMT’s single photoelectron charge spectrum in units of ADC

counts above the pedestal values determined by the ECA [105]. This

standardises the charge read out across all PMTs.

• Optical calibration: SNO+ will make use of scintillator which will emit

over a broad wavelength spectra. As this light is produced it becomes sub-

ject to a number of optical effects such as absorption, scattering, reflection

and refraction as it propagates through the detector to the PMTs. The op-

tical calibration therefore characterises the response of the detector to light

produced in different locations inside the detector and across different wave-

lengths. Optical calibration is sought using two systems; the laserball and

a light injection system consisting of several optical fibres installed on the

PSUP.
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• Energy calibration: A variety of radioactive sources are deployed into

the detector to probe its energy response between 0.1-10 MeV. The energy

calibration also characterises the response to different types of particle inter-

actions based on the source. This can be used to inform the reconstruction

of physics events and the rejection of unwanted backgrounds. Of particu-

lar interest in SNO+ is the response to β-particles in the energy region of

the 2νββ end-point spectrum of 130Te E2ν
ββ ' 2.5 MeV. A summary of the

planned radioactive sources to be deployed in SNO+ is shown in Table 2.1.

SNO+ Radioactive Sources

Source Particle & Energy [MeV]
AmBe n, γ = 2.2, 4.4 MeV

8Li β = 10.0 MeV
16N γ = 6.1 MeV

24Na γ (sum) = 4.1 MeV
48Sc γ (sum) = 3.3 MeV
57Co γ = 0.122 MeV
60Co γ (sum) = 2.5 MeV
65Zn γ = 1.1 MeV
90Y β = 2.2 MeV

Cherenkov γ Spectrum

Table 2.1: [106] Radioactive sources planned for deployment in SNO+.

2.3.1 Optical Sources

Two calibration systems are used to characterise the optical response of the detec-

tor; the laserball, which is the focus of the work presented here, and a fibre based

light injection system. Collectively, these quantify various optical effects such as

scattering, attenuation and reflections. Using these systems the timing uncertainty

of the PMTs is reduced such that the sensitivity to the temporal distribution of

physics events is increased. This is important as the timing information of the

PMTs is the most precise source of information in SNO+ and is used for the

reconstruction of both physics and background events.
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2.3.2 LED/Laser Light Injection System

The stringent radiopurity requirements in SNO+ make it is undesirable to regu-

larly deploy calibration sources stored externally. The idea of the light injection

system is to mount optical fibres onto the PSUP which are connected to an LED

or laser source in the clean room on the deck level above the cavity. The fibres

are installed as part of the detector construction, and hence do not need to be

adjusted once the experiment begins. Furthermore, the fibres are installed in the

water region of the detector, and hence the sensitive scintillator region in the in-

ner AV can remain sealed. A diagram of the fibre injection system is shown in

Figure 2.6.
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Figure 1. Sketch of the SNO+ detector showing the calibration hardware on the deck above the acrylic
vessel, as well as an example of the light injection points.

1. Introduction

In SNO+ [2, 3] liquid scintillator replaces the heavy water previously used in the SNO (Sudbury
Neutrino Observatory) experiment [1] with the primary aim of searching for neutrinoless double-
beta decay, and measuring neutrinos from nuclear reactors, the Earth, the Sun and supernovae.

The central elements of the SNO+ detector are a 12 meter diameter spherical acrylic vessel
(AV) with a 5 cm thick wall surrounded by an array of about 9500 photomultiplier tubes (PMTs)
mounted in a 17.8 meter diameter steel geodesic PMT support structure (PSUP). Each PMT is
mounted inside a reflector to increase its optical coverage. The detector is located at a depth of
2092 meters, at SNOLAB, in the Vale Creighton Mine near Sudbury, Canada, providing effec-
tive shielding against cosmic ray muons and the neutron flux resulting from muon interactions.
The inner-most detector volume is shielded from neutrons and gamma rays produced by natural
radioactivity in the PMTs and surrounding rock, by about 7 kilotonnes of ultra-pure water (bet-
ter than ppt level for 238U and 232Th contamination), contained in a 34 m-high cylindrical cavity
covered with a radon-barrier. A system of field-compensation coils embedded in the cavity wall
cancels the vertical component of the earth’s magnetic field, such that the remaining effect is a
2.5 % reduction in photon detection efficiency [1]. No preferential direction of the first dynode was
chosen when mounting the PMTs in their structure. Detector electronics, as well as the calibration
systems hardware, are located on the deck within the top part of the cavity. A sketch of the SNO+
experimental setup is shown in Figure 1. The liquid scintillator, Linear Alkylbenzene (LAB) with
2 gL−1 of PPO (2,5-diphenyloxazole), was chosen because of good optical properties – high light

– 2 –

Figure 2.6: [107] Cross-sectional diagram of the SNO+ detector. The fibres
installed on the PSUP pulse light across the detector.

The fibres pulse light across the detector that scatters or reflects based on the

fibre position and beam direction. In using many fibres installed on the PSUP,

the overlapping beam profiles of neighbouring fibres ensure a sufficient coverage of

light to all the PMTs. A full description of the light injection system is given in

[107].
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2.3.3 The Laser System and Laserball

The laserball is designed to produce an isotropic, point-like source of laser light

throughout the detector. The laserball was originally designed by R. Ford whilst

working on the SNO experiment [108], and was deployed into the detector during

several calibration phases of the SNO experiment between September 2000 and

August 2006. SNO+ will make use of the original laserball used in SNO during

the water phase. For the scintillator phase, a new laserball has been made by

the University of Sussex that is designed to be compatible with scintillator, using

materials with a low background emanation rate [109].

The principle of the laserball is to connect a laser source to a light diffusing sphere

inside the detector. This diffusing sphere is a quartz flask 10.9 cm in diameter

that is filled with 2 g of small air-filled glass beads 50 µm in diameter [110]. The

beads are suspended in 0.5 kg of silicone gel and scatter light injected into the flask

through a fibre guide inserted in through its neck. The flask is held from above by

stainless steel mounting hardware that contains the connection between the fibre

guide to the flask, and the end of a bundle of 20 optical fibres connected to the

laser. The mounting hardware is connected to the manipulator rope guide system

through a mating flange. Shown in Figure 2.7 is a technical drawing of the laserball

flask and the mounting hardware of the SNO laserball to be deployed in the water

phase. Also shown is the redesigned SNO+ laserball flask and neck intended for

use in the scintillator phase. A significant improvement of this redesign is the

reduced shadowing about the neck, ∼7.3o. This improves on the larger shadowing

∼30o of the original SNO laserball design. The shadowing of upward light from

the flask by the mounting hardware is the main cause of light anisotropy. For this

reason the laserball is only near -isotropic. As will be discussed in Section 4.2.5,

the overall anisotropy of the laserball is important to consider when interpreting

laserball data.
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Figure 2.7: The SNO and SNO+ laserball flask and light shield designs. Di-
agram is a combination of modified versions originally appearing in [109, 110].

The laser system is located inside a clean room on the deck level. It consists of a

nitrogen based laser, λ = 337.1 nm with a 1-45 Hz pulse rate of 100 µJ per pulse.

The laser is mounted to a table. Down the beam-line of the laser is a movable

mirror that moves along the table parallel to the beam-line, redirecting the beam

into one of four dye resonators. Within these resonators are cell cuvettes containing

dyes. These dyes change the wavelength of the incident laser light, resulting in

an outgoing beam with an approximate energy of 10-30 µJ per pulse [110]. The

original wavelengths and dyes used in SNO are as follows:

• Nitrogen laser, λLB = 337 nm, σλLB
= 0.1 nm
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• PBD dye, λLB = 369 nm, σλLB
= 10.0 nm

• BBQ dye, λLB = 385 nm, σλLB
= 8.0 nm

• Bis-MSB dye, λLB = 420 nm, σλLB
= 8.0 nm

• COUMARIN-500 dye, λLB = 505 nm, σλLB
= 14.0 nm

• KITON-RED Dye, λLB = 620 nm, σλLB
= 10.0 nm

These dyes were chosen to probe the Cherenkov wavelength profile which was

relevant to the solar neutrino studies of SNO. For SNO+, scintillation light will

provide the relevant wavelength profile; therefore a selection of different dyes may

be considered, this will be discussed in Section 5.1.1. Finally, before leaving the

deck level, and entering the optical fibres connected to the laserball, the resulting

laser beam intensity is controlled by the use of two successive attenuator wheels;

the first containing six course adjustment neutral density (ND) filters, and a second

with six fine adjustment filters. For a full description of the laser system see [110].

The optical fibres which transport light from the laser system on the deck level

to the laserball flask inside the detector are protected inside a triple membraned

cable known as the umbilical. The umbilical is ∼30 m long and is stored and

deployed using a pulley system inside what is known as an umbilical retrieval

mechanism (URM). The deployment of the laserball with the umbilical and URM

is shown in Figure 2.8. In SNO, the umbilical consisted of an inner Teflon tube

in which the 20 optical fibres were located. The Teflon tube was protected by

an outer polyethylene tube which itself was surrounded by an outer silicone tube.

This triple membraned design was both impermeable to water once deployed and

had a low background count, with an emanation rate less than 10% of the D2O

used in SNO [110]. For SNO+ the use of scintillator introduces three key points

of concern. Once the umbilical is deployed and retracted, it will be drenched

in scintillator; the stringent low background requirements of the scintillator and

tellurium phases mean the umbilical will need to be made from materials with a

low background count. Second, the storage of the umbilical in the URM when not

in use needs to be in a low background environment; the pulley motors need to use

little oil and operate under a nitrogen bath to avoid contaminating the scintillator

with oxygen. Finally, scintillator has a small coefficient of friction, and therefore

the pulley system of the URM needs to be robust against slippage of the umbilical



Chapter 2: The SNO+ Experiment 59

when deploying and retracting it. A new URM and umbilical is being designed by

LIP and Queen’s University for use with scintillator [111, 112].

Figure 2.8: Deployment of the laserball inside the SNO+ detector. The laser-
ball is attached to a motor-driven rope guide system via a manipulator assem-
bly which holds the laserball flask. Diagram is a modification to that originally

found in [110].

For the purposes of the work presented here, it is useful to define two sets of

coordinate systems. One is the detector coordinate system whose origin is at the

centre of the AV, with the z-axis pointing along the vertical, from the top of

the cavity to the bottom through the neck of the AV. The (x, y)-plane points in

four compass directions north (+y), east (+x), south (−y) and west (−x). The

laserball flask and mounting hardware share a similar spherical symmetry with

the AV, the local angular coordinate frame, (cos θLB, φLB) of the laserball is thus
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chosen to share a 1:1 mapping with the PSUP coordinates, north (φLB = π/2),

east (φLB = 0), south (φLB = −π/2) and west (φLB = π). The PSUP and laserball

coordinate systems are illustrated in Figure 2.9.

Figure 2.9: Illustrative diagram of the laserball coordinate system with refer-
ence to the detector coordinate system of the PSUP. The origin of the detector
coordinates is located at the centre of the AV. Both the laserball and PSUP
share a spherical symmetry, therefore the local (cos θLB, φLB) coordinates of the

laserball share a 1:1 mapping with the detector (cos θ, φ) coordinates.

2.4 SNO+ Monte-Carlo: RAT

Monte-Carlo simulations of the SNO+ detector are produced using reactor analysis

tools (RAT) [113]. Originally developed by the Braidwood collaboration, versions

of RAT have been adopted by other experiments in addition to SNO+, including

MINI-CLEAN and DEAP-3600. RAT uses both Geant4 [114] and GLG4Scint [115]

libraries to simulate scintillator properties. The MC data produced by RAT uses

a data structure based on ROOT [116] libraries written in C++.



3

Scintillators in SNO+

Life seems to me like a long, weary night that would be intolerable if there were not

occasionally flashes of light, the sudden brightness of which is so comforting and

wonderful, that the moments of their appearance cancel out and justify the years

of darkness.

Gertrude, Hermann Hesse

The use of liquid scintillator is common-place in large scale neutrino experiments

such as SNO+. Recent examples of other scintillator based neutrino experiments

include; KamLAND, Borexino, Double-Chooz and Daya-Bay [91, 94, 117, 118].

Scintillator is used because it produces luminescence in response to ionising radia-

tion (IR) propagating through it. This luminescence is also known as scintillation

light. Types of IR which induce scintillation light include;

• Electrons and positrons (β-particles); e±

• Heavy charged particles such as protons, α-particles, muons, charged mesons

and heavy ions; p, α, µ±, qq, A
ZX±.

In SNO+, these types of IR will originate from a combination of interesting and

unwanted physics events inside the detector, produced over a broad range of ener-

gies, 0.1-10 MeV. Along their path, these ionising particles deposit energy in the

scintillator, exciting and ionising atoms in the scintillator molecules. The rates

at which an IR induces excitation and ionisation in the scintillator are known as

61
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the excitation and ionisation densities, which vary based on the energy and IR

type. As will be discussed in sections 3.4.5 and 3.5, the excitation and ionisation

densities affect the time profile of the scintillation light, as well as the intensity of

the light itself. Based on the physics objectives and backgrounds in SNO+, the

most frequent types of IR are expected to be β-, α- and γ-particles. Using PMT

information, the objective is to reconstruct scintillation light from processes of in-

terest e.g. 0νββ-decay (β-particles), and distinguish it from that associated with

background processes such as the daughter nuclei of the 238U and 232Th chains

(β-, α- and γ-particles).

In comparison to SNO, scintillator provides an increased sensitivity to low-energy

neutrino interactions over D2O, for which the intensity of the Cherenkov light is

indistinguishable to that from backgrounds at energies ≤ 4.5 MeV [103]. Types

of low-energy neutrinos include solar neutrinos produced via the CNO-cycle, pp-

and pep-chains, geo-neutrinos produced within the Earth’s mantle, reactor anti-

neutrinos and supernova neutrinos [19, 119]. Unlike Cherenkov radiation, scin-

tillation light is produced isotropically, and is not correlated with the direction

of the ionising radiation which induced it. Therefore, direction reconstruction is

more challenging in scintillator than in water.

The energy sensitivity of SNO+ with respect to scintillator is dependent on three

factors;

• Scintillator light yield, L: The light yield is a measure of the number

of produced photons per quanta of energy absorbed by the scintillator; it is

the effective intensity of the scintillation light. Here, the empirical unit of

Hits MeV−1 is used to quantify the expected amount of scintillation light in

terms of the number of PMTs registering a hit in response to its production

per MeV of the incident IR. As will be discussed in Section 3.5, the light yield

is non-linear at higher energies due to a phenomena known as quenching.

• Scintillator emission profile: Scintillation light is produced with a char-

acteristic time and wavelength profile. Depending on the wavelength of the

produced scintillation light, there is an associated likelihood of light being

lost in the scintillator due to absorption or scattering; the effects of which

are collectively known as attenuation.
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• Detector optical response: In addition to attenuation, the PMTs them-

selves are more efficient at different wavelengths. The optical response of

the detector is then a characterisation of the combined effect of both the

attenuating processes and the PMT efficiencies.

The ideal scintillator for SNO+ should therefore produce a high light yield (espe-

cially in the 0νββ-decay ROI ∼2.5 MeV) over an emission spectrum whose light is

subject to minimal attenuation, but that also coincides with the optimal efficiency

of the PMTs. The physics of scintillation light and its attenuating properties is to

be discussed here. Aspects concerning the detector optical response are discussed

in Chapter 4.

Finally, the use of liquid scintillator in SNO+ requires not only changes to the

original SNO detector design, but also the associated infrastructure and systems

which neighbour the SNO+ cavity. In particular, the D2O purification facility used

in SNO has been removed and replaced with a scintillator plant for use in SNO+.

A brief description of the scintillator plant, its construction and commissioning at

SNOLAB is presented in Section 3.6.

3.1 Scintillator Structure

A variety of scintillator types exist, including; organic crystals and liquids, inor-

ganic crystals, plastics, gases and glasses. In particular, organic liquid compounds

are ideal candidates for use as scintillators as they contain carbon 12C atoms. It is

the electron configuration of carbon which gives rise to luminescence; the emission

of light associated with these types of scintillators.

12C [Z = 6] : 1s22s22p2 Ground State,

1s22s12p3 Binding State.

Figure 3.1: The electronic configuration of orbitals in a carbon 12C atom for
the ground and binding states.

When a carbon atom features in a compound the electronic structure of the ground

state is re-ordered into a binding state wherein one of the 2s electrons is excited to
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the 2p orbital, see Figure 3.1. The four electrons in the valence orbitals (2s12p3)

can orientate themselves in one of three ways [120];

• Tetrahedral, sp3: All four of the valence electrons align to form a tetrahe-

dral shape with a separation angle of ∼109o, each electron contributing to a

bond. This is the configuration exhibited by carbon in saturated hydrocar-

bons such as methane, CH4 and crystal lattice structures such as diamond.

• Trigonal, sp2: Three of the valence electrons separate in a two-dimensional

plane about, and perpendicular to a common axis forming a triangular shape

with a separation angle of 120o. These three electrons contribute to bonds

leaving a remaining valence electron in the 2p orbital, along the common

axis. This is the configuration exhibited by carbon in aromatic compounds

containing one or more ring-like benzene or toluene structures.

• Digonal, sp: Two of the valence electrons separate linearly back-to-back

with a separation angle of 180o along a common axis. These two electrons

contribute to bonds leaving two remaining valence electrons in the 2p orbital.

This is the configuration exhibited by linear compounds such as acetylene,

C2H2 and carbon dioxide, CO2.

The electrons that contribute towards bonds are called σ-electrons, the bonds

being σ-bonds. The orientation of σ-electrons in benzene, C6H6 is shown in Fig-

ure 3.2. In both trigonal and digonal configurations, one or more electrons remain

valent within the 2p orbital. These valent electrons are less tightly bound to their

parent carbon nuclei and are known as π-electrons. These π-electrons may also

form similar π-bonds in certain compounds depending on the orientation of their

respective orbitals. In ring-like structures such as benzene, the π-electrons form

a cloud of delocalised charge in parallel planes above and below the plane of the

ring, see Figure 3.3. In general, a molecule containing n benzene rings will con-

tribute 2(2n + 1) π-electrons, one from each carbon atom. The delocalisation of

the π-electrons means they require less energy than σ-electrons to be excited. It is

the excitation and subsequent de-excitation of π-electrons that is responsible for

the production of luminescence, scintillation light, in organic liquid scintillators.
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Figure 3.2: Two-dimensional plane perspective of the electron orbitals in ben-
zene (C6H6). Shown are six carbon atoms (red) with trigonal orbital orientations
(black). The σ-electrons form bonds with adjacent carbon and hydrogen atoms

(blue).

Figure 3.3: Three-dimensional perspective of the electron orbitals in benzene
(C6H6). Shown are the six valent π-electron orbitals which are directed out of
the plane of the ring structure. Collectively these form rings of positive and

negative delocalised charge above and below the plane of the ring.
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3.2 The SNO+ Scintillator

The primary scintillator used in SNO+ is LABPPO; a combination of an aromatic

compound called linear alkyl-benzene (LAB) at a concentration of 825.0 g L−1

and 2,5-diphenyloxazole (PPO) at a concentration of 2.0 g L−1. LABPPO is an

example of a binary liquid scintillator; a two component mixture containing a

solvent (LAB) and a fluor (PPO). The role of the solvent is to absorb energy

deposited by ionising radiation and transfer it to the fluor molecules, thus exciting

them. Whilst LAB will naturally scintillate, it is preferable to use a secondary

component which has a higher quantum efficiency (photons emitted per quanta of

energy absorbed). The fluor should also have an absorption spectrum coincident

with the emission profile of the solvent. The absorption of scintillation light from

the solvent by the fluor is known as radiative transfer. The fluor is often referred

to as being a wavelength shifter (WLS). As will be discussed in Section 3.4.3,

the mechanism for energy migration between the solvent and the WLS can be

radiative or non-radiative. Primarily, it is the emission of light following excitation

and de-excitation of the WLS which is associated with the scintillation light of a

binary liquid scintillator. LABPPO is to be used during the scintillator phase

of SNO+. At time of writing there are also two candidate ternary mixtures,

containing two fluors, for use in the tellurium phase; LABPPO+0.3%Te+bis-MSB

and LABPPO+0.3%Te+perylene. The chemical structures of LAB, PPO, bis-

MSB and perylene are shown in Figure 3.4.

Figure 3.4: Chemical structures of LAB, PPO, bis-MSB and perylene. All
four of these molecules contain benezene rings (red) which contribute valent
π-electrons. It is within these regions that scintillation light is produced.
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Tellurium is prone to precipitating in liquids [121]. Subsequently, an LAB based

surfactant, PRS is used to maintain suspension of the tellurium in the scintillator.

Unfortunately, the PPO emission spectrum coincides where the PRS is highly ab-

sorbing. As will be discussed, to avoid this problem, either bis-MSB or perylene

can be added as a secondary WLS to catch the PPO emission and shift the wave-

length away from the PRS absorption peaks. The concentrations of LAB, PPO,

PRS, bis-MSB and perylene are shown in Table 3.1. The side-effect of adding

PRS is that the light yield of the base mixture, LABPPO is decreased. The light

yields of the three different scintillator mixtures are shown in Table 3.2. For com-

parison, the light yield of Cherenkov radiation in water is included also. It is

the increased light yield with scintillator that allows SNO+ to probe low-energy

neutrino interactions, 1-3 MeV.

SNO+ Scintillator Component Concentrations

Scintillator Component Conc. [g L−1]

LABPPO
LAB 825.0
PPO 2.0

LABPPO+0.3%Te+Bis-MSB

LAB 825.0
PPO 2.0

PRS+0.3%Te 43.43
Bis-MSB 0.015

LABPPO+0.3%Te+Perylene

LAB 825.0
PPO 2.0

PRS+0.3%Te 43.43
Perylene 0.015

Table 3.1: Concentrations of LAB, PPO, PRS+0.3%Te, bis-MSB and pery-
lene in different scintillator mixtures for use in the scintillator and tellurium
phases of SNO+. There are currently two candidates for the tellurium phase;

LABPPO+0.3%Te+bis-MSB and LABPPO+0.3%Te+perylene.

Light Yields, L

Material L [Hits MeV−1]
LABPPO 520

LABPPO+0.3%Te+Bis-MSB 240
LABPPO+0.3%Te+Perylene 312

H2O/D2O (Cherenkov) 8-9

Table 3.2: The light yield of the three scintillator mixtures considered here.
The light yield of water from Cherenkov radiation is included for comparison.
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3.3 Excitation & Attenuation

The excitation and subsequent de-excitation of π-electrons in the fluor give rise to

absorption and luminescence. Ionising radiation loses energy as it passes through

a scintillator, depositing it in the material. A fraction of this energy is absorbed by

the material, thus exciting the molecules in it. Because of the low concentration of

the fluor, the solvent molecules typically absorb the energy and migrate it to the

fluor either radiatively and non-radiatively. Once energy is absorbed by the fluor,

excitation occurs rapidly 1-10 ps. Excitation of π-electrons occurs between the

singlet ground state, S0 and higher singlet states; S1, S2, S3. . . etc. The electrons

will also couple to the different vibrational modes of the molecule, dividing each

singlet state into further sub-levels.

The π-electrons may also exist in triplet states, T1, T2, T3 . . . etc. which exist

at a slightly lower energy than the equivalent singlet state. Direct excitation

from S0 → T1 is spin-forbidden. However, excited singlet states can transition

to their equivalent triplet state via spin-orbit coupling, often referred to as inter-

system crossing. As will be discussed in Section 3.4, this leads to different types

of luminescence. An example of the energy levels for π-electron singlet and triplet

states is shown in Figure 3.5.

The transitions between singlet states, S0 → S1, S0 → S2, S0 → S3. . . etc give

rise to the observed absorption of light in organic compounds across different

wavelengths. The absorption of a component can be measured in terms of the

molar extinction coefficient, ε a measure of the transition probability. This governs

the transmittance; the fraction of energy transmitted, as light, through a material

as defined by the Beer-Lambert law:

Transmittance = 10−A, A = εcd, (3.1)

where c is the concentration of the component in the medium and d is the path

length travelled by the light. The molar extinction coefficients for LAB, PPO,

PRS, bis-MSB and perylene from measurements made by L. Segui at Brookhaven

National Laboratory (BNL) are shown in Figure 3.6. The fluors; PPO, bis-MSB

and perylene all have much larger extinction coefficients than LAB. This is in-

dicative of the fluors higher quantum efficiency over the solvent to absorb energy

and emit light. PRS also has a larger extinction coefficient than LAB; although
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Figure 3.5: Energy level diagram for π-electrons. Shown are the singlet, Si
and triplet, Ti states. Dashed lines represent vibrational sub-levels of each state.

it is not a fluor, it only absorbs light. It is then important to note that PRS

absorbs more than PPO in the ∼370-500 nm region. This leads to absorption of

the PPO emission by PRS. It is for this reason that mixtures containing PRS also

contain bis-MSB or perylene as a secondary WLS. This is because they are more

absorbing than PRS in this region, and therefore are more likely to absorb light

and subsequently emit it at higher wavelengths away from the regions where the

PRS is strongly absorbing.

In addition to absorption, light travelling through the detector will be subject to a

variety of scattering effects; Mie, Compton and Rayleigh scattering. Rayleigh scat-

tering is the most prominent because the wavelength of optical photons O(102) nm

is larger than the water or scintillator molecules (for comparison, the diameter of

a benzene ring is ∼0.28 nm [123]). In scintillator specifically, it is the solvent

molecules (LAB) which provide the scattering media because of their large con-

centration; scattering from the WLS and PRS is negligible. Therefore, for all three

scintillator mixtures considered here, the scattering lengths are similar. Measure-

ments of the scattering lengths for each of the scintillator mixtures were com-

bined; the average scattering length of LABPPO, LABPPO+0.3%Te+bis-MSB
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1

Lext
=

1

Labs
+

1

Lscatt
(2)

In Figure 9 (a) the original data for each component is shown , i.e., the

molar extinction coefficient and in 9 (b) the extinction length is shown after

multiplied by the concentration and applied Equation 2. When we first obtained

the absorption lengths, we compared them with the old model observing some

differences, as was presented in the CM in August 2014 [2]. Since then, the PRS

scattering was measured as we will see later. In addition, each component is

discussed independently in the following sections trying to decide which data set

to use in our model. When possible I have compared with data from literature.

(a) (b)

Figure 9: (a) Original data from measurements as molar extinction coefficient.

(b) Converted to extinction length using expression 1

3.1 Study of component by component

In order to get a clear idea why the differences observed between old and new

data a detailed study component by component has been made, comparing with

extra data from literature when possible.

10

Figure 3.6: Molar extinction coefficients for LAB, PPO, PRS, bis-MSB and
perylene. Measurements made at BNL by L. Segui [122].

and LABPPO+0.3%Te+perylene is shown in Figure 3.7. The Rayleigh scattering

length increases quarticly with wavelength ∝ λ4.

Figure 3.7: Average scattering length for LABPPO(+0.3%Te+bis-
MSB/perylene). Measurements are fitted to a quartic function in wavelength.

Measurements made at BNL by L. Segui [122].
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The quantity A in Equation 3.1 is the absorbance, a decadic quantity that is related

to the naperian attenuation coefficient of the component, α as follows:

Transmittance = 10−A = e−αd,

⇒ α =
A

d
ln(10) = εc ln(10). (3.2)

Attenuation is the measure of the total extinction of light as it passes through a

medium due to absorption and scattering. The attenuation coefficient is the sum

of the absorption and scattering coefficients;

α = αabs + αscat =
1

Labs

+
1

Lscat

=
1

Lattn

, (3.3)

where Labs, Lscat and Lattn are the respective absorption, scattering and attenua-

tion lengths. Using equations 3.2 and 3.3, measurements of the molar extinction

coefficient can be related to the attenuation lengths, see Figure 3.8.

Figure 3.8: [122] Attenuation lengths for LAB, PPO, PRS, bis-MSB and
perylene.

For a multi-component material such as the SNO+ scintillator the total attenua-

tion coefficient is given as the sum of the individual coefficients:

α =
∑
i

αi = ln(10)
∑
i

εici. (3.4)
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Based on the scintillator mixture, the attenuation in scintillator will be domi-

nated by either scattering or absorption. For example, in the 375-450 nm region

in LABPPO, both the LAB and PPO molar extinction coefficients are small,

≤ 10−2 dm3 mol−1 cm−1 (weakly absorbing). Therefore, the majority of the at-

tenuation will be due to Rayleigh scattering. However, in the same wavelength

region for LABPPO+0.3%Te+perylene, the molar extinction coefficient of pery-

lene is large, and hence the majority of the light will be absorbed and reemitted

to longer wavelengths. The same applies for LABPPO+0.3%Te+bis-MSB in the

375-400 nm region. In all three of the mixtures light < 400 nm is subject to both

high levels of absorption and scattering; the scattering length is shorter than the

AV radius, Lscat < 6 m. Light in this region is therefore strongly attenuated.

Consequently, it is preferable to select a scintillation emission profile which emits

at longer wavelengths where there is less attenuation.

3.4 De-Excitation & Luminescence

The de-excitation of π-electrons to the S0 state gives rise to luminescence. De-

pending on the transition between states, the luminescence will be produced with

both a different emission and timing profile. There are three types of luminescence;

fluorescence, phosphorescence and delayed-fluorescence.

3.4.1 Fluorescence

Fluorescence is the emission of light associated with the transition of π-electrons

between S1 → S0. The majority of light produced by scintillators is through

fluorescence. The lifetime, τs of the S1 states is typically 1-10 ns. Fluorescence

is therefore considered a fast process. The intensity of the fluorescence decays

exponentially in time;

I = I0 exp (−t/τs) , (3.5)

where I0 is the initial fluorescence intensity and I is the intensity at a time t

following population of the excited states. The π-electrons which are initially

excited into higher states, S2, S3 . . . etc. quickly (∼0.01 ns) thermalise into S1 via

non-radiative internal conversion, thereafter transitioning via S1 → S0.
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It is important to note that there is also a finite time associated with the population

of excited singlet states. The length of this time depends on the nature of the

incident ionising radiation. In the case of electromagnetic radiation, the fluor can

be directly excited based on the absorption length at a particular wavelength,

whereas with charged particles the fluor is excited by the energy transfer from the

solvent molecules. The cumulative effect of these different energy transfers is a

time spread for the population of excited states. This is often referred to as the

rise-time, τr the mean time taken to populate excited states of the fluor, either

radiatively or non-radiatively. Equation 3.5 can be modified to account for the

rise time;

I = I0 (exp (−t/τs)− exp (−t/τr)) . (3.6)

The rise time is typically no greater than 1 ns but can increase as additional

components are added to the scintillator, increasing variations in energy migrations

prior to excitation and emission [124]. The rise time can therefore be alternatively

characterised as the photon-walk length, αw; the average displacement (not time)

of energy migration between components prior to emission of the final scintillation

light. This is discussed in Section 4.5.2.

3.4.2 Phosphorescence & Delayed-Fluorescence

Excited singlet states may transition to a triplet state, and vice-versa through

inter-system crossing. Inter-system crossing arises from the spin-orbit coupling of

excited π-electrons to their parent nuclei. Inter-system crossing is more favourable

when the vibrational sub-levels of the singlet and triplet states overlap. Once in

a triplet state, the molecule may acquire further energy allowing for the electron

to return to the singlet state and decay radiatively via fluorescence. Due to inter-

system crossing, this process is slower than standard fluorescence ∼10−4 s, it is

delayed and decays non-exponentially in time. Alternatively, the triplet state may

return to S0 radiatively with a similarly long life-time; this is known as phospho-

rescence. The energy level transitions for fluorescence and phosphorescence are

illustrated in Figure 3.9.
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Figure 3.9: Energy level diagram for the required transitions between singlet
and triplet states for phosphorescence and delayed fluorescence.

3.4.3 Energy Migration

Due to small concentrations of the fluor, the majority of the energy deposited by

the IR is absorbed by the solvent molecules. Once this occurs, there are several

mechanisms between the scintillator components that compete for this energy. For

example, the energy could be transferred to the fluor, or another solvent molecule

either radiatively, e.g. emission followed by absorption, or non-radiatively e.g.

vibrational collisions. Alternatively, energy may be lost within the molecule it-

self through internal conversion. Figure 3.10 outlines the different mechanisms

in a binary system such as LABPPO. The complexity of the competing pro-

cesses is compounded for ternary systems, e.g. LABPPO+0.3%Te+bis-MSB and

LABPPO+0.3%Te+perylene, which contain two types of fluor in addition to PRS.

3.4.4 Wavelength Shifters

As outlined in Section 3.3, the use of a secondary WLS is necessary during the

tellurium phase to avoid absorption of the PPO emission by the surfactant, PRS.

The current candidates for this secondary WLS are bis-MSB and perylene. As

shown in Figure 3.11, both absorb relatively strongly in the primary PPO emission

region 350-370 nm. Bis-MSB emits in a region of 390-450 nm whilst perylene emits

at longer wavelengths, 450-500 nm.
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Figure 3.10: Flow diagram of the processes competing for energy in a binary
scintillator. Energy can be transferred from the initially excited molecule to the
solvent or fluor either radiatively or non-radiatively. It is also possible for the

energy of the excited molecule to be lost through internal conversion.

Emission followed by immediate absorption is known as reabsorption. When the

molecules emitting and absorbing are of the same type, it is called self-absorption.

Reabsorption and self-absorption arise from overlaps in the absorption and emis-

sion spectra. As will be discussed in Section 7.1.1, the level of reabsorption or

self-absorption is geometrically constrained by the size of the bulk liquid. As gov-

erned by the absorption lengths of the individual components, the longer light

must travel through the scintillator, the more likely it is to be reabsorbed.

It is important to note that at wavelengths . 400 nm and . 450 nm in the bis-MSB

and perylene scenarios respectively, regardless of the type of incident IR, the emis-

sion spectra of the scintillator will closely match that of the secondary wavelength

shifter. An example using 400 nm photons in LABPPO+0.3%+perylene is shown

in Figure 3.12, in which none of the original 400 nm is detected at the PMTs; it

is absorbed and reemitted at longer wavelengths. For this reason, the emission

spectra of the secondary WLS must also coincide with the quantum efficiency of

the PMTs to detect light of a particular wavelength. In addition, scintillation
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Figure 3.11: The absorption lengths of LAB, PPO and (top) bis-MSB and
(bottom) perylene. Shown also are the respective emission spectra for PPO,
bis-MSB and perylene. Bis-MSB and perylene absorbs the PPO emission 350-
370 nm, reemitting at longer wavelengths; predominantly 390-450 nm (bis-MSB)

and 450-500 (perylene).

light produced in the inner AV region will also need to pass through the acrylic

of the AV itself, which is absorbing at shorter wavelengths. Figure 3.13 illustrates

how the emission of the different wavelength shifters relates to the efficiency of the

PMTs and the absorption length of the acrylic across different wavelengths.

The final choice of the secondary WLS to be used needs to account for the above

factors. For example, the higher wavelengths of the perylene emission favours

less scattering, less overall attenuation and higher transparency in the acrylic.

However, the shorter wavelengths of the bis-MSB spectrum favour a higher PMT
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Figure 3.12: The emitted (black) and detected (red) emission profile
from simulations of 400 nm photons at the centre of the detector in
LABPPO+0.3%Te+perylene. At its maximum, the detected spectrum is ∼22%
of the emitted spectrum at∼475 nm. This corresponds to the approximate PMT
efficiency of 21-22% in this region, see Figure 3.13. Above 550 nm the PMT
efficiency is very small, this is reflected in the suppressed tail of the detected

spectrum.

efficiency. Alongside the optical properties of the WLS, other factors include;

compatibility with expected reconstruction techniques, cost, chemical compati-

bility with the other detector materials and the techniques used to purify the

scintillator.

3.4.5 Scintillation Time Profile

Depending on the nature of the incident radiation, the timing of the scintilla-

tion profile will be different. This is particularly important when discriminating

between β- and α-particles passing through the scintillator. α-particles have a

greater excitation density than β-particles, meaning that excitations of the singlet

states become saturated, increasing the likelihood of populating additional triplet

states. The saturation of excited states increases the overall light yield of the

scintillation process. However, the triplet states lead to a longer effective lifetime

of the scintillation intensity due to delayed fluorescence. Reconstruction exploits

this phenomena in order to identify different particles based on the scintillation
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Figure 3.13: The quantum efficiency of the SNO+ PMTs alongside the emis-
sion spectra of PPO, bis-MSB and perylene. Shown also is the absorption length
of the acrylic of the AV itself which absorbs light at shorter wavelengths. The
PMT efficiency curves comes from measurements originally made in the SNO

design phase [125].

time profile. In particular, this can be combined with coincidence timing to re-

move Bi-Po background events; the decay of 212Bi (α/β emission, t1/2 ∼60 mins)

followed by 212Po decay (α/β, tβ1/2 ∼3 mins, tα1/2 ∼0.30 µs). An example of the

scintillation time profiles for β- and α-particles is shown in Figure 3.14.

Past studies of the scintillator mixtures for SNO+ [126, 127] have found that the

scintillation timing profile for β- and α-particles can be well characterised as a

linear combination of three exponential decay profiles;

I = I0

3∑
i=1

Ni exp (−t/τi) ,
3∑
i=1

Ni = 1, (3.7)

where Ni are normalisation constants.
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Figure 3.14: The scintillation time profiles for β- and α-particles in
LABPPO+perylene (blue) and LAB+perylene+0.3% tellurium (red). In both
mixtures, the α-particle profile has a longer and larger tail following the main
peak due to increased delayed fluorescence. Measurements made at the Univer-

sity of Pennsylvania by S. Grullon [126].

3.5 Quenching

Following prolonged exposure to ionising radiation, the efficiency of a scintilla-

tor will deteriorate. Degradation is due to ionisation; the liberation of electrons

from the bound states with their parent nuclei. Highly energetic particles such

as cosmogenic muons and α-particles ionise atoms in the scintillator as they pass

through it. The ionisation density associated with these particles is enough to tem-

porarily or permanently damage the molecules. Recovery from temporary damage

is via ion-recombination. Studies suggest that ∼75 % of ion-recombination is into

triplet states, thus slowing the fluorescence process; the fast component of the

scintillator. Permanent damage results in impurities in the scintillator, making

the affected molecules unavailable for the production of luminescence [120]. Col-

lectively these effects are known as quenching. For sufficiently energetic ionising

radiation, quenching limits the increase in light yield of a scintillator.

Experimental evidence suggests that as the energy of the incident IR increases,

the change in light yield of the scintillator becomes non-linear and approaches a

constant, maximum value. The quenching curve for anthracene; a scintillating
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aromatic compound is shown in Figure 3.15. In this example, protons, β- and α-

particles reach an energy at which the increase in the light yield begins to plateau.

Figure 3.15: [120] The quenching of the scintillating compound, anthracene.
As the incident energy of the IR increases (∝dE/dx) the change in the light

yield (dL/dx) becomes non-linear and plateaus due to quenching.

It is useful to define two quantities which relate the change in light yield, dL/dx

of the scintillator to the change in energy of the ionising radiation along its path,

dE/dx. At low energies the scintillator response is linear;

dL

dx
= S

dE

dx
, (3.8)

where S is the efficiency of the scintillator to convert energy into luminescence. A

relation known as Birk’s law characterises the non-linear response of the scintillator

at higher energies [120];

dL

dx
=

S dE
dx

1 + kB
dE
dx

, (3.9)

where kB is an IR and material specific quantity known at Birk’s constant or

quenching factor. This characterises the rate of plateau of the scintillator response

at higher energies. At low energies (dE/dx � 1) Equation 3.9 returns to the

expression in Equation 3.8. At high energies (dE/dx � 1) the change in light
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yield approaches a constant value;

dL

dx
' S

kB
= const. (3.10)

Members of the SNO+ collaboration recently published measurements of kB for

α-particles in LAB obtained using three independent methods [128];

[LAB, α] : 0.0066± 0.0016 < kB < 0.0076± 0.0003 cm MeV−1. (3.11)

These results provided the first accurate account of quenching for α-particles in

LAB. This is of use to not only SNO+, but also other LAB based experiments

who hope to use the discriminating power of scintillator to identify particle types.

3.6 The SNO+ Scintillator Plant

The D2O purification facility used in SNO has been removed and replaced with

a scintillator plant for use in SNO+, located in an adjacent drift to the detector

cavity as shown in Figure 3.16. This facility consists of 39 volumes varying between

0.5-4 m3 : 13 vessels, 17 kettles and 9 columns. These are all interconnected with

approximately 2 km of pipeline. The main function of the plant is to purify and

mix the various scintillator components; the solvent (LAB), the fluors/WLS (PPO

and bis-MSB/perylene), the surfactant (PRS) and the tellurium.

After contractual work to assemble the scintillator plant itself was completed, the

plant entered a phase of stringent assessments and post processing in order to

comply with the strict background requirements of the experiment. This involved

helium leak checking of all volumes and pipelines. This is discussed in Section 3.7.3.

Starting in January 2013, construction and assessment of the plant took approx-

imately two and a half years to complete. Given the associated logistical and

engineering constraints, the strict safety regulations imposed by VALE and the

cleanliness standards of SNOLAB itself, the construction of an industrial sized

scintillator plant 2 km underground is one of greatest achievements of the SNO+

commissioning phase.
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Figure 3.16: Three-dimensional plan layout of SNOLAB. Shown are the lo-
cations of the SNO+ detector cavity and the approximate location of the scin-

tillator plant in the adjacent drift.

3.7 A Deep Rooted Plant

The scintillator plant is central to the overall strategy of processing LAB at SNO-

LAB; transporting it underground, purifying it, putting it into the AV and ulti-

mately returning it to the surface once SNO+ completes collecting data. It is lo-

cated as close to the detector as possible in order to minimise backgrounds induced

by exposing the LAB to cosmogenic activity which would otherwise accumulate at

a higher rate through surface storage. In addition, once the individual scintillator

components arrive underground, the plant applies various purifying techniques to

ensure the final mixture is compliant with the background requirements of the

experiment itself.

A consequence of the plant location highlights several associated logistical and

technical considerations; the safety regulations imposed by VALE on the trans-

portation and storage of chemicals underground, and the highly constrained con-

tainment area available for construction of the plant inside SNOLAB itself.
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3.7.1 Transportation & Storage of LAB

The main task when transporting and storing LAB is to minimise its exposure

to cosmogenic activity on the surface. Consequently, the available infrastructure

available to SNOLAB has been maximised in order to transport as much LAB as

possible in a working day whilst maintaining cleanliness requirements.

LAB is sourced from CEPSA Qúımica SA who deliver to SNOLAB three times

a week using road tankers with a capacity of 22 tonnes each, 66 tonnes week−1.

Once delivered, the LAB is temporarily stored in the surface transfer facility, a

70 m3 holding tank which acts as the loading terminal for six rail tanker trucks,

each with a capacity of 3 m3, equivalent to 2.2 tonnes of LAB, see Figure 3.17. The

rail tankers transport the LAB underground and return once a day. This equates

to approximately 13 tonnes day−1 of LAB. Assuming a 5-day weekly working

schedule, the rail tankers are able to deliver 66 tonnes week−1 underground. The

1000 kg hr−1 flow rate of the scintillator plant is therefore sufficient to process all

the LAB arriving underground within the week of its arrival [97]. Ultimately, the

rate of LAB transported underground is limited only by the capacity and number

of rail tankers.

Figure 3.17: The surface rail tankers (left) used to transport the LAB from
the SNOLAB surface transfer facility (right).
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3.7.2 Construction of the Plant

The scintillator plant occupies the same area as the D2O processing facility previ-

ously used in SNO, situated within a 15.3 m × 4.6 m containment area. The plant

exists on two levels that are separated by a grated steel mezzanine floor [129]. The

first and second levels have overhead clearances of 3 m and 2-3 m respectively (the

ceiling height on the second level varies due to the cavernous nature of the rock

in the drift ceiling). An additional 2 m pit was excavated from the drift floor on

the first level to make room for the larger columns as shown in Figure 3.18.
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Figure 3.19: The lower (left) and upper (right) levels of the scintillator plant.

3.7.3 Helium Leak Checking

The scintillator plant must operate in compliance with the stringent radiopurity

levels required by the experiment. The mine rock from which the lab is excavated

regularly emanates radon, and hence the operating components of the plant must

be sealed to prevent the accumulation of backgrounds in the scintillator prior to

deployment into the AV. The seal integrity of all the vessels and pipelines were

checked using a helium leak detector. For the target levels of 238U = 1.6×10−17 g/g

and 232Th = 6.8× 10−18 g/g in LABPPO, the equivalent leak rate (LR) for each

connection between every component is required to be ≤ 1 × 10−9 mBar L s−1

[102, 129]. The author spent eight months helium leak checking between March

- December 2014 with a team of other collaborators. An overview of the leak

checking procedure is now given.

The scintillator plant is designed to act as a single operating entity, in which scin-

tillator is continuoisly processed, flowing through the plant whilst being stripped

of backgrounds and mixed with other components. Leak checking the entire plant

in a single pass is infeasible, and therefore the plant was leaked checked systemat-

ically by identifying subsets of components e.g. vessels and interconnected pipes,

and isolating them from the rest of the plant to form a closed loop or spool.

Leak checking of a loop/spool is composed of four steps;
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• Loop isolation: The isolation of a vessel or pipeline involves the installa-

tion of blind flanges or caps onto one or several of its ports. The interface of

these blinds can vary from 1/4′′-1′′ VCR Swagelock gaskets to 1′′-12′′ diam-

eter conflat flanges. Hand-valves located on the pipes can also be closed to

provide a termination point. One port in the loop is then selected to attach

a KF adapter to which a vacuum pump can be attached. Aluminium tape

is applied around all joints, seals and welds that are to be tested.

• Achieving vacuum in the vessel: An Edwards nXDS6i or XDS-5 [130]

scroll pump is attached to the KF adapter and used to evacuate the loop,

reducing the internal pressure from an initial 1000 mBar to 0.1 mBar. In

achieving this level of vacuum, any traces dust or water vapour are removed

from inside the loop. Dust and water vapour is damaging to the pump and

spectrometer contained in the helium leak detector. It is for this reason a

scroll pump that is more robust to particulates is used first. Next, the loop is

sealed off temporarily by use of a needle valve such that the scroll pump can

be replaced with a helium leak detector (model: Leybold INFICON UL 200

[131]). The leak detector also features a vacuum pump which is used to

further increase the vacuum inside the loop from 0.1 to 10−3 mBar [132].

• Helium injection: The helium leak detector is switched into detect mode.

Inside the helium leak detector is a helium-calibrated mass spectrometer. In

detect mode a small internal inlet valve is opened exposing the spectrometer

to the vacuum of the loop. A small hole is then pierced through the alu-

minium tape on one of the testing locations on the loop, and using a helium

cannister attached to a probe a short injection of helium is sprayed into the

hole. A waiting period ensues in order to see if any helium is registered at

the leak detector (i.e. to see if the testing location leaks). Based on the

proximity of the injection point to the detector, the waiting period can vary

between 1-60 mins.

• Vessel reconnection: If the LR at each of the testing locations meets or is

below the required 10−9 mBar L s−1 threshold then the loop is disassembled

and final connections are made to reintegrate the loop into the rest of the

plant. If any of the tests fail then the problem is diagnosed and fixed before

testing again. A commonly encountered problem was misalignment of the

gasket between two components. Before retesting a further waiting period

is required to evacuate all the helium from the loop. For this reason, testing
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locations closest to the pump were checked first such that in the case of a

leak any residual helium could be quickly removed from the loop.

In practice, the procedure is complicated for a number of reasons. For exam-

ple, some hand-valves use a Teflon diaphragm which is not sufficient to use as a

termination point along a pipeline. In addition, some valves were actuated, and

could only be opened with an air supply; a series of airlines needed to be installed

in such cases. Also, many of the flow-valves, by design, restrict back pressure

meaning they can only be evacuated from one direction. The most important

consideration is the making of final connections, once a connection was tested as

part of one loop, it could not be disassembled in preparation for another. This ul-

timately constrained the choice of loops, making some large. Large loops required

both morning and night shifts to prepare and pump down in order to achieve

a vacuum. An illustrative summary of the leak checking procedure is shown in

Figure 3.20. Photos of the components which have been described are shown in

Figure 3.21.

Figure 3.20: Illustrative diagram of helium leak checking. A vessel and its
connecting pipelines and ports are blinded or terminated and sealed with alu-
minium tape. The helium leak detector ensures a vacuum of 10−3 mBar L s−1.
Helium is injected at one of the seals. If helium enters the vacuum it is eventu-

ally detected by the leak detector.
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Figure 3.21: Top-left: helium leak detector and vacuum pump. Top-right:
scroll vacuum pump. Middle-left: needle valve. Middle-right: pipelines and
hand-valves. Bottom-left: author beside vessel. Bottom-right: join sealed with

aluminium tape, a hole is pierced in order to inject helium.
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Following completion of helium leak checking. The plant underwent cleaning and

passivation in which water and acid was forced through the plant to clean the

inner surfaces of the vessels and pipes. Cleaning and passivation was completed

in 2015. As of 2016, the final work has begun on integrating the electronics and

power systems to the instruments in the plant that will monitor the purification

chain of the final scintillator mixture. As discussed, the final composition of this

mixture has yet to be decided upon, and therefore some operational aspects of

the plant may be subject to change once a final decision has been made. The

scintillator plant will be operated for a first time during the initial scintillator

phase some time in 2017.
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Characterising Optical Response

These things move within you as lights and shadows in pairs that cling.

And when the shadow fades and is no more, the light that lingers becomes

a shadow to another light.

The Prophet, Kahlil Gibran

Thus far, chapters 2 and 3 provided individual descriptions of the SNO+ detector

and the principle fiducial material; scintillator. However, in practice both need to

be combined and understood as a coherent entity - how do the characteristics of

one affect the other? Indeed, the PMT efficiency can be accurately measured in

a lab; similarly, the emission profile of the scintillator can be well characterised

under the same conditions. But what if there are ∼9000 PMTs? What if there

is ∼780 tonnes of scintillator? Do all PMTs to behave the same? Does a small

sample of scintillator reflect the characteristics of a bulk quantity at the tonne

scale? The answer is no, and although this may appear obvious, it motivates a

further and ultimately more crucial consideration; how does the large scale nature

of the SNO+ detector in its many components and bulk materials impinge upon

the sensitivity to a physics event, and in the case of 0νββ-decay, an event whose

ROI is narrow, 2.47-2.70 MeV [74]. And, given all this, does the detector correctly

interpret the true energy of these physics events? These are the questions to

be answered by a full detector calibration, a component of which is the optical

calibration; a measurement of the detector response using controlled light sources

deployed in-situ: inside the detector.

91
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As described in Chapter 2, there are two optical calibration sources. The focus of

the discussion presented here is under the context of one of these, the laserball.

Henceforth, this chapter and those which follow seek to address and characterise

the optical response of the SNO+ detector in both the water and scintillator phases

of the experiment using laserball data.

4.1 Optical Response

In the planned water and scintillator (with or without tellurium) phases, the scin-

tillator or water will be sensitive to ionising radiation within the detector. This

radiation will arise from both physics events of interest and undesired background

events. The scintillation or Cherenkov light produced from these events subse-

quently propagates through the detector and is the messenger of the physics event

information. It is important to understand the behaviour of this light as it reaches

the PMT. In characterising the optical response of the detector, an understanding

of the following aspects is required;

• Optical effects: As photons propagate through the detector it will be sub-

ject to optical processes such as refraction, reflection, absorption and a va-

riety of energy dependent scattering interactions; Rayleigh, Compton and

Mie. The prominence of these effects is governed by the material properties

of the detector; the water or scintillator in the inner AV region, the acrylic

of the AV itself and the outer AV water region in the cavity. In particular, it

is of interest to measure the combined effect of the absorption and scattering

effects, collectively known as attenuation, as described in Section 3.3.

• Detector components: The measurement of a physics event rate involves

summing reconstructed events in a variety of locations throughout the de-

tector. The PMTs then need to be sensitive to light from these different

positions. Therefore, it is important to determine the combined efficiency of

the PMTs and their surrounding reflectors across the different wavelengths

and incident angles that light is expected to reach them. In practice the

AV is not only a spherical vessel surrounded by PMTs, but it is also sur-

rounded by several structures that support the AV itself. For a given source

of light inside the AV, these structures will obstruct light reaching certain
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PMTs, effectively shadowing them from the light source. This also needs to

be accounted for.

• Intrinsic scintillator properties: Based on the scintillator composition,

certain wavelengths of light will be absorbed and reemitted by wavelength

shifters. Probing this process and the time period over which it occurs

is necessary as it will manifest changes in the timing distribution of light

detected at PMTs.

The characterisation of these three items will be discussed here alongside their

implementation into a parameterised model that can be used with laserball data.

In addition, it is also important to consider the effect these aspects have on the

overall physics objectives of SNO+ in searching for physics events at the 1-3 MeV

scale.

4.1.1 Energy & Physics Sensitivty to Optical Effects

To understand physics in SNO+ is to understand the energy response of the de-

tector; to understand this response is to understand the optical effects that un-

derpin them. The expected energy resolution in scintillator is several hundreds

of keV, which translates to a ∼4-8% uncertainty in the 0νββ-decay ROI. Back-

ground events are the main challenge in achieving this target sensitivity to possible

0νββ-decay events. A variety of background sources cumulatively provide a near

diffuse source of β-, α- and γ-particles in the detector across a range of energies,

0.1-10.0 MeV. These backgrounds need to be well understood, and through appro-

priate techniques rejected to a high degree of efficiency e.g. > 99.99% for Bi−Po

[74]. The success of these rejection techniques relies on the accuracy of the PMT

hit distributions to reflect not only the true temporal and spacial nature of an

event, but also the energy scale at which it occurred. The success of background

rejection is therefore directly related to the response of the detector to light; later

interpreted as the energy of an event.

The energy reconstruction of an event is strongly related to the detector response

which is itself dependent on attenuation and the PMT response. To illustrate

this, shown in Figure 4.1 are two MC examples of the reconstructed energies of

2.0 MeV electrons distributed uniformly throughout the inner AV region filled with
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LABPPO scintillator. The top figure shows the reconstructed energy for different

scalings of the scintillilator attenuation length; scaling both the absorption and

Rayleigh scattering lengths by a given percentage. Similarly, the bottom plot

highlights the change in the reconstructed energy for different values of the PMT

reflector reflectivity. As one would expect, both shorter attenuation lengths and

smaller reflectivity decrease the reconstructed energy; the light information has

been lost.
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Figure 4.1: Reconstructed energies of MC 2.0 MeV electrons distributed uni-
formly throughout the inner AV region in LABPPO scintillator with different
scalings of the attenuation length (top) and PMT reflector reflectivity (bottom).
The smaller the scaling-%, the larger the rate of attenuation or loss of light re-
spectively. Deviations from the expected mean of each distribution, µ are shown

in the legend.
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It is reasonable to expect changes in attenuation and the reflector reflectivity; over

time contaminants may leech from the detector components or cavity walls causing

an increase in attenuation; the PMT reflectors may degrade and lose reflectivity.

A characterisation of the optical response allows these properties to not only be

measured, but also monitored over time such that any drift in the optical response

can be quantified. The following description of the optical model is based on the

same model as studied in successive optical calibrations in all three phases of the

original SNO experiment [133, 134].

4.2 Optical Response Model

Optical calibration with the laserball is sought by collecting individual PMT in-

formation over the course of a laserball run. A run consists of the laserball being

moved to a specific position inside the inner AV region and triggered, pulsing near-

isotropic light at a fixed wavelength. For a laser pulse rate of 28-40 Hz, the run will

last ∼20-30 minutes. Many laserball runs are performed at the same wavelength

in different positions, some in central positions (where the laserball is positioned

at the centre of the AV) and some off-axis (not at the centre). Collectively, this

forms a complete set of runs known as a laserball scan. A complete laserball data

set consists of several scans at different wavelengths.

For a given laserball run i, the number of photons expected at PMT j, Nij can be

modelled (Nmodel
ij ) as the product of the following terms;

Nmodel
ij = NiεjΩijTijRijLij exp

(
−
∑
k

dij,kαk

)
, (4.1)

where the sum over the index k denotes the different regions of the detector, k =

inner AV, AV and outer AV regions. Each term in this expression is as follows:

• Laserball intensity normalisation, Ni: The number of photons emitted

by the laserball and detected at all PMTs within a prompt time window

(described in Section 4.2.3) throughout the run.
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• PMT efficiency, εj : The intrinsic efficiency of PMT j and its associated

electronics. This is the combined efficiency of the PMT to convert incident

light to a photoelectron, and for the subsequent accumulation of charge at

the PMT anode to pass the discriminator threshold, registering a hit.

• PMT solid angle, Ωij : The solid angle subtended by PMT j from the

laserball position in run i.

• Fresnel transmission coefficient, Tij : For a laserball deployed in the

inner AV region, this is the combined transmission probability necessary for

light crossing two detector media boundaries in order to reach the PMT; the

inner AV/AV and AV/outer AV interface boundaries.

• PMT angular response, Rij : The efficiency of the PMT reflectors to

redirect light entering the PMT bucket onto the PMT face, specifically light

entering the PMT bucket beyond the solid angle area subtended by the PMT

face. This is a function of the incident angle at which light enters the bucket,

θγ i.e. Rij (θγ,ij).

• Laserball light distribution, Lij : This is the relative intensity of the

laserball based on the predicted direction at which light leaves the laser-

ball surface to reach a PMT. This is typically parameterised using the local

angular coordinate frame of the laserball i.e. Lij
(
cos θijLB, φ

ij
LB

)
.

• Distance through detector region, dij,k: This is the calculated distance

that light travels through each of the inner AV, acrylic and outer AV regions

to reach the PMT.

• Detector region attenuation coefficient, αk: The attenuation coeffi-

cient (the reciprocal of the attenuation length, αk = L−1
k,attn) of each of the

inner AV, acrylic and outer AV regions.

The product of these terms describe an effective probability for light emitted by

the laserball to be converted into PMT hits. Based simply on the relative position

between a PMT and the laserball, some of these terms can be directly calcu-

lated analytically; Ωij, Tij, dij,k. And, as will be discussed, other terms such as



Chapter 4: Characterising Optical Response 97

Ni, Rij, Lij and αk are calculated using a statistical fit of the model over laser-

ball data. However, in both instances these parameters require the information

contained in a vector description of the light path between the laserball and the

PMT in order to provide θγ,ij, dij,k, cos θijLB and φijLB. It is therefore important to

calculate this description of the light path as it travels through the detector.

4.2.1 Calculation of a Light Path

A light path can be characterised by a starting and finishing location within the

detector. In the context of a physics event, these two locations would be a re-

constructed event vertex and a PMT position. For laserball studies, the laserball

position replaces the event vertex. In general, a solution for a light path between

these two points is non-unique. There can exist several physically plausible paths

between these two points, each with different path lengths. Therefore, a third con-

straint, the initial direction vector from the laserball, is required to ensure that the

shortest of these possible paths is calculated. In terms of a likelihood, the shortest

path is the most probable, and best represents the average distance travelled by

photons contributing to the prompt signal recorded by the PMT.

What follows is a calculation of the light path that approximates the path through

the detector between any two given points. These points are defined in the global

detector coordinates, with the origin located at the centre of the AV, as shown

in Figure 4.2. This calculation was implemented into RAT’s light path calculator

utility [135].

4.2.1.1 Mathematical Description of a Path

As an example, let ~ri be the starting position of the light path somewhere inside

the scintillator region and let ~rj be the position of some PMT, j in the PSUP. Let

~r1 and ~r2 be the locations, respectively on the inner and outer surface of the AV

where the path transitions between the inner AV/AV and AV/outer AV regions;

~ri := Path start position,

~rj := Path end position (PMT position).
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The above definitions of ~ri and ~rj can be used to define a set of coordinates

(x′, y′, z′) that determine the geometric plane containing both ~ri and ~rj and the

connecting path between them;

x′ = ~̂ri, z′ = x′ × ~̂rj, y′ = z′ × x′. (4.2)

• x′-direction : The direction defined by the radial vector pointing from the

origin (centre of the AV) to the starting position i.e. x̂′ = ~̂ri.

• z′-direction : The direction perpendicular to both the radial vector from the

origin to the starting position and the radial vector from the origin to the

PMT position. Mathematically, the z′-direction unit vector defines the plane

in which the path is calculated.

• y′-direction : The direction defined by the cross product of the x′- and z′-

directions: y′ = z′ × x′. The y′-direction is therefore perpendicular to both

the x′- and z′-directions, but lies in the same plane as the x′-direction.

As shown in Figure 4.2, in the plane as defined above, the angles between subse-

quent vector pairs;

{~ri, ~r1} : θi1, {~r1, ~r2} : θ12, {~r2, ~rj} : θ2j, (4.3)

collectively define the required angular displacement between the start and PMT

position i.e.

θi1 + θ12 + θ2j = θij = cos−1
(
~̂ri · ~̂rj

)
. (4.4)

Using Snell’s law of refraction for light passing through material A (refractive

index nA) to material B (refractive index nB);

nA sin θA = nB sin θB, (4.5)
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Figure 4.2: Shown is an example illustration of a refracted light path between
the start position, ~ri and the PMT position, ~rj in the plane as defined by z′ (out
of the page). The vectors ~r1 and ~r2 are the respective vectors to the intersection
points of the path with the inner AV/AV and AV/outer AV interfaces. The
angles θi1, θ12 and θ2j are the respective angles between ~ri and ~r1, ~r1 and ~r2 and
~r2 and ~rj . The global coordinate frame is denoted by the red axes, the path

coordinate frame is in turquoise.
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and a combination of sine and cosine rules (see Appendix A.1 for a full derivation),

these three angles can be analytically described as a function of the angle between

the radial starting position vector, ~ri and the initial photon direction, ~rγ:

θγ = cos−1
(
~̂ri · ~̂rγ

)
, (4.6)

cos θi1 (θγ) =
|~ri|
|~r1|

sin2 θγ + cos θγ

√√√√(1−
( |~ri|
|~r1|

sin θγ

)2
)
, (4.7)

cos θ12 (θγ) =
1

|~r1| |~r2|

(
nScint

nAV

ri sin θγ

)2

+

√1−
( |~ri|
|~r1|

nScint

nAV

sin θγ

)2

×
√

1−
( |~ri|
|~r2|

nScint

nAV

sin θγ

)2
 , (4.8)

cos θ2j (θγ) =
1

|~r2| |~rj|

(
nScint

nH2O

|~ri| sin θγ
)2

+

√1−
( |~ri|
|~r2|

nScint

nH2O

sin θγ

)2

×
√

1−
( |~ri|
|~rj|

nScint

nH2O

sin θγ

)2
 . (4.9)

Using equations 4.7 - 4.9 an expression for θij (θγ) is thus obtained;

θij (θγ) = cos−1 (cos θi1 (θγ)) + cos−1 (cos θ12 (θγ)) + cos−1 (cos θ2j (θγ)) . (4.10)

Based on the initial event position, ~ri and the position of the hit PMT, ~rj, the

calculation of a path between these two points, dPath should provide the individ-

ual distances - assumed straight lines themselves - through the scintillator, dScint,

acrylic, dAV and water, dH2O such that;

dpath = dScint + dAV + dH2O ≥ |~rj − ~ri| , (4.11)

where equality holds only for cases of normal incidence i.e. |~̂ ir · ~̂ jr| = 1.
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4.2.2 Time Residuals & Group Velocity

The distance information provided by a path can be combined with additional

information, such as the photon group velocity in each material to calculate what

is known as the time residual, tres;

tres + t0 = tPMT − tToF = tPMT −
∑
k

dk
vg,k
− tbucket (θγ) , (4.12)

where values of dk and vg,k denote the distances and group velocities of the pho-

ton in the respective detector regions as before. The value tbucket (θγ) is a small

correction ∼0.45-0.7 ns to account for the fact that the path is calculated to the

entrance of the PMT bucket, not the face of the PMT itself. tbucket (θγ) therefore

accounts for the time spent inside the bucket region of the PMT prior to hitting

the PMT face; it is related to the incident angle and discussed here [136] and in

Appendix A.2. The time residual, tres can be thought of as the corrected, instant-

neous event time which accounts for the light propagation time to the PMT, tToF

relative to the time of an event epoch, t0 and a PMT hit time, tPMT. Calculation of

the time residuals from the PMT hit times are used for reconstruction e.g. event

identification. The distributions are themselves interesting, as they reveal both

detector reflections and PMT characteristics, an example is shown in Figure 4.4.

Both the distances and group velocities are wavelength dependent. The distances

are governed by the level of refraction between each material interface and thus

the refractive index, n (λ). The group velocity is related to the refractive index

(and hence the wavelength) through the following relation;

vg (λ) =
c

n (λ)− λ∂n(λ)
∂λ

, (4.13)

where c = 3× 108 m s−1. The refractive indices and group velocities for LABPPO

scintillator, acrylic and water are shown in Figure 4.3.

With a treatment of the light path now presented, it may be used to provide the

necessary values of the distances dScint, dAV and dH2O and the angular information;

(cos θLB, φLB), obtained from ~rγ and the incident angle at the PMT using ~r2 and

~rj.
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Figure 4.3: The dependency of the refractive indices (top) and group velocities
(bottom) with wavelength. Shown are the refractive indices and group velocities
for LABPPO scintillator (black), the acrylic of the AV (red) and the outer AV

water (green).

4.2.3 Prompt Peak Count Calculation

In the model description, the calculation of the light path assumes no reflections

or perturbations to the path distance or direction due to reflections or scattering;

it therefore only describes the path of the prompt light, identified as the global

peak of the time residual distribution. Similarly then, the observed number of

prompt counts, Ndata
ij is calculated by integrating the number of counts within a
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Figure 4.4: Shown is the laserball time residual distribution across all PMTs in
LABPPO at 420 nm simulated in RAT with the laserball positioned at the centre
of the AV. The distribution reveals populations of reflected light from various
detector components (the 35o PMT reflection is described in Section 4.2.4).
Revealed also are the intrinsic properties of the PMTs themselves, with both

pre- and late-pulsing populations either side of the prompt peak.

time window about the prompt peak. First, the global time residual distribution

across all PMTs is calculated as in Equation 4.12. A peak finding routine is used

to identify the central time value of the global peak, which is known as the global

time offset (GTO); it is the approximate time that the laserball was triggered,

t0 within a nominal time window. An example of the time residual distribution

and global time offset are shown in Figure 4.5 for an MC simulation of a central

laserball run in LABPPO at 505 nm.

The global time offset is subtracted from the time residual distribution of each

PMT such that its prompt peak is centred about t = 0. The value of Ndata
ij is

then the total number of counts ±4 ns either side of the central peak value. The

value of 4 ns is chosen to maximise the prompt light without including tails from

the pre- or late-pulsing of the PMTs. This value was used previously in SNO

[133, 134, 137]. The integration of the prompt peak at an example PMT is shown

in Figure 4.6.
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Figure 4.5: Shown is the time residual distribution for a SNO+ MC central
laserball run in LABPPO at 505 nm. The central value of the global peak is

identified as the global time offset for the event window.
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Figure 4.6: Shown is the individual time residual distribution for a PMT in
a SNO+ MC central laserball run in LABPPO at 505 nm. The time residual is
centred about zero following subtraction of the global time offset. The prompt
peak count of the PMT, Ndata

ij is the integrated number of counts in a window
±4 ns either side of the peak centre.
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The central time value of the peak, tpeak is used to calculate what is known as the

PMT time centroid, the average PMT time;

tcentroid = tpeak + tToF (~rmanip.) + tGTO, (4.14)

where tpeak is the central time value of the peak, tToF is the time of flight as in

Equation 4.12 and tGTO is the global time offset. One technicality is that the

time of flight is calculated from the manipulator position, ~rmanip. not the laserball

position, ~rLB. However, the time centroid can be used to fit for the laserball

position as will be discussed in Section 5.2.2. The error on the centroid is taken

as the RMS of the peak, δtcentroid = σcentroid
RMS .

4.2.4 PMT Angular Response

Each of the inward facing PMTs in the detector are surrounded by a circular series

of concave petal-like reflectors shaped into a Winston cone [125]. A Winston cone

acts to concentrate light from a large opening aperture e.g. the PMT bucket

entrance, and focus it onto a smaller area such as the PMT face. The reflectors

effectively increase the PMT sensitivity to light by a factor of 1.74 [133]. The PMT

angular response is the efficiency of these reflectors and is related to the incident

angle that light enters the PMT bucket, θγ which is defined as the angle to the

normal of the entrance plane as shown in Figure 4.7. The Winston cone design

of the PMT bucket and reflector assembly was subject to a detailed study in the

pre-production phase of SNO [125]. For light at normal incidence, the position of

the PMT face with respect to the reflectors means that light can be back-reflected

out of the PMT bucket at a characteristic angle of 35o, see Figure 4.7. Light is also

reflected out of the bucket at large incident angles as well. Back-reflected light is

eventually received at other PMTs on the far side of the PSUP, leading to a peak

that can be identified in time residual distributions such as that which was shown

in Figure 4.4.

A photo of a PMT and its reflectors is shown in Figure 4.8. As suggested by

the photo, the complete removal of a reflector reduces its efficiency to collect light.

SNO+ uses the same reflectors as those in SNO which are now ∼20 years old. Over

this time the reflectors have been exposed to a variation in the cavity environment

between experiments. As a consequence the reflectors have begun to degrade.
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Two examples of degraded reflectors are shown in Figure 4.9. The rate and type

of reflector degradation does not follow a standardised pattern between PMTs.

Regardless, in all cases the efficiency of the reflectors, the angular response, is

reduced.

Figure 4.7: Shown are two side-on technical diagrams of the PMT and the
reflector assembly. Top: The definition of the incident angle, θγ is given as the
incident angle into the plane of the bucket entrance, defined by a normal vector
(blue). Bottom: In certain instances, light is back-reflected out of the PMT at

a characteristic 35o angle.

For a given laserball position inside the detector, the range of incident angles which

can be probed is fixed. This range increases as the laserball moves closer to the

PMTs as illustrated in Figure 4.10. For laserball deployment in the inner AV region

|~rLB| ∈ (0.0, 5500) mm, the range of sampled incident angles is approximately



Chapter 4: Characterising Optical Response 107

Figure 4.8: Photo of a PMT, its surrounding reflectors and the bucket in
which they are contained.

Figure 4.9: [138] Shown are two sets of reflectors previously used in the SNO
detector. Either set show signs of degradation. The left set appears to show
signs of reduced reflectivity which resemble that found on the surface of a thin
film. The right set show specular flaking of the mirrored surface revealing white,

non-reflective plastic underneath.

θγ ∈ (0o, 50o). As indicated by the z-axis of Figure 4.10 the sampling of incident

angles is non-uniform. This motivates the deployment of the laserball at a range

of different position radii, |~rLB| for a given scan.

For the purposes of the optical model, it is useful to define the relative PMT

angular response; the response of the PMT to light at a given value of θγ relative
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Figure 4.10: The variation in the range of incident angles which can be probed
at different laserball position radii. As the laserball moves closer to the PMTs

the range of sampled angles broadens.

to the response at normal incidence, θγ = 0o. The reason for this is that a central

laserball run will typically only probe a small range of angles close to normal

incidence; these central runs are important and will feature as part of the statistical

fit which is discussed in Section 4.3.

The relative PMT response varies with the incident angle and wavelength (as does

the standard response in general), this variation is shown in Figure 4.11 for an

example MC data set. The angular response is binned per degree of incident angle.

In the range θγ ∈ (0o, 30o) the response is quasi-linear and thereafter decreases

based on the wavelength. At higher incident angles, θγ & 45o the relative response

becomes less than 1, as light is reflected back out of the PMT bucket.

4.2.5 Laserball Light Distribution

For a given light path to a PMT, the initial photon direction provides the local an-

gular (cos θLB, φLB) coordinates on the laserball where the light was emitted. The

laserball is designed to provide an isotropic distribution of light. In practice, it is

only near-isotropic, and some anisotropies are present. For example, the mounting

hardware that supports the laserball flask from above introduces shadowing; the
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Figure 4.11: Shown is the angular response relative to normal incidence (θγ =
0o) across different wavelengths. The relative response drops below 1 at large

incident angles, where light is reflected back out of the PMT bucket.

intensity of light emitted upwards, cos θLB ' 1 is generally smaller than that emit-

ted downwards, cos θLB ' −1. This characteristic is visible when comparing the

relative number of PMT hits by PMT position in cos θPMT for a central laserball

run as shown in Figure 4.12. A laserball mask function, P4 (cos θLB) is used to

describe this variation;

P4 (cos θLB) = 1 +
4∑

k=1

ak (1 + cos θLB)k , (4.15)

where the coefficients in the sum, ak are determined by a statistical fit and the

variation is described about a fixed normalised value, a0 = 1. Prior studies in SNO

identified that a polynomial mask function of order four (1 + 4 parameters) was

the minimum order degree polynomial required to accurately describe the relative

intensity variation in cos θLB of the laserball [139].

Given the spherical symmetry shared by both the PSUP and the laserball, the

PMT and laserball coordinate systems share a 1:1 mapping; they are coincident.

Therefore observations in the PMT hits by PMT position provide information on

the relative intensity of the laserball in (cos θLB, φLB) (≡ (cos θPMT, φPMT)).

In addition, small irregularities in the distribution of the glass beads inside the
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Figure 4.12: Shown is the relative change in the number of PMT hits with
the PMT position cos θPMT coordinate from a central laserball run at 505 nm.
The decrease in PMT hits with increasing cos θPMT is indicative of the intensity
variation of the laserball in cos θLB. The mask function, P4 that describes this
variation is shown in red. Data is from the original SNO experiment in October

2003.

laserball flask lead to both cos θLB and φLB angular anisotropies in the light in-

tensity. This is observed by comparing the ratio of PMT hits by PMT position

in φPMT for two central laserball runs at different orientations. An example is

shown for the laserball used in an optical calibration of SNO in August 2006 in

Figure 4.13. This angular distribution can be characterised in one of two ways:

• Binned angular distribution Hbin (cos θLB, φLB): The angular distribu-

tion in (cos θLB, φLB) is divided into (12, 36) corresponding bins, each of

which becomes an independent parameter in the optical model. This ap-

proximation is good if there is no prior assumption on the nature of the

angular anisotropy. However, one disadvantage of this method is that it

introduces many parameters (12× 36 = 432) into the model.

• Sinusoidal angular distribution, Hsin (cos θLB, φLB): Prior observations

of the laserball in SNO describe a sinusoidal variation in φLB of the angular

anisotropy [134, 137, 139]. This is evident in the SNO August 2006 measure-

ment of the laserball angular isotropy in Figure 4.13. The sinusoidal model

splits the angular distribution into several cos θLB slices, typically 24. For
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each cos θLB slice the relative intensity of the laserball is described as follows:

Hk
sin (φLB) = 1 + Ak sin (φLB + δk) , k = [1, 24], (4.16)

where Ak controls the amplitude of the anisotropy and δk provides an overall

phase shift in φLB for the k-th cos θLB slice. This model introduces 24×2 = 48

parameters in total.

The total laserball light distribution L (cos θLB, φLB) is therefore a composite value

consisting of the two-dimensional angular distribution, H (cos θLB, φLB) multiplied

by the mask function, P4 (cos θLB);

L (cos θLB, φLB) = P4 (cos θLB)×H (cos θLB, φLB) . (4.17)
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Figure 4.13: Shown is the ratio of PMT hits between two central laserball runs
at different orientations: 0 ≡ φLB = 0 and 2 ≡ φLB = π. The ratio is plotted
against the PMT φPMT coordinate which shares a 1:1 mapping with φLB. The
PMT ratios relate to an intensity anisotropy of ±6% in φLB. The angular
anisotropy is not necessarily constant in cos θLB (≡ cos θPMT) and therefore the
PMTs are grouped into cos θPMT slices. Three examples are shown. The plots
shown are from SNO+ MC data generated using the SNO August 2006 laserball

anisotropies.
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4.2.6 Solid Angle

The solid angle is the area subtended by the face of the PMT from the laserball

position. Specifically it is the subtended area of the PMT face projected onto

the inner AV surface as illustrated in Figure 4.14. The calculation procedure is

to define four points (P1, P2, P3 and P4 in Figure 4.14) along the perimeter of

the PMT face, and calculate the light path to each of these points, using the four

intersection points on the inner AV surface to define an ellipse. The four points

form pairs that define the major and minor axes of the ellipse. The angles α and

β between the points of each pair are used to calculate the solid angle, Ω on the

unit sphere, centred about the laserball;

Ω ' π × αβ

4
, (4.18)

where the equality is sufficient for small angles α and β.

The nominal solid angle of a PMT from the centre of the AV is 8.8 × 10−3 and

overall follows an inverse square relation between the laserball position and the

PMT. The relative change in the solid angle with respect to the centre of the AV

is therefore non-negligible as shown in Figure 4.15.

4.2.7 Fresnel Transmission Coefficient

The Fresnel transmission coefficient is a second-order effect on the optical model

and denotes the probability of light traversing across a material interface. This

probability is calculated for each interface the light path encounters. For a laserball

position in the inner AV region these interfaces are between the inner AV/AV and

AV/outer AV regions. The transmission coefficient relies on the calculated light

path information for the incident and refracted angles at each interface as well

as the refractive indices of both media. The explicit formulae used can be found

in Appendix A.3. Given the wavelength dependence of the refractive indices, the

Fresnel transmission coefficient also varies slightly with wavelength as shown in

Figure 4.16.
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Figure 4.14: Illustrative diagram of the solid angle area subtended by the
PMT face relative to the laserball position. The solid angle is the projection
of the subtended area onto the inner surface of the AV. Figure is a modified

version from that originally appearing in [133].

4.3 Implementation of the Optical Model

In order to constrain the parameter space the model prediction for the number of

photons at a PMT, Nmodel
ij for a given run is divided by the expected value from

a run with the laserball located at the centre of the detector, Nmodel
0j :

Nmodel
ij

Nmodel
0j

=
NiΩijTijRijLij
N0Ω0jT0jR0jL0j

exp

(
−
∑
k

(dij,k − d0j,k)αk

)
. (4.19)

By taking the ratio between an off-axis (i.e. not in the centre of the AV) and

a central laserball run, the dependency on the PMT efficiency, εj is removed,
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Figure 4.15: Shown is the variation in the relative solid angle with the distance
from the laserball to the PMT. Here, relative denotes the comparison with the
calculated solid angle to that at the centre of the AV, corresponding to a distance

of ∼8500 mm.

Figure 4.16: Shown is the Fresnel transmission coefficient for light paths in
LABPPO in the inner AV region. The coefficient varies based on the incident
angle at the first material interface; the inner AV/AV interface. The value of the
coefficient varies slightly with wavelength due to a dependency on the refractive

indices, n (λ) at each boundary.
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eliminating about 9000 parameters from the model. With respect to the equivalent

observed ratio in data i.e. Ndata
ij /Ndata

0j , it is useful to first define what is known

as the occupancy, which is related to Ndata
ij as follows;

Odata
ij =

Ndata
ij

Npulses
i

, (4.20)

where Npulses
i is the number of laserball pulses triggered in run i. In general, the

collection of hits at a PMT follow Poisson counting statistics. Multiple photoelec-

trons (MPEs) produced in the same time window at a PMT will only be registered

as a single hit. This effectively underestimates the intensity of the laserball. As-

suming the mean of the Poisson distribution, ξij reflects the true occupancy of

the PMT, this can be used to determine the multiple photoelectron corrected

occupancy, OMPE
ij ;

Prob.
(
≥ 1 Hit|Odata

ij

)
= 1− Prob.

(
0 Hits|Odata

ij

)
, Odata

ij ∼ Poisson (ξij) ,

⇒ Odata
ij = 1− (ξij)

0 e−ξij

0!
= 1− e−ξij ,

⇒ ξij = − ln
(
1−Odata

ij

)
= OMPE

ij . (4.21)

Note that the model does not account for MPE effects, and therefore this is a cor-

rection that is only applied to the data. For sake of notation, henceforth references

to Odata
ij imply OMPE

ij .

The number of pulses Npulses
i is known exactly as it is purposefully triggered, the

error in Odata
ij is therefore only attributed to the uncertainty in Ndata

ij ;

δNdata
ij =

√
Ndata
ij . (4.22)

Using equations 4.20, 4.21 and 4.22 the uncertainty on Odata
ij is thus obtained;

δOdata
ij =

∂
(
Odata
ij

)
∂Ndata

ij

δNdata
ij =

√
Ndata
ij

Npulses
i −Ndata

ij

. (4.23)
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Following the definition of the occupancy, the occupancy ratio, ORdata
ij is therefore

the ratio of the PMT occupancy from the off-axis run relative to the central run;

ORdata
ij =

Odata
ij

Odata
0j

. (4.24)

Given that the solid angles, Ωij,Ω0j and Fresnel transmission coefficients Tij, T0j

can be directly calculated, and are implicit to the data values, they can be used

to correct the ratio;

ORdata
ij =

Odata
ij

Odata
0j

→ Odata
ij

Odata
0j

×
(

Ω0jT0j

ΩijTij

)
. (4.25)

The uncertainty on ORdata
ij follows;

δORdata
ij = ORdata

ij

√√√√(δOdata
ij

Odata
ij

)2

+

(
δOdata

0j

Odata
0j

)2

. (4.26)

Applying the same correction to the model (multiplying by Ω0jT0j/ΩijTij) the

model prediction can similarly be written in terms of an occupancy ratio, ORmodel
ij :

ORmodel
ij =

Omodel
ij

Omodel
0j

=
OiRijLij
O0R0jL0j

exp

(
−
∑
k

(dij,k − d0j,k)αk

)
, (4.27)

where the intensity normalisations Ni, N0 → Oi, O0 become occupancy normalisa-

tions and denote the total occupancy of all PMTs within a prompt timing window.

Apart from the distances, dij,k the model occupancy ratio is now an expression

that is entirely characterised by parameters that can be determined by a statistical

fit. This is now discussed.
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4.3.1 Occupancy Ratio Method

The quantities ORmodel
ij and ORdata

ij are used as the respective predictions and

observations for a goodness of fit test using a chi-square (χ2) test statistic;

χ2 =
Nruns∑
i

NPMTs∑
j

(
ORdata

ij −ORmodel
ij

)2

σ2
stat.,ij + σ2

PMT (θγ,ij)
, (4.28)

where σstat.,ij = δORdata
ij as given in Equation 4.26. The term σPMT,ij (θγ,ij) is an

additional correction that accounts for a residual uncertainty in the PMT efficiency

based on the incident angle light enters the PMT bucket, θγ. The calculation of

this uncertainty is discussed in Section 4.3.2.

The minimisation of χ2 in Equation 4.28 is a non-linear least squares problem.

The non-linear component is the ORmodel
ij parameter space and for this reason the

Levenberg-Marquardt (LM) [140] algorithm is used to perform the minimisation.

The LM algorithm is an adaptive technique which behaves as two methods based

on the proximity of its current guess for the solution to the minimum. At large

distances from the minimum it employs a gradient descent method that generally

performs well in a many parameter problem such as this. Closer to the minimum

the algorithm uses the Gauss-Newton method of minimisation which converges

quicker than the gradient descent method. The LM algorithm is implemented into

the SNO+ optical fit software, OCA which is discussed in Section 5.2.3.

4.3.2 PMT Variability

The physical interpretation of the PMT variability is likely due to a combination

of performance and irregularities between PMTs. For example, the photocathode

thickness about the PMT face may not be entirely uniform [133]. Similarly, the

degradation, if at all, of the PMT reflectors such as those in Figure 4.9 are unique

to each set of reflectors. Both of these features act to affect the PMT efficiency

at different incident angles. To quantify this effect, the PMT variability can be

understood by considering the estimator of the PMT efficiency, εij that appears

in Equation 4.1. This is initially removed as part of the occupancy ratio method

but can be retrieved once the optical fit has been minimised as in Section 4.3.1

with σPMT (θγ,ij) = 0. εij represents the PMT efficiency of the model predicted
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occupancy in relation to that observed in data;

εij ×Omodel
ij |χ2

min
= Odata

ij

⇒ εij =
Odata
ij

Omodel
ij

∣∣∣∣
χ2
min

. (4.29)

The individual PMT efficiencies can be compared between runs through normali-

sation;

εij → ε̂ij =
εij/εj
ε

, (4.30)

where εj is the average efficiency of PMT j across all runs and ε is the average

efficiency of all PMTs across all runs;

εj =
1

Nruns

Nruns∑
i

εij, ε =
1

NPMTs

NPMTs∑
j

εj. (4.31)

Past studies from SNO note an overall variation in the spread of the normalised

efficiencies with incident angle, θγ [137]. This can be observed by computing the

normalised efficiency for each PMT j, ε̂ij and binning it by its associated incident

angle, θγ,ij into a histogram, one-degree per bin. The coefficient of variation, cv

for the resulting distribution formed in each bin, θγ = t is calculated as follows;

cv (θγ = t) =
σRMS
t

µt
, (4.32)

where σRMS
t and µt are the respective RMS and mean of the distribution in the

t-th bin. The coefficient value varies across different incident angles. An example

is shown in Figure 4.17 for the 505 nm wavelength scan from SNO in October

2003. As shown in the figure, the coefficient values are in excess of the statistical

uncertainty on the occupancy, δOdata
ij . It is this excess variation in incident angle

that is known as the PMT variability, δvij (θγ,ij). The variability is a systematic

that contributes an excess uncertainty beyond that associated with the statistical

uncertainty. The variability is therefore defined as the residual of the coefficient

of variation once this statistical uncertainty has been subtracted;

δvij (θγ,ij) =

√
c2
v (θγ,ij)−

(
δOdata

ij

)2
. (4.33)
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As also shown in Figure 4.17, a fitted linear or polynomial function can be used

to parameterise an estimator function for the coefficient of variation. Using Equa-

tion 4.33 this can subsequently be used to estimate the PMT variability. This is

discussed in the results of the optical fit on original SNO data in Section 6.2.3.

The final variability error term, σPMT (θγ,ij) featured in Equation 4.28 is related

to δvij (θγ,ij) by a multiplicative factor of the occupancy ratio;

σPMT (θγ,ij) = ORdata
ij × δvij (θγ,ij) . (4.34)
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Figure 4.17: The coefficient of variation (red) and mean statistical uncertainty
(black) on the occupancy binned by incident angle, θγ for the SNO October 2003
laserball scan at 505 nm. A fitted polynomial function (blue) is used to provide
an estimator of the coefficient of variation. The PMT variability is the excess

contribution to the coefficient of variation above the statistical uncertainty.

4.4 Data Selection

Prior to the minimisation of χ2, three selection criteria are applied to each of the

PMTs in every run. Only PMTs that pass all three of these selection criteria are

chosen. The three criteria are as follows:
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• PMT type and hardware status: The channel hardware status of the

PMT is checked to ensure it was operating during the time of the laserball

run. Only the normal inward facing PMTs are selected for the data sample.

Special PMT types e.g. PMTs in the neck of the AV and the OWL PMTs

on the outer PSUP are not included.

• Prompt peak counts: For a given PMT, j a minimum number of prompt

counts from the off-axis run, i and central run, i = 0 is imposed;

Ndata
ij ≥ 1000⇒ δOdata

ij ≤ 3%,

Ndata
0j ≥ 4000⇒ δOdata

ij ≤ 1%. (4.35)

A typical laserball scan at a given wavelength consists of 39 runs, of which

only four are central runs. However, the occupancy of each PMT is paired

with the value from a central run as required by the occupancy ratio method

described in Section 4.3. Therefore, the error on each data point can be

reduced by imposing a more stringent error requirement of ≤ 1% on the

occupancy values of PMTs from central runs. It is for this reason that the

central laserball runs contain approximately quadruple the statistics (see

Table 5.3). In practice, the additional running time of a central laserball run

in order to achieve such an increase in statistics is reasonable 1-1.5 hours.

• PMT shadowing: Detector components located between the AV and the

PSUP intercept light from the laserball reaching certain PMTs. Over the

duration of a run this reduces the PMT occupancy. For each PMT in a run,

the calculated light path from the laserball to the PMT is checked to see if

it intersects, to within a given tolerance, with the known location of a piece

of detector geometry. If so, the PMT is removed from the data sample.

4.4.1 PMT Shadowing

The predominant source of low occupancy PMTs is from the shadowing of PMTs

by various detector components that are located between the AV and the PSUP.

Such components include; support ropes, AV hold-down ropes, belly plates, NCD

anchors, the AV neck boss and AV pipes. For a given laserball position, the
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exposure of some PMTs to the laserball light is obscured by such components.

Over the duration of the laserball run this effectively shadows the PMTs resulting

in a reduced occupancy. Given the location of the laserball for a particular run

and the known locations of the detector geometry, the light path to each PMT

is tested for shadowing. A PMT is removed from the fit if the closest point of

approach of the light path is within 150.0 mm of an obscuring piece of the detector

geometry. The associated light path for each PMT in both its off-axis and central

run representations are tested for shadowing. An example of the PMT shadowing

in SNO and SNO+ for a central and off-axis run is shown in figures 4.18 and 4.19.

Due to the addition of the AV hold-down ropes, more PMTs will be shadowed in

SNO+ than in SNO.

Across different laserball positions, the AV hold-down ropes have the potential to

shadow most of the PMTs as the ropes cover almost the entire range of cos θPMT

positions. Shown in Figure 4.20 is the relative number of PMT hits for a central

laserball run with PMT position in cos θPMT. Below the main distribution are

a series of scattered points. In the approximate range cos θPMT ∈ (−0.8, 1.0) a

fraction of these points denote PMTs shadowed by the AV hold-down ropes (in

comparison to the less scattered distribution in SNO, see Figure 4.12). Shown also

are those shadowed by the NCD anchors, cos θPMT ∈ (−1,−0.8) and the AV neck

boss, cos θPMT ∈ (0.9, 1). In the case of the belly plates, cos θPMT ∈ (−0.1, 0.1),

the curved and bevelled nature of the plates act as an acrylic lens, focussing the

light and increasing the occupancy of some PMTs above average.

Table 4.1 provides a breakdown of the percentage of PMTs shadowed by each

detector component for two example laserball positions at 420 nm. The percentage

value given for each component is independent to that of another. In general, two

components may shadow the same PMT meaning the total percentage of shadowed

PMTs is less than the sum of the individual percentages. The shadowing cuts are

therefore applied sequentially, one detector component at a time to ensure the true

total is calculated e.g if a PMT is shadowed by both a belly plate and support

rope and the belly plate cut is applied first, it won’t be considered by the support

rope cut. The values given in figures 4.19 and 4.18 reflect the true total percentage

of shadowed PMTs.
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Figure 4.18: PMT shadowing for a central and off-axis laserball run at 420 nm
from SNO, October 2003. Each point on the graph represents a PMT and its
position, (φPMT, cos θPMT) in the detector coordinate system. PMTs are colour
coded based on the geometry which shadows its associated light path from the

laserball.

4.4.2 Chi-Square Selection Cuts

A selection of χ2 cuts are applied to remove data points from the sample. In gen-

eral, it is perhaps bad practice to use such a cut, eliminating data from the sample

which doesn’t agree with the hypothesised model. However, given the number of
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Figure 4.19: PMT shadowing for an MC central and off-axis laserball run
at 420 nm in the SNO+ detector. Each point on the graph represents a PMT
and its position, (φPMT, cos θPMT) in the detector coordinate system. PMTs
are colour coded based on the geometry which shadows its associated light path

from the laserball.

data points and many configurations of the laserball run position contained within

the sample, it is not unreasonable to expect some PMTs to undergo irregular ex-

posure to the light which is unaccounted for by the model. The model essentially

assumes near-uniform efficient PMTs surrounding a perfectly smooth and trans-

parent vessel. However, the AV is not perfectly smooth, it contains tile bonds
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Figure 4.20: Shown is the relative change in the number of PMT hits with the
PMT position cos θPMT coordinate from a central laserball run at 505 nm. Data
is from SNO+ MC. In different ranges of cos θPMT some PMTs have a reduced

relative number of hits due to shadowing by different detector components.

PMT Shadowing by Individual Components, 420 nm

Detector
Component

PMTs Shadowed %
|~rLB| = 0.0 mm

PMTs Shadowed %
|~rLB| = 5500.0 mm

Belly Plates 2.98% 6.56%
AV Hold-Down Ropes 21.53% 20.10%

Support Ropes 10.75% 8.32%
NCD Anchors 6.93% 5.76%

AV Pipes 5.10% 3.71%
Neck Boss 2.32% 1.92%

Table 4.1: Shown are the percentages of PMTs shadowed by each type of
detector component. The amount of shadowing varies according to the laserball
position in the AV. Two examples are shown for a central laserball position,
|~rLB| = 0.0 mm and an off-axis position, |~rLB| = 5500.0 mm. The total shad-
owing is less than the sum of the individual contributions as some components

may shadow the same PMT e.g. a belly plate and a support rope.

whose surface, in practice, is blemished. In addition, some detector components

may deflect light to certain PMTs which aren’t considered shadowed. The use

of a prompt time window intends to suppress this. Ultimately, PMTs subject to

irregular reflections or scattering of the light will contribute to populations of the
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sample that do not reflect the underlying physics of the model, and as such they

are removed for this reason.

Following the initial selection cuts, the optical fit proceeds by minimising the

optical model over the data throughout several iterations. For each iteration PMTs

whose χ2 value exceeds a given upper limit are removed. An initial upper limit

of χ2
lim = 1000 is chosen as it is sufficiently large to include almost all the PMTs

which pass the aforementioned selection criteria. Minimisation is then repeated

using the following upper χ2 limits for each iteration:

χ2
lim =

{
100, 50, 25, 16, χ2

lim,f, χ
2
lim,f

}
, (4.36)

where χ2
lim,f is the final upper χ2 limit which is nominally repeated to ensure

stability of the fit. The progressive sequence of decreasing upper limits is used to

avoid the introduction of any initial bias into the data sample and the minimisation

about local minima in the parameter space. To avoid a sequential minimisation

over the same subset of the sample, all PMTs, even those previously removed, are

reconsidered in each iteration. The purpose of this is to re-include previously cut

PMTs whose χ2 may have peripherally exceeded a prior limit, but for which a

more recent parameter state produces a χ2 value within the current limit.

The value of χ2
lim,f is informed by studying the distribution of the data point pull ;

Data Point Pull =
ORmodel

ij −ORdata
ij

σstat,ij

, (4.37)

which is a measure of the deviation between the model predicted and measured

value of the occupancy ratio; it is the square-root of the argument that is summed

over to calculate χ2 as in Equation 4.28. By sampling data points one effectively

samples a parent distribution that has a mean and variance but whose form cannot

be assumed. However, provided the model prediction of the occupancy ratio is a

good approximation of the data, the pulls should follow a known distribution type,

which in this case is expected to be Gaussian. Figure 4.21 shows the data point

pull distribution for an example SNO+ MC laserball scan in water at 420 nm.

The final upper χ2 limits were determined by first fitting a Gaussian function to

the pull distribution in a narrow range between (−1, 1), after which this range

was gradually extended. It was found that for both the data and MC data sets,



Chapter 4: Characterising Optical Response 126

the pull distribution became non-Gaussian at a distance of ∼2σ from the mean,

µ (' 0); beyond this distance the goodness of fit deteriorated. It is in this non-

Gaussian region that the model prediction no longer provides a good description

of the data. Therefore, the distance of 2σ can be used to define an upper limit.

To be consistent across all wavelengths, the average width across all wavelength

scans in a particular data set is used to define the final upper χ2 limit as follows:

χ2
lim,f = (2〈σλ〉)2 , 〈σλ〉 =

1

nλ

∑
λ

σi, nλ = No. wavelength scans. (4.38)

Figure 4.21: The data point pull distributions for a SNO+ MC laserball scan
in water at 420 nm. The pull values are normally distributed about zero in the
range (−2.6, 2.6) for the SNO+ MC scan. This range is equivalent to a distance
of ∼2σ either side of the origin based on the sigma value of the associated
Gaussian fit (red) in the respective range. Beyond these ranges the distribution

becomes non-Gaussian as shown.

As will be discussed in Section 6.1.1, given the small variation in the Gaussian

widths between different wavelength scans of the same data set, the value of the

final upper χ2 value is conservatively rounded to the nearest whole integer, i.e.

χ2
lim,f →

⌈
χ2

lim,f

⌋
=
⌈
(2〈σλ〉)2⌋ . (4.39)
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4.5 Scintillator Response

One of the new phenomena introduced into SNO+ by the use of scintillator is that

of absorption and reemission. As discussed in Chapter 3, based on the scintillator

mixture, certain wavelengths of light will be prone to being absorbed and reemitted

at a wavelength according to the respective WLS. The optical model as expressed

in Equation 4.1 does not directly account for absorption and reemission1. In

the context of laserball studies, these effects do not impact the intensity of the

prompt light significantly; it merely scales it by the reemission probability, εp

of the scintillator. Ultimately, this is a scaling factor which becomes part of the

normalisation terms, Oi and O0 in Equation 4.27. Rather, the impact of absorption

and reemission is characterised by the time profile of the scintillator, which is

driven by the exponential nature of fluorescence as in Equation 3.5. Here, the

optical model is instead used to seed a new type of model that aims to characterise

absorption and reemission through the extraction of an in-situ time profile from

the time residual distribution.

4.5.1 In-situ Scintillator Time Profile

To demonstrate the impact of absorption and reemission it is useful to compare the

time residual distributions from a central laserball run between two wavelengths;

one at a short wavelength for which the light is entirely absorbed and remitted,

and another at a wavelength that matches the peak of the reemission profile. For

example, in LABPPO at 337 nm the absorption length is small, ∼100 mm (see

Figure 3.11). For a central laserball run, the minimum distance through the inner

AV region is 6000 mm (the radius of the AV) which guarantees that the majority

of the 337 nm light will be absorbed. As will be discussed in Section 5.1.1, at

337 nm in LABPPO, the average wavelength of the reemitted light is ∼400 nm.

Therefore, a comparison of the time residual distributions in LABPPO at 337 nm

and 400 nm illustrate the impact of absorption and reemission. An example using

this comparison is shown in Figure 4.22. Two distinct features are present:

• Scintillation emission time: Between 337 nm and 400 nm there is an

overall shift in the time residual distribution by +1.35 ns, identified as the

1It will be discussed in Chapter 7 that although the model does not parameterise absorption
or reemission, the other optical parameters are directly affected by these effects.



Chapter 4: Characterising Optical Response 128

difference between the central values of the respective prompt peaks. This

overall shift is driven by the delay associated with the fluorescence of the

wavelength shifter (PPO), characterised by an exponential decay with time

constant, τs.

• Photon walk: In addition to the convolved emission delay, the smearing

of the time residuals and the reduced prominence of the smaller peaks; the

pre- and late-pulsing either side of the prompt peak and the populations of

reflected light in the range 415-435 ns is due to photon walk. Photon walk is

the random displacement between the initial position of the laser light and

the final position of the remitted light that leaves the AV. Depending on

the scintillator mixture, the light may be absorbed and reemitted multiple

times as part of general radiative transfer between the solvent and wave-

length shifters. The random element of this walk arises from the nature of

scintillation light, whose emitted direction is random. The effective emission

point of the resulting scintillation light is therefore displaced from the ini-

tial position in the centre of the detector, broadening the range of possible

reflections.

4.5.2 Scintillator Time Profile Model

Taking into account the scintillator emission time and the photon walk, the arrival

time at the PMT can be expressed as follows;

tPMT =

Nabs∑
n=1

[
dn,walk (αw (λn−1) , ~rn−1, ~rn)

vg,Scint (λn−1)
+ temit (τs)

]∣∣∣∣
|~rn|<RAV

+
∑
k

dk (~rn)

vg,k (λemit)

∣∣∣∣
n=Nabs.

+ tbucket (θγ|~rn) , (4.40)

where

λn =

{
λLB if n = 0

λemit if n ≥ 1
, and ~r0 ≡ ~rLB. (4.41)

Here, the sum over the index n denotes the number of absorptions and reemissions,

Nabs.. λLB and λemit are the respective wavelengths of the laserball and the reemit-

ted light. The value temit is the emission time of the scintillator parameterised by
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Figure 4.22: The time residual distributions for SNO+ MC central laserball
runs in LABPPO at 337 (red) and 400 nm (black). Shown are the global dis-
tributions (top) and the distributions about the prompt peak (bottom). In
LABPPO, at 337 nm the light is absorbed and reemitted at an average wave-
length of 400 nm. At 400 nm the light is not absorbed to the same extent, in
comparison the result is a +1.35 ns change in the global time offset (∆ GT) at

337 nm due to absorption and reemission.

the exponential time constant, τs. The value dn,walk is the distance between the
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current absorption position, ~rn and the prior emission point ~rn−1, i.e.

dn,walk = |~rn − ~rn−1| , (4.42)

where the magnitude of dn,walk is dependent on the mean photon walk length for

the previously emitted wavelength, αw (λn−1).

Absorption and reemission only occurs in the scintillator region, and thus |~rn| <
RAV. As in Equation 4.12, the index k is summed over the three detector regions;

inner AV, AV and outer AV, where the distances dk are calculated from the final

emission position before light escapes the scintillator region, ~rn for n = Nabs.

Figure 4.23 illustrates the process behind the model expression in Equation 4.40.

At each absorption point (denoted by encircled nodes) the new direction of the

reemitted photon is determined at random over a uniform distribution.

From this the time residual is the PMT hit time, tPMT corrected for the (assumed)

time of flight from the initial laserball position to the PMT as follows;

t0 + tres = tPMT −
∑
k

dk (~rLB)

vg,k (λemit)
− tbucket (θγ) , (4.43)

where it is important to emphasise the difference between the time of flight over

the distances dk (~rLB) that are calculated from the initial laserball position unlike

those in Equation 4.40. Indeed setting n = 0 in Equation 4.40 returns the standard

time residual relation.

The values of dn,walk and temit cannot be analytically resolved for a specific PMT.

However, their values are related to the respective absorption/scattering lengths

and time decay constants of the scintillator which are naturally described by expo-

nential relations as in equations 3.3 and 3.5. Therefore, for many photons arriving

at a PMT, the values of dn,walk and temit are also distributed exponentially;

dn,walk ∼ Exp (1/αw (λn−1)) , temit ∼ Exp (1/τs) . (4.44)
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Figure 4.23: Illustrative diagram of the path taken by light initially emitted
at the centre of the detector which undergoes absorption and reemission. Two
examples are shown, one where the light is absorbed twice (red) and another
once (green). At each absorption point (circles) the direction of the reemitted
photon can be in any direction, and is chosen at random. This is the random

walk of the photon.

One point to note is that the reemission times are sampled over the following

reemission window;

Reemission Time Window : (τs, 3τs) , (4.45)

This is the window used by GLGScint in MC simulations (RAT) to model the

emission of light by the scintillator. There is also a subtlety associated with αw.

From one PMT time calculation to the next, the number of absorptions may be

different, and in practice, the absorptions may be between different components

of the scintillator itself e.g. radiative transfers: LAB → PPO, LAB → bis-MSB,

PPO→ perylene etc. Each of these components will have its own emission profile
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for which the photon walk length prior to the next absorption (if at all) will be

different. αw is therefore an effective attenuation length that encapsulates a variety

of micro-physical processes occurring within the scintillator prior to the emission of

light. Therefore, to avoid over parameterisation of the model, the implementation

presented here will assume the following;

dn,walk ∼
{

Exp (1/αw (λLB)) if n = 0

Exp
(
1/α

(
λemit

))
if n ≥ 1

, (4.46)

where α
(
λemit

)
is the attenuation length of the scintillator at the mean emitted

wavelength, λemit. It will be shown in Chapter 7 that α
(
λemit

)
can be determined

using the optical response model described in Section 4.2 and therefore be used as

an input.

Following a description of the scintillator time profile model, the objective is to

parameterise the observed time residuals in scintillator according to αw (λLB) and

τs.

4.5.3 Scintillator Time Profile Model Log-Likelihood

A log-likelihood method is used to fit for the optimum values of αw (λLB) and τs.

In practice, the form of a time residual distribution in scintillator is the result of

several physical and instrumental effects which are convolved together; the PMT

response, the time profile of the laser emittance, the absorption of photons and the

isotropic emission of scintillation photons. Subsequently, an analytical probability

distribution function (PDF) involves multiple integrals over all physically possible

paths and detector responses such that it coincides with an observed PMT hit time.

Such calculations are computationally exhaustive. Instead, the forward problem

is considered whereby the parameter space is mapped to the data-space using an

MC technique to produce a time residual distribution that is used to produce a

PDF.

Using equations 4.40 and 4.43, the time residual distribution for given values of

αw (λLB) and τs is generated by calculating the PMT hit time tPMT for all PMTs

in the detector from the centre of the AV many times ∼5×106. For simplicity,

the centre is chosen to be the starting position in order to preserve the symmetry

about the detector.



Chapter 4: Characterising Optical Response 133

For each calculation, the values of dn,walk and temit are randomly sampled according

to their respective exponential distributions. Values are sampled until the path

leaves the AV region. The initial and remitted direction of the light is chosen

randomly each time. The final direction of the light is that of the last reemission

whose following sample length took the path outside of the inner AV region. To

emulate the laser emission and detector response, randomly sampled times from

the laser emission profile, tσ,LB and the PMT response, tσ,PMT are included (see

Appendix A.4);

tPMT → tPMT + tσ,LB + tσ,PMT,

tσ,LB ∼ Gaus (µ = 0.0, σ = 0.7) ns, (4.47)

tσ,PMT ∼ Gaus (µ = 0.0, σ = 1.7) ns.

The MC time residuals are stored in histograms using a 0.25 ns binning, and then

interpolated between to produce a PDF, P (tres|αw (λLB) , τs). These PDFs are

used in the log-likelihood fit over the observed time residuals, minimising over the

function, L ;

L = −
Ndata∑
q=0

ln (P (tq,res|αw (λLB) , τs)) , (4.48)

where Ndata is the total number of PMT hit times in the data sample.

Examples of MC generated distributions for different values of αw (λLB) and τs

are shown in Figure 4.24 for a laser wavelength λLB = 337 nm in LABPPO with

an average reemitted wavelength λemit = 400 nm. Variations in both αw (λLB)

and τs characterise the shape of the time residual distribution. In particular,

changes in αw (λLB) introduce minor shifts in the prompt peak location whereas

τs characterises the tail of the distribution.

4.6 Conclusion on Optical Response

A model that characterises the optical response of the detector has been presented

within the context of the laserball calibration hardware. The laserball is to be

deployed in both the water, scintillator and tellurium phases of SNO+. Using
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Figure 4.24: Generated time residual distributions for variations in αw (λLB)
(top) and in τs in LABPPO for a laser wavelength of λLB = 337 nm (λemit =
400 nm). For the variations in αw (λLB) a small value of τs = 0.01 ns was
used with a nominal attenuation length value of αw

(
λemit

)
= 106 mm for the

reemitted light. Similarly, for the plots describing the variations in τs values
of αw (λLB) = 0.1 mm and αw

(
λemit

)
= 106 mm was used. For the plotted

distributions at αw (λLB) = 0 and τs = 0, no random sampling was performed.

laserball data the attenuation and PMT response can be characterised. This can be

combined with the output of other calibration systems as part of the full detector

calibration. The optical model does not explicitly account for the absorption

and reemission expected in scintillator. Therefore, a second model that aims

to characterise the time profile of the scintillation light has also been presented.
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Collectively, both the optical and time profile model can be used to characterise

the behaviour of the scintillator in SNO+, and its impact on the optical response.

As discussed in Chapter 3, SNO+ is currently considering two candidate fluors

to be used as a secondary WLS in the tellurium phase; bis-MSB and pery-

lene. The results of the optical fit and time profile model over laserball scans

in scintillator are discussed in Chapter 7, and consider the base LABPPO mix-

ture and those containing bis-MSB (LABPPO+0.3%Te+bis-MSB) and perylene

(LABPPO+0.3%Te+perylene). The data used for this analysis are produced us-

ing simulations of the laserball in RAT. RAT is also used to produce laserball scan

simulations of the water phase. The results of which are discussed in Chapter 6.

The production of this SNO+ MC laserball data is now discussed.



5

Production and Processing of

Data

Holmes: Ah, I have no data. I cannot tell.

Watson: Well, there seems to me to be only one possible solution. . .

The Adventure of the Copper Beeches, Arthur Conan Doyle

5.1 Monte-Carlo Production

Prior to collecting laserball data, preliminary studies make use of simulated data

generated by RAT; the SNO+ MC software. RAT features a laserball generator

that emulates the in-situ action of the laserball in an MC representation of the

detector. The laserball generator is characterised by sampling a combination of

lab-based measurements and parameters obtained from laserball scans during the

SNO experiment. This includes:

• The wavelength distributions, see Figure 5.1, of the N2 laser and the laser-

dyes:

– N2 laser, λLB = 337 nm

– PBD dye, λLB = 369 nm

– BBQ dye, λLB = 385 nm

136
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– Bis-MSB dye, λLB = 420 nm

– COUMARIN-500 dye, λLB = 505 nm

– KITON-RED dye, λLB = 620 nm

• The laserball angular distribution, H (cos θLB, φLB) and mask function, P4 (cos θLB)

obtained from the laserball scan of each previous calibration period in SNO

between September 2000 and August 2006. An example of the COUMARIN-

500 sinusoidal angular distribution is shown in Figure 5.2. Examples of the

mask function are shown in Figure 5.3.

• The timing information of the laser pulse. This is modelled as a Gaussian

function with (µ, σ) = (0.0, 0.7) ns that is truncated with minimum and

maximum time values, (tlow, thigh) = (−1.5, 10.0) ns (see Appendix A.4).

The 0.7 ns width is attributed to the dispersion of the laser pulse in the

40 m long optical fibres between the laser source and the laserball.
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Figure 5.1: The wavelength distributions of the five different laser-dyes stim-
ulated by an N2 (λLB = 337 nm) laser. Values are obtained from ex-situ mea-

surements made by J. Maneira at Queen’s University [141].

In effect, the laserball as understood during SNO, in-situ, is being convolved with

the RAT Monte-Carlo in order to understand how the physical and material prop-

erties of the detector affect the optical response. Of particular interest in SNO+

is how the inclusion of the new AV hold-down rope net and the use of scintillator

reduce or enhance this response.
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Figure 5.2: The relative sinusoidal laserball angular distribution as measured
in SNO for the COUMARIN-500 dye during the August 2006 calibration period.
This is used as an input to the laserball angular distribution in RAT at this

wavelength.
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intensity distributions in RAT at the respective wavelengths shown.
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5.1.1 Selection of Laser Intensity & Wavelength

Laserball data was simulated using the SNO August 2006 laserball light distribu-

tion (angular distribution and mask function) in RAT v.5.2.2 for all four target

materials; water, LABPPO,

LABPPO+0.3%Te+bis-MSB and LABPPO+0.3%Te+perylene. Data was gener-

ated such that the average occupancy per pulse was 3%. As shown in figures 5.4

and 5.5, the required intensity to achieve this target occupancy is different across

different wavelengths and materials. This is due to varying PMT efficiencies (both

in angular response and quantum efficiency) and attenuation across different wave-

lengths. The target level of 3% occupancy is chosen such that the PMTs are in a

single photoelectron regime. As described in Section 4.3, multiple photoelectrons

produced in the same time window at the same PMT will only be registered under

a single PMT hit. The probability of multiple photoelectrons increases as the laser-

ball intensity increases, but in only registering single hits the effect underestimates

the intensity of the laserball. Therefore, the target occupancy of the laserball runs

needs to be great enough such that as many PMTs as possible register hits, but

do so with only single photoelectrons. Any possible corrections are made through

Equation 4.21. In practice, the ND filters are used to limit the intensity of the

laser light for each wavelength scan. In RAT, the number of photons emitted per

pulse of the laserball is adjusted. The intensity chosen for each MC wavelength

scan in the target materials is shown in Table 5.11.

Laserball Photons Per Pulse for 3% Detector Occupancy

Wavelength [nm] Water LABPPO
LABPPO+0.3%Te

+Bis-MSB
LABPPO+0.3%Te

+Perylene
N2 : 337 8,200γ 8,400γ 18,050γ 12,400γ
PBD: 369 6,300γ 7,400γ 13,750γ 10,000γ
BBQ: 385 6,950γ 6,400γ 14,150γ 9,400γ

Bis-MSB: 420 5,750γ 5,500γ 20,700γ 9,250γ
COUMARIN: 505 9,950γ 7,300γ 7,600γ 7,700γ

Table 5.1: The required intensities, γ pulse−1 in RAT for the simulation of a
3% occupancy run in each of the four target materials.

1The omission of the KITON-RED dye, λLB = 620 nm was due to simulation reasons. At
620 nm the efficiencies of the PMTs are very small, and hence few hits are registered. To
compensate, this would require many more photons per pulse to be computed by RAT, > 106γ
pulse−1 which is computer exhaustive, see appendix B.1. Further, for the scintillation profiles of
interest here, none emit at 620 nm.
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Figure 5.4: Values for the average occupancy (%) per pulse for the laserball
at wavelengths 337, 369, 385, 420 and 505 nm in water (top) and LABPPO
(bottom). Here, the average occupancy is the ratio of the mean number of
hits, NHits to the total number of PMTs, nPMT = 9728. Errors are statistical,

±
√
NHits. Photon units are in photons ×103 as simulated in RAT.
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Figure 5.5: Values for the average occupancy per pulse for the laserball at
wavelengths 337, 369, 385, 420 and 505 nm in LABPPO+0.3%Te+bis-MSB
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√
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5.1.1.1 Average Reemitted Wavelengths

As described in Section 3.4.4, the action of absorption and reemission by the scin-

tillator changes the detected spectrum of wavelengths at the PMT; this spectrum

being characteristic of the active wavelength shifting components in the scintilla-

tor. For example, as shown in Figure 5.6 at 337 nm, the detected wavelengths

in LABPPO, LABPPO+0.3%Te+bis-MSB/perylene all vary based on the active

wavelength shifting component; PPO, bis-MSB and perylene. The mean wave-

length, µλ and width, σλ of the wavelengths detected at the PMTs in each of

the four materials considered here is shown in Table 5.2. The values obtained in

water reflect the convolution of the PMT efficiencies with the intrinsic widths of

the laser-dyes. In the three scintillator mixtures they reflect the convolution of the

PMT efficiencies with the respective emission spectra of the wavelength shifters 2.
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Figure 5.6: The reemission profile detected at PMTs for light gener-
ated at 337 nm inside one of three scintillator mixtures; LABPPO (red),
LABPPO+0.3%Te+bis-MSB (green) and LABPPO+0.3%Te+perylene (black).
None of the initial 337 nm light is detected because it is absorbed and reemited
by the scintillator. The detected profiles therefore reflect the active wavelength
shifters in each of the scintillator mixtures. The distributions do not reflect
the true reemission profile of the wavelength shifters entirely as the distribu-
tion becomes convolved with the wavelength dependence of the PMT detection

efficiency.

2In addition, for all materials considered some attenuative effects will also be present based
on the distribution width.
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Detected Wavelength Distributions at PMTs
Mean & RMS (µλ, σλ,RMS) nm

Wavelength [nm] Water LABPPO

N2 : 337 (337.10, 0.02) (398.75, 25.51)
PBD: 369 (369.30, 9.55) (388.64, 22.92)
BBQ: 385 (384.60, 6.97) (391.87 16.98)

Bis-MSB: 420 (418.99, 6.02) (420.75, 9.76)
COUMARIN-500: 505 (500.76, 11.80) (501.87, 12.25)

Wavelength [nm]
LABPPO+0.3%Te

+Bis-MSB
LABPPO+0.3%Te

+Perylene
N2 : 337 (452.55, 27.45) (489.67, 18.73)
PBD: 369 (453.95, 27.40) (489.79, 18.70)
BBQ: 385 (453.70, 27.53) (489.81, 18.71)

Bis-MSB: 420 (424.78, 14.42) (489.76, 18.69)
COUMARIN-500: 505 (502.42, 11.90) (503.01, 11.52 )

Table 5.2: The respective mean and RMS values for the wavelength distri-
bution detected across all PMTs from a central laserball run using different
laser-dyes. Values are obtained from MC information in RAT and are repre-
sentative of photons that led to the creation of a photoelectron at the PMT

photocathode.

The selection of the five laser-dyes considered thus far was based on the intention

of probing the Cherenkov light distribution in SNO. In SNO+, the scintillator

reemission spectrum is instead of interest. For this reason, an additional wave-

length scan in each of the scintillator mixtures is used. The wavelength chosen for

each mixture is intended to coincide with the mean wavelength of the scintillation

spectrum detected by the PMTs. Three commercial laser-dyes are available whose

emission peak coincide in the region of these mean values [142];

• LABPPO:

– α-NPO, λ ∈ (391-425) nm, λpeak = 400 nm

• LABPPO+0.3%Te+Bis-MSB:

– COUMARIN-440, λ ∈ (420-475) nm, λpeak = 446 nm

• LABPPO+0.3%Te+Perylene:

– COUMARIN-481, λ ∈ (461-549) nm, λpeak = 490 nm

Hence, for each scintillator mixture, an additional scan was simulated at the peak

wavelength of these three dyes; 400 nm, 446 nm and 490 nm. Similarly to scans at
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other wavelengths, these runs target a 3% detector occupancy with the following

intensities; 5750 (400 nm), 9750 (446 nm) and 7050 (490 nm) γ pulse−1.
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5.1.2 Laserball Scan Positions

Monte-Carlo data is simulated using detector settings that are as close to those

which will be enforced during the actual calibration phase. Most notably, this

means generating laserball data in a series of positions that are realistically obtain-

able by the detector rope manipulator system, see Figure 5.7. At each wavelength

in each of the four materials 39 laserball runs, each with a different position or ori-

entation of the laserball was performed, see Table 5.3. As described in Section 4.4,

given the nature of the occupancy ratio method, central runs contain quadruple

the statistics of off-axis runs.

Figure 5.7: Laserball deployment in the inner AV region. Shown are the
laserball positions in the xz-plane (the positions are the same in the yz-plane,
x→ y). Each run position is shown as a red dot. The shaded inner AV regions

denote where the rope guide system is unable to reach.
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Laserball Scan Positions

Orientation
(θLB, φLB) [rad.]

x [cm] y [cm] z [cm] |~rLB| [cm]
No.

Pulses [103]
(0, π) -150.0 0.0 -150.0 212.13 50
(0, π) -150.0 0.0 150.0 212.13 50
(0, π) -190.0 0.0 -460.0 497.70 50
(0, π) -230.0 0.0 -230.0 325.27 50
(0, π) -230.0 0.0 -500.0 550.36 50
(0, π) -230.0 0.0 230.0 325.27 50
(0, π) -320.0 0.0 -320.0 452.54 50

(0, π/2) 0.0 -150.0 -150.0 212.13 50
(0, π/2) 0.0 -150.0 150.0 212.13 50
(0, π/2) 0.0 -190.0 -460.0 497.70 50
(0, π/2) 0.0 -230.0 -230.0 325.27 50
(0, π/2) 0.0 -230.0 -500.0 550.36 50
(0, π/2) 0.0 -230.0 230.0 325.27 50
(0, π/2) 0.0 -320.0 -320.0 452.54 50
(0, π) 0.0 0.0 -230.0 230.0 50
(0, π) 0.0 0.0 -450.0 450.0 50
(0, π) 0.0 0.0 -500.0 500.0 50
(0, π) 0.0 0.0 -550.0 550.0 50
(0, 0) 0.0 0.0 0.0 0.0 200

(0, π/2) 0.0 0.0 0.0 0.0 200
(0, π) 0.0 0.0 0.0 0.0 200

(0,−π/2) 0.0 0.0 0.0 0.0 200
(0, π) 0.0 0.0 230.0 230.0 50
(0, π) 0.0 0.0 450.0 450.0 50

(0, π/2) 0.0 0.0 500.0 500.0 50
(0, π/2) 0.0 150.0 -150.0 212.13 50
(0, π/2) 0.0 150.0 150.0 212.13 50
(0, π/2) 0.0 190.0 -460.0 497.70 50
(0, π/2) 0.0 230.0 -230.0 325.27 50
(0, π/2) 0.0 230.0 -500.0 550.36 50
(0, π/2) 0.0 230.0 230.0 325.27 50
(0, π/2) 0.0 320.0 -320.0 452.54 50
(0, π) 150.0 0.0 -150.0 212.13 50
(0, π) 150.0 0.0 150.0 212.13 50
(0, π) 190.0 0.0 -460.0 497.70 50
(0, π) 230.0 0.0 -230.0 325.27 50
(0, π) 230.0 0.0 -500.0 550.36 50
(0, π) 230.0 0.0 230.0 325.27 50
(0, π) 320.0 0.0 -320.0 452.54 50

Table 5.3: Positions of the laserball for each wavelength scan. The orientation
is defined as the azimuthal angle of the laserball, φLB about its local z-axis
which points vertically upwards through the laserball manipulator with φLB =

0 ≡ PSUP-East and φLB ∈ (−π, π).
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5.2 Processing

The processing chain for laserball data is handled by RAT and OCA. OCA is a

suite of optical calibration (OCA) software utilities that performs a statistical

fit of the optical model presented in Section 4.2 over laserball data. The OCA

fit routine is comprised of two programs; soc2oca and oca2fit. The procedure

begins by converting laserball run data, initially handled by RAT in the form of

SNO+ Optical Calibration (SOC) files into a format used by OCA. OCA converts

the SOC-run files into OCA-run files (soc2oca) and uses these to perform a fit

(oca2fit) that returns the parameters of the optical model. These parameters

can then be used to monitor the detector response and be reimplemented into

RAT for future simulations. An additional OCA program, rdt2soc allows for the

conversion of original SNO RDT-run laserball files into SOC-run files. This enables

OCA to fit optical parameters across both SNO and SNO+ scans. The RAT and

OCA processing chain is outlined in Figure 5.8.

Figure 5.8: Flow diagram illustrating the chain of processes involved in con-
verting SNO and SNO+ data into the required OCA-run format prior to an
optical fit. Entities in black denote a data structure of stored information. La-
belled in red are the names of the programs used to convert and or extract
one data structure into another. The SOCFitter processor (blue) is the RAT
processor used to calculate additional information required for the fit, see Sec-

tion 5.2.2.
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5.2.1 The SOC-run File

The SOC-run file is a ROOT structured file produced by RAT (either through MC

or from the detector) that stores information about a single laserball run. The

information is stored at the run level such that all the hit times for a single PMT

in the run are stored as a single array and not divided event-by-event i.e. pulse-

by-pulse. Each SOC-run file is structured in the form of a RAT::DS::SOC C++

object that contains the following daughter objects and information;

• RAT::DS::Calib: The configuration settings of the laser for the run:

– The source identifier (source ID) which is either the laserball or one of

the other deployed sources.

– The laserball intensity and wavelength (dye name). For MC the in-

tensity is the simulated number of photons per pulse. For data it is

defined by the neutral density (ND) filter used to limit the intensity of

the laser.

– The position and orientation/direction of the manipulator as measured

by the rope guide system. The orientation of the manipulator (and

hence laserball) is given as the slot number, 0, 1, 2 or 3, that the

laserball was connected to the manipulator side ropes (0: φLB = 0, 1:

φLB = π/2, 2: φLB = π, 3: φLB = −π/2).

– The trigger time, as determined by the detector clock (50 Mhz) of each

laser pulse in a nominal 500 ns time window.

• RAT::DS::FitResult: The fitted vertex (position and trigger time) of the

laserball.

• RAT::DS::SOCPMT: A collection of SOCPMT objects, one per PMT as featured

in the run. Each SOCPMT object contains the following run-level information:

– The ID of the PMT. This can be used to query the database for the

PMT bucket position and orientation.

– The time for each registered hit at the PMT within the run.

– The value of the associated short- and long-time integration charge

values for each hit; QHS and QHL.
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In addition, both the SOC and SOCPMT objects each contain fields that store values

calculated using a RAT processor (see Figure 5.9). A processor is a RAT function

that acts on the raw run-level information (e.g. hit times) to calculate fitted

information such as the laserball position on the FitResult object. The position

is required for the light path calculation in order to produce the time residual

distribution from which the prompt peak integration is performed. For laserball

runs, RAT’s SOCFitter processor is used to calculate values for the following fields

on the SOC and SOCPMT objects:

• SOC

– Global Time Offset: The central time value of the prompt peak in the

global time residual distribution across all PMTs (see Figure 4.5).

• SOCPMT

– Time of Flight: The estimated time of flight for light to reach the PMT

from the laserball position.

– Prompt Peak Time: The central time value of the prompt peak in the

time residual distribution of the PMT (see Section 4.2.3).

– Prompt Peak Counts: The integrated number of counts ±4 ns either

side of the prompt peak time (see Figure 4.6).
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5.2.2 RAT’s SOCFitter Processor

The purpose of the SOCFitter processor is to fit for the laserball position, ~rLB and

trigger time, t0 using the PMT information. In practice only the coordinates of

the manipulator are known, not the laserball flask itself which is held tens of cen-

timetres below the manipulator. Similarly, the 50 MHz clock used by the detector

provides insufficient time resolution to determine when in the event window the

laser was triggered. The 1.7 ns resolution of the PMTs therefore provide the most

precise source of available information in the detector and are used to determine

the laserball position and trigger time. The SOCFitter performs a minimisation

of the χ2 statistic;

χ2
LB =

NPMTs∑
j

(
tcentroid
j − tToF,j (~rLB)− t0

)2(
σcentroid

RMS

)2 , (5.1)

where tcentroid
j is the PMT centroid time as in Equation 4.14. Here, the time of

flight, tToF,j generates the dependency of χ2 on the current guess of the laserball

position.

In calculating the time centroid, the SOCFitter processor performs the prerequi-

site calculations of the global time offset and the individual PMT prompt peak

integrations as described in Section 4.2.3. The difference between the true and fit-

ted laserball position coordinates in all x-, y- and z-directions from MC data sets

in water and the three scintillator mixtures at 505 nm are shown in figures 5.10

and 5.11. Overall, the average uncertainty in the x- and y- directions of the laser-

ball is ∼10 mm, but can be larger, 20-30 mm in the z-direction. In particular, the

uncertainty in the laserball z-direction increases slightly as the laserball position

radius approaches the AV radius at 6 m. The uncertainties in the laserball posi-

tion introduce systematics into the optical model that are discussed as part of the

results in Section 6.2.6 for water and Section 7.1.5 for scintillator. In addition, it

is important to note that the trigger time, t0 is essentially the global time offset

calculated using the fitted laserball position. It will be shown in Section 7.2 that

in scintillator this value contains information about absorption and reemission,

and therefore doesn’t reflect the true trigger time.
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Figure 5.10: Shown are the uncertainties in each of the x-, y- and z-directions
of the fitted laserball position with respect to the true known position in MC

in water (top) and LABPPO (bottom) at 505 nm.



Chapter 5: Production and Processing of Data 153

Laserball Position Radius [mm]
0 1000 2000 3000 4000 5000 6000

-L
as

er
ba

ll 
Po

si
tio

n,
 (x

,y
,z

) [
m

m
]

∆

50−

40−

30−

20−

10−

0

10

20

30

40

50
x-direction
y-direction
z-direction

Laserball Position Fits - LABPPO+0.3%Te+Bis-MSB, 505 nm

Laserball Position Radius [mm]
0 1000 2000 3000 4000 5000 6000

-L
as

er
ba

ll 
Po

si
tio

n,
 (x

,y
,z

) [
m

m
]

∆

50−

40−

30−

20−

10−

0

10

20

30

40

50
x-direction
y-direction
z-direction

Laserball Position Fits - LABPPO+0.3%Te+Perylene, 505 nm

Figure 5.11: Shown are the uncertainties in each of the x-, y- and z-directions
of the fitted laserball position with respect to the true known position in MC in
LABPPO+0.3%Te+bis-MSB (top) and LABPPO+0.3%Te+perylene (bottom)

at 505 nm.

5.2.3 OCA Processors

The SOC-run file is the standardised file format for an optical calibration run in

SNO+, be it with the laserball or any other deployed source. The OCA-run file is

a bespoke structure for the optical model as presented in Chapter 4 using laserball

data. It therefore requires further information such as the light path information
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and the values of the solid angle and Fresnel transmission coefficients. In addition,

given that the model uses the occupancy ratio, information from both the off-axis

and central runs need to be brought together such that they can be stored in a

single file. The conversion of off-axis and central SOC-run files into an OCA-run

file is performed by the soc2oca program. Once all the neccessary OCA-run files

have been created for a particular laserball scan, the optical fit is performed by

oca2fit.

5.2.3.1 soc2oca

An OCA-run file representation of a laserball run at a wavelength λLB is stored in

an OCA::OCARun object created by the soc2oca utility as follows;

SOC [off-axis, λLB]

SOC [central, λLB]

SOC [off-axis, λLB = 505 nm]

 soc2oca−−−−→ OCA [off-axis, λLB]. (5.2)

The off-axis and central run files at λLB are used to calculate the occupancy ratio

and the necessary model parameters which at this stage can be done analytically.

Similarly to the SOC-run files, the relevant off-axis and central information for

each PMT on an OCA-run file is held within an OCA::OCAPMT object stored in

the OCARun object. An OCAPMT object stores the observed occupancy ratio and

the following model parameters from both off-axis and central runs; solid angle,

Fresnel transmission coefficient, distances through the detector, incident angle at

the PMT bucket and the initial path direction. The data structure of the OCARun

and OCAPMT objects is shown in Figure 5.12. In the case where the required OCA-

run file is that of a central run, a central run using a different laserball orientation

(φLB) is used e.g.

SOC [central, φLB = 0, λLB]

SOC [central, φLB = π/2, λLB]

SOC [central, φLB = 0, λLB = 505 nm]

 soc2oca−−−−→ OCA [central, φLB = 0, λLB],

(5.3)

these types of OCA-run files are important for determining the angular anisotropy

of the laserball as discussed in Section 4.2.5.
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Of note in this process is the inclusion of the third file featured as an input; the

equivalent run at λLB = 505 nm. As will be presented in Chapter 6, at 505 nm the

acrylic of the AV is optically transparent and the light is subject to less attenuation.

In practice, laserball runs are performed across all wavelengths at a given position

before moving the laserball to the next. Given this, the fitted position of the

laserball at λLB = 505 nm is used as the best estimate of the location from which

light path calculations are made in order to calculate the necessary values to be

stored on the OCA-run file.

Figure 5.12: The OCA::OCARun object data structure. Each OCA-run file
contains an OCA::OCARun object which contains an OCAPMT representation for
each PMT featuring in the run. Each OCAPMT contains an occupancy value from
both the off-axis and central runs. Contained also are the model values from
both runs used to calculate the predicted occupancy ratio. These model values
are calculated by the light path calculator in RAT which calculates light paths

from the laserball to all PMT positions as discussed in Section 4.2.1.1.

5.2.3.2 oca2fit

Once all the necessary OCA-run files for a laserball scan have been created, they

are used as inputs to the oca2fit routine;

OCA [off-axis, λLB]
...

OCA [central, λLB]
...


Nruns

oca2fit−−−−→ αk, R (θγ) , L (cos θLB, φLB) , (5.4)
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where the output is the set of optical model parameters determined by a statistical

fit over χ2 as in Equation 4.28. Namely, these parameters are the attenuation coef-

ficients, αk, the PMT angular response, R (θγ) and the laserball light distribution,

L (cos θLB, φLB).

The optical fit performed by oca2fit is a reimplementation of the Fitmrq numer-

ical routine originally featuring in [143], and as previously implemented in LOCAS;

the software used in SNO to perform a fit of the optical model to laserball data.

The routine makes use of the LM algorithm in order to minimise the non-linear

least squares problem posed by the optical model.

5.2.3.3 rdt2soc

An additional routine, rdt2soc provides backwards compatibility with SNO laser-

ball data. The original processing chain of laserball data in SNO involved several

file formats (see [133]), one of which was a root delta time (RDT) file, one RDT file

per laserball run. One disadvantage is that the RDT files are summary files; the

full PMT hit information is no longer present. However, it was verified that the

prompt hit and time information pre-exisiting on the files was calculated using the

same methods as discussed in this work. Given this, rdt2soc converts the RDT

file to a SOC-run file, but does not subject it to the calculations performed by the

SOCFitter processor.

Using original SNO data also requires the PMT channel hardware status flags for

each of the laserball runs. These were made available in the form of DQXX files

which are the SNO equivalent to the channel hardware status (CHS) files used in

SNO+.

5.3 Summary of Data Production

The SNO+ MC software, RAT provides the opportunity to produce an MC laser-

ball data set that aims to resemble - as best possible - the expected data collected

during laserball deployment in the SNO+ water, scintillator and tellurium phases.

Combined with OCA, the model of the detector optical response can be fitted to

either this MC data or original SNO data in order to quantify the optical proper-

ties of the detector. Fitting to MC data allows for tuning of the software and the
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optical model. Comparisons with original SNO data provides insight into optical

effects which are not accounted for by RAT, but that can be expected in future

calibrations with the laserball in SNO+. A discussion of the results obtained from

a fit of the optical model to both SNO+ MC and original SNO data using OCA

is now presented over the next two chapters; first in water using a combination of

SNO+ MC and SNO data and then in scintillator using SNO+ MC data only.



6

Optical Fit in Water

Water, water, every where,

And all the boards did shrink;

Water, water, every where,

Nor any drop to drink.

The Rime of the Ancient Mariner, Samuel Taylor Coleridge

The first phase of SNO+ will be a water phase, where water (H2O) will occupy

both the inner and outer AV regions of the detector. Prior to this it is useful to

compare MC predictions of the expected detector optical response with an example

of the true response. As SNO+ has yet to collect data, this is done by comparing

SNO+ MC data with SNO data. Presented here are the results from two sets of

laserball scans; one produced in RAT using the SNO+ MC geometry for the water

phase, and another from SNO in October 2003 where heavy water (D2O) occupied

the inner AV region:

• SNO laserball scans, data in D2O, October 2003

– Laser wavelengths [nm]: 337, 369, 385, 420, 505, 620.

• SNO+ laserball scans, MC Data in H2O

– Laser wavelengths [nm]: 337, 369, 385, 420, 505.

A comparison between MC and real data are of interest for two reasons:

158
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• Verification of new OCA software: Values of the heavy water and wa-

ter attenuation coefficients in RAT were obtained from SNO data using the

original optical fit software, LOCAS. These values therefore characterise any

subsequent MC data RAT produces. By using OCA to re-perform the op-

tical fit of the attenuation coefficients from original SNO data, the values

obtained through OCA can be verified against the MC-inputs in RAT.

• Comparison between data and MC-data of the PMT response: Pre-

vious studies of the PMT angular response from SNO suggest several dis-

crepancies in the PMT efficiencies that are unaccounted for in RAT. These

irregularities primarily concern the progressive degradation of the PMT re-

flectors as well as the non-uniformity of the PMT efficiencies. This will be

discussed in Section 6.2.2.

6.1 Data Selection

For a single wavelength, a typical laserball scan consists of 39 runs each with

around 9000 calibrated normal-type PMTs. Each PMT from each run is a candi-

date data point for the optical fit. This means approximately 351,000 data points

enter the fit at the top-level, the stage prior to minimisation of the model over

the data. The three selection criteria as discussed in Section 4.4 are applied se-

quentially to the data set to remove PMTs from runs which may be uncalibrated,

subject to a low number of prompt counts or shadowed by detector geometry.

For a nominal laserball run, the total PMT shadowing in the SNO+ detector

fluctuates between 30-40% with the main contribution being from the AV hold-

down rope net which shadows 18-22% of the PMTs. The AV hold-down net

was not present in SNO and therefore the total PMT shadowing is less for the

heavy water data set, 15-20%. A combination of the prompt count cut and the

PMT shadowing removes at least 35-40% of the calibrated PMTs from each run.

The total number of PMTs removed is largest for laserball runs in the near AV

region, rLB ' 5500.0 mm where as many as ∼67% of the PMTs are removed. The

percentage per run is large, and therefore motivates the need for laserball runs in

as many different locations inside the detector as possible. The main constraint

in this selection process is the removal of PMTs based on their central run status.

PMTs removed based on insufficient statistics from the central run, or shadowing
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from the central position will effectively remove their PMT off-axis counterparts

from being included in the fit. A breakdown of the number of PMTs removed per

cut is shown in Table 6.1 for two example runs from each of the data and MC data

sets.
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Sequential Data Selection Cuts

Central Run-34707, SNO Oct’03, D2O, 420 nm, rLB = 13.24 mm

Selection Cut No. PMTs Pass : Fail PMTs Removed (%)

1) Noff-axis
prompt > 1000 8013 : 764 8.70%

2) N central
prompt > 4000 6461 : 1552 17.68%

3) Central PMT Shadowing 5470 : 991 11.29%
4) Off-Axis PMT Shadowing 5451 : 19 0.22%

Total PMTs: 8777 5451 : 3326 37.89%

Off-Axis Run-34875, SNO Oct’03, D2O, 420 nm, rLB = 5568.18 mm

Selection Cut No. PMTs Pass : Fail PMTs Removed (%)

1) Noff-axis
prompt > 1000 3402 : 5375 61.24%

2) N central
prompt > 4000 3361 : 41 0.47%

3) Central PMT Shadowing 3008 : 338 3.85%
4) Off-Axis PMT Shadowing 2790 : 218 2.48%

Total PMTs: 8777 2790 : 5972 68.04%

Central Run-2420038, SNO+ MC, H2O, 420 nm, rLB = 1.17 mm

Selection Cut No. PMTs Pass : Fail PMTs Removed (%)

1) Noff-axis
prompt > 1000 8976 : 266 2.88%

2) N central
prompt > 4000 8458 : 518 5.60%

3) Central PMT Shadowing 5434 : 3024 32.72%
4) Off-Axis PMT Shadowing 5433 : 1 0.01%

Total PMTs: 9242 5433 : 3809 41.13%

Off-Axis Run-2420032, SNO+ MC, H2O, 420 nm, rLB = 5544.35 mm

Selection Cut No. PMTs Pass : Fail PMTs Removed (%)

1) Noff-axis
prompt > 1000 5661 : 3581 38.75%

2) N central
prompt > 4000 5620 : 41 0.44%

3) Central PMT Shadowing 3915 : 1705 18.45%
4) Off-Axis PMT Shadowing 3117 : 798 8.63%

Total PMTs: 9242 3117 : 6125 66.27%

Table 6.1: Example of the sequential data selection cuts made across all nor-
mal type PMTs for two given laserball runs in the central and near AV regions
in D2O (SNO) and H2O (SNO+ MC). Cuts are applied at the top-level and se-
quentially (1)-(4) prior to the minimisation of the optical model over the data.
Here sequentially denotes that the sum of the pass-to-fail ratio for cuts (2)-(4)
is equal to the number of PMTs which passed the preceding cut. The number

of PMTs removed for a given cut is shown as a percentage.
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6.1.1 Chi-Square Cuts

Using the definition of the data point pull as in Equation 4.37, the individual pull

distributions for each wavelength scan was studied. Figure 6.2 shows two examples

of these pull distributions for the 505 nm scan from the SNO and SNO+ MC data

sets. The widths, σλ for all wavelengths in each of the data sets are shown in

Figure 6.1. From this, the method described in Section 4.4.2 was applied, using

the rounded average value,
⌈
(2× 〈σλ〉)2⌋ as an estimator of the final upper χ2

limit for each data set:

〈σMC
λ 〉 = 1.32⇒ χ2,MC

lim,f =
⌈
(2× 1.32)2⌋ = 7, (6.1)

〈σData
λ 〉 = 1.53⇒ χ2,Data

lim,f =
⌈
(2× 1.53)2⌋ = 9. (6.2)
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Figure 6.1: The fitted values of the Gaussian width, σλ for each of the data
point pull distributions from each laserball scan in the SNO (red) and SNO+

MC (black) data sets.

Although the two are not directly comparable, the pull widths of the SNO scans

are larger in comparison to the SNO+ MC data set. This is likely to be reflective

of a discrepancy between the modelling of the PMT efficiencies in RAT and the

actual PMTs themselves; the PMT variability. This is discussed in Section 6.2.2.
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Figure 6.2: The data point pull distributions for a SNO (top) and SNO+ MC
(bottom) laserball scan at 505 nm. In both cases the pull values are normally
distributed about zero in the ranges (−3.0, 3.0) for the SNO scan and (−2.6, 2.6)
for the SNO+ MC scan. These ranges are equivalent to a distance of ∼2σ either
side of the origin based on the sigma value of the associated Gaussian fit (red)
in the respective range. Beyond these ranges the distribution becomes non-

Gaussian as shown.
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It is clear that the size of the data sample, and hence the final result of the fit

is informed by the choice of the final upper χ2 limit. Although the choice of this

final limit has been reasoned in the above, it is important to test the sensitivity

of the final fit result to different final limits. This can therefore be considered a

systematic for which a treatment is presented in Section 6.2.6.

6.2 Optical Fit Results: Data & Monte-Carlo

The water phase of SNO+ provides a unique opportunity to improve the measure-

ments of two of the optical parameters:

• Improved sensitivity to the water attenuation coefficient, αH2O:

Due to the nature of the detector geometry, the distance travelled by light

in the outer water region between the AV and the PMTs is restricted to

an approximate range of (2.2, 4.0) m. This range is small in comparison to

the range of distances that light can travel inside the AV (0.5, 11.5) m; the

only limitation being the placement of the laserball in the near AV region,

rLB ≥ 5.5 m. Consequently, values of the inner AV attenuation coefficient are

known to a better degree of statistical certainty, and are more robust against

systematic variations given that path lengths in this region are sampled over

a broader range. For a water filled detector, both the inner and outer AV

regions may be treated as the same material. By considering the maximum

and minimum path lengths, the sampled range is broadened to (2.7, 12.0) m,

over which to fit for a combined water attenuation coefficient, αcomb.
H2O with

improved sensitivity. The original SNO experiment did not have a water

phase; the SNO+ water phase will be the first opportunity to fit for such a

combined attenuation coefficient over the inner and outer AV regions.

• In-situ measurement of the acrylic attenuation coefficient, αAV:

Light emitted inside the AV will only travel a small distance, between a

range of (55.0, 98.0) mm through the 55.0 mm thick acrylic vessel. For a

nominal light path from the centre of the detector, this distance accounts

for <1% of the total path length. Furthermore, the distance of light through

the acrylic and outer AV water regions are strongly correlated as shown

in Figure 6.3. This correlation is present in all scenarios where the inner
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and outer AV materials are different e.g. D2O (SNO), LABPPO (SNO+),

LABPPO+0.3%Te+bis-MSB/perylene (SNO+). This makes an in-situ mea-

surement of the acrylic attenuation coefficient, αAV difficult. As a result, pre-

vious studies during SNO would typically fix this parameter in the fit to an

ex-situ lab measurement. As shown in Figure 6.3, for a water phase scenario,

by combining the path lengths in the inner and outer AV water regions as

described above, the direct correlation between the distances in acrylic and

water may be broken. In doing this, the acrylic attenuation coefficient be-

comes parametrically unconstrained, making an in-situ measurement more

feasible.

To summarise, the SNO heavy water data was used to fit for the D2O and H2O at-

tenuation coefficients, αD2O and αH2O with the acrylic attenuation coefficient fixed

to ex-situ measurements. The SNO+ MC water data was used to fit for a com-

bined H2O attenuation coefficient, αcomb.
H2O and the acrylic attenuation coefficient,

αAV. In both instances all other parameters in the model were allowed to vary; the

laserball light distribution, the PMT angular response and the laserball intensity

normalisation (in the form of the occupancy normalisation as in Equation 4.27).



Chapter 6: Optical Fit in Water 166

Figure 6.3: Top: The correlation between the distance through the acrylic
and outer AV water regions in SNO at 420 nm. The banding of the distribution
is due to PMTs housed in the PSUP at different radii from the centre of the
detector. Bottom: The relation between the distance through the acrylic and
the combined distance through the inner and outer AV water regions for the
SNO+ water phase. The direct correlation is broken. The individual curves
remain locally banded as above; the global separation in the curves is due to

different laserball positions at different radii, rLB ∈ (0, 5500.0) mm.
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6.2.1 Attenuation Coefficients

Fitted values of the attenuation coefficients for the SNO and SNO+ MC data

sets alongside their associated reduced χ2 value are shown in Table 6.2. Both the

statistical and systematic errors are shown. The statistical error is extracted from

the parameter covariance matrix, and the systematic error represents the combined

uncertainty due to a variety of systematic contributions that are discussed in

Section 6.2.6. These systematic uncertainties contribute most to the uncertainty

on each attenuation coefficient, in particular for the outer water, αH2O and acrylic,

αAV regions. Given the sufficient size of the data samples in each scan, &100,000

data points, the statistical uncertainty is generally small in the inner AV region

0.23-2.7%. The statistical uncertainty associated with the acrylic and outer water

regions can be larger, ranging from 0.6-10.7% and 0.73-14% respectively based on

the wavelength. As discussed previously, this is reflective of the narrow range of

paths lengths over which these materials are sampled.

SNO October 2003, α± stat.± sys.

λ [nm] αD2O [10−5 mm−1] αH2O [10−5 mm−1] χ2/d.o.f. [2 d.p.]

337 1.44± 0.01± 0.01 3.89± 0.26± 2.60 157259 / 129600 = 1.21
369 0.93± 0.01± 0.12 2.78± 0.25± 1.49 116568 / 117717 = 0.99
385 0.80± 0.01± 0.12 3.90± 0.23± 1.88 115150 / 117197 = 0.98
420 0.59± 0.01± 0.14 1.77± 0.22± 2.15 101370 / 98689 = 1.03
505 0.31± 0.01± 0.09 4.87± 0.17± 1.92 170710 / 165044 = 1.03
620 0.37± 0.01± 0.06 32.68± 0.24± 1.57 147591 / 148257 = 0.99

SNO+ MC, α± stat.± sys.

λ [nm] αcomb.
H2O [10−5 mm−1] αAV [10−3 mm−1] χ2/d.o.f [2 d.p.]

337 2.70± 0.01± 0.21 4.81± 0.03± 0.49 128303 / 128040 = 1.00
369 2.05± 0.01± 0.21 1.39± 0.04± 0.41 118928 / 118929 = 1.00
385 1.88± 0.01± 0.21 0.64± 0.03± 0.41 126743 / 126378 = 1.00
420 2.05± 0.01± 0.22 0.29± 0.04± 0.41 122996 / 121078 = 1.02
505 4.30± 0.01± 0.22 0.28± 0.03± 0.39 129906 / 128132 = 1.01

Table 6.2: Top: Attenuation coefficients of the inner AV D2O and outer AV
H2O regions from the SNO data set. Bottom: The combined inner and outer
AV water regions and the acrylic of the AV from the SNO+ MC water phase

data set.
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SNO October 2003 - D2O & H2O

Values of αD2O and αH2O are shown in Figure 6.4. The fitted D2O attenuation

coefficients are consistent with those obtained in SNO, and which are present in

RAT. Also shown are the ex-situ attenuation coefficients measured by Boivin et al.

using a long-path-length transmittance method [144]. These measurements were

made in 1986 following the initial proposal of the SNO experiment. The fitted

D2O attenuation coefficients from the October 2003 laserball scans are found to

be smaller than those obtained by Boivin et al.; this has similarly been observed

in previous studies of SNO laserball data [133]. This discrepancy is likely due to

a limitation of the Boivin et al. technique which used a relatively short 50.3 cm

water-cell, and improvements in the purification techniques of heavy water between

1986 and the start date of SNO in 2000. Variations in the D2O attenuation

coefficient across all three phases of the SNO experiment have also been previously

noted, observing a drift in αD2O between optical calibration runs that took place

between September 2000 and August 2006 [134].

Values of αH2O obtained for the outer water region are also consistent with original

measurements made in SNO (and included in RAT). Again, measurements of the

attenuation coefficients by Boivin et al. are shown for consistency. Included also

are measurements by Pope et al. [145] of the water absorption coefficient between

348-700 nm. The values of αH2O are consistent and within systematic uncertainty

of those reported by Boivin et al. in the 310-440 nm region. Beyond this, in

the λ ≥ 500 nm region, the fitted values agree very well with the previous SNO

result, whereas the lab measurements by Boivin et al. coincide with the absorption

spectrum in the 540-580 nm region. This particular measurement illustrates the

importance of an in-situ characterisation of the attenuation coefficients. Despite

a relative consistency within the two types of in-situ and ex-situ data, the types

themselves exhibit non-negligible variations in different regions of the wavelength

spectrum.

The obtained values of αD2O and αH2O occupy a minimum in a smooth parameter

space. A scan of the reduced χ2 for the surrounding parameter space in the physical

regions of this minimum are shown for the 385 and 505 nm scan in Figure 6.5 and

suggests that the minimum identified by the OCA fit is both global and unique.
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Figure 6.4: The fitted attenuation coefficients for D2O (top) and H2O in the
outer AV region (bottom) obtained from the SNO October 2003 data set. Errors
shown are both statistical and systematic. Shown in each respective plot are the
attenuation coefficients obtained by Boivin et al. [144] (blue) and the current
RAT Rayleigh scattering (green) and attenuation coefficients (red) which are
based on measurements from SNO. Shown also on the bottom plot is the water

absorption spectrum (dashed line) as measured by Pope et al. [145].
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Figure 6.5: The reduced χ2 surface between the inner and outer AV water
attenuation coefficients for the 385 and 505 nm laserball scan in D2O from SNO
October 2003. The contours are smooth, with a colour scale that represents the

minimised reduced χ2 value at each combination of αD2O and αH2O.
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SNO+ MC - H2O & Acrylic

The attenuation coefficient of water for the combined inner and outer AV regions,

αcomb.
H2O from the SNO+ MC data set are shown in Figure 6.6. In comparison

with the values of αH2O obtained from the SNO data set, the values here are

identified with improved statistical uncertainty, <1%. In addition, by combining

the inner and outer regions into a single effective material, the values are more

robust against systematic changes that introduce uncertainties in the range 5-12%

based on wavelength.
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Figure 6.6: Shown in black are the fitted attenuation coefficients of the com-
bined inner and outer AV water regions, αcomb.

H2O obtained from the SNO+ MC
data set. Errors shown are both statistical and systematic. Shown also are
the current RAT Rayleigh scattering (green) and attenuation coefficients (red).
Points along the black dashed line represent absorption measurements made by

Pope et al. [145].

It is also of interest to consider the inner and outer AV water regions as different

materials and test for equivalence of the attenuation coefficients either side of

the acrylic boundary imposed by the AV. For MC data, it is expected that the

attenuation coefficients are equivalent. However, in practice the inner and outer

AV water regions are exposed to different environments, particularly in the outer

region where slight impurities may leech into the water from detector components

and the cavity liner. Subsequently, any contamination of the water - for which

there is precedent [134, 146] - may alter the attenuating properties of the water.



Chapter 6: Optical Fit in Water 172

For this reason a control fit was performed on the data wherein the inner and

outer AV water regions were treated as different materials to test the ability of

the fit to identify equivalence between the two. The values of αH2O in the outer

AV region from the control fit are shown in Figure 6.7. As expected, the values

are equivalent to those obtained in the inner AV region, but are subject to the

larger systematic uncertainties associated with the outer AV region. The ratio of

the attenuation coefficients, αH2O obtained for the separate treatment of the inner

and outer AV regions as part of the control fit are shown in Figure 6.8 and are

consistent with unity.
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Figure 6.7: Shown in black are the fitted attenuation coefficients of the outer
AV water region, αH2O obtained from the SNO+ MC data set. Errors shown
are both statistical and systematic. Shown also are the current RAT Rayleigh
scattering (green) and attenuation coefficients (red). Points along the black
dashed line represent absorption measurements made by Pope et al. [145]. The
values obtained in the outer water region are consistent with those obtained in
the inner AV region, but are subject to a larger degree of systematic uncertainty.

The obtained values of the acrylic attenuation coefficient, αAV are shown in Fig-

ure 6.9. The values of the acrylic in RAT come from ex-situ measurements made

prior to SNO [147]. Despite probing only a very narrow range of path lengths

through the acrylic region, the fit performs well, matching the expected shape of

the attenuation curve between 337-505 nm. However, the values themselves are

slightly underestimated and are generally smaller than the ex-situ measurements.
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Figure 6.8: The ratio of the water attenuation coefficients, αH2O for the inner
and outer AV water regions from the SNO+ MC data set. The ratio is con-
sistent with unity, illustrating the ability of the fit to find equivalence between
two detector regions that are made of the same material. Larger systematic
contributions (black) come from the outer region values. Shown also in red is

the statistical uncertainty.

In-situ measurements of the acrylic may be improved by performing laserball scans

outside of the AV. This would further separate the correlation between the water

and acrylic path lengths by sampling two new light path types; paths wherein

the light only travels through the nearside water region directly to the PSUP and

paths that intersect the AV twice. At time of writing, the possibility of such

laserball deployment is currently being explored by members of the SNO+ optics

group.

As before, the attenuation coefficients αcomb.
H2O and αAV are parameters in a very

smooth parameter space. Example projections of the reduced χ2 surface for the 337

and 369 nm scans are shown in Figure 6.10. The smooth parabolic nature of these

surfaces is contoured by the parameter covariances, which is ultimately reflective

of the statistical uncertainties in the single parameter values. However, these type

of plots do not illustrate the relationship between the parameter space and the

various systematic effects that drive the dominant uncertainties (see Section 6.2.6)

in the parameter values.
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Figure 6.9: Shown in black are the fitted attenuation coefficients of the AV
acrylic obtained from the SNO MC+ data set. Errors shown are both statistical
and systematic. Show also are the current RAT Rayleigh scattering (green) and
attenuation coefficients (red) for acrylic which are based on ex-situ measure-

ments from SNO.
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Figure 6.10: The reduced χ2 surface between the combined inner and outer AV
water and AV acrylic attenuation coefficients for the 337 and 369 nm laserball
scans produced by RAT. The contours are smooth, with a colour scale that
represents the minimised reduced χ2 value at each combination of αcomb.

H2O and
αAV.
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6.2.2 PMT Angular Response

The fitted relative PMT angular response obtained from the SNO heavy water

and SNO+ MC water phase data sets are shown for all associated wavelengths in

figures 6.11 and 6.13 respectively. In general, this angular response distribution

varies across different wavelengths and incident angles. This is indicative of the

effective response of the PMT reflector assembly and the intrinsic efficiency of the

PMT itself to light at different wavelengths and incident angles.

In comparing different wavelength scans from the SNO data in Figure 6.11, the

θPMT ∈ (0o, 30o) range of the distributions are generally consistent and near-linear,

increasing with slight variations in the gradient as the incident angle becomes

larger. Thereafter, at incident angles θPMT ∈ (30o, 42o) the distributions deviate

and increase or decrease based on the wavelength. For all wavelengths the response

decreases at θPMT ≥ 42o. The results obtained for this data set using the OCA fit

procedure are consistent with those obtained through the original SNO software

equivalent, LOCAS. An example comparison between the fitted angular response

from OCA and LOCAS is shown for the 420 nm scan in Figure 6.12.
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Figure 6.11: The fitted relative PMT angular response for the SNO October
2003 heavy water data set. Errors are both statistical and systematic.
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Figure 6.12: A comparison of the fitted relative PMT angular response at
420 nm for the SNO October 2003 heavy water data set as calculated by OCA
and the original LOCAS fit procedure. Errors are both statistical and systematic.
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Figure 6.13: The fitted relative PMT angular response for the SNO+ MC
water phase data set. Errors are both statistical and systematic.
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The angular response distributions obtained from the SNO+ MC data set share

similar features to the SNO response in the region θPMT ∈ (0o, 27o), exhibiting

a consistent near-linear increase across all wavelengths. However, the peak of

the response across all wavelengths resides in the range θPMT ∈ (27o, 30o) and

thereafter decreases for incident angles θPMT ≥ 300. In the case of the 337 and

505 nm scans, the decrease of the relative response at these larger angles becomes

less than 1. This is an effect that is induced by the geometry of the PMT reflector,

which is, in part, determined by both its length and radius of curvature. Based on

the entry of light into the plane of the PMT bucket, there will be a limiting angle

above which light that enters is reflected back out and away from the face of the

PMT, subsequently reducing the PMT response. This effect was observed in pre-

production studies of the PMT geometry for SNO [125]. As shown in Figure 6.14,

the fitted angular response spectrum obtained from this MC data set is consistent

with the expected angular response shape present in RAT. Variations in the size

of the spectra are maximal about the peak, 2-3% and overall are attributed to

correlations between the response and the laserball intensity which is discussed in

Section 6.2.5.
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Figure 6.14: A comparison of the fitted relative PMT angular response at
505 nm for the SNO+ MC data set as calculated by the OCA fit procedure and
from MC studies in RAT. Errors are both statistical and systematic for the OCA

fit distribution and only statistical for the RAT distribution.

The PMT angular response is robust to systematic uncertainties associated with

the laserball position. The fitted angular response and that obtained from a sys-

tematic fit in which the laserball position radius is increased by 1% is shown
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Figure 6.15 for both SNO and SNO+ MC data sets at 420 nm. The fractional

change in the response is small, and in most cases < 0.1%, only increasing above

∼1% for θPMT ≥ 400 where the sampling of the response is statistically limited.
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Figure 6.15: Comparison of the fitted relative PMT angular response at
420 nm (black) from the SNO (top) and SNO+ MC (bottom) data sets with
those obtained from a systematic fit (red) wherein the laserball position radius
is increased by 1%. Only statistical errors are shown. The blue dashed-line

represents the systematic-to-nominal ratio of the two distributions.
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6.2.2.1 Discrepancies between Data & Monte-Carlo

It is clear by direct comparison of the angular response from both data sets that

there are discrepancies between the real and MC performance of the PMTs and

their reflectors. This is particularly evident at larger incident angles, and is illus-

trated by the data-to-MC ratio of the response as shown in Figure 6.16. Across

all wavelengths the fractional changes between data and MC can vary at the very

most between (−4%,+12%) in the region θPMT ≥ 300.
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Figure 6.16: The data-to-MC ratio of the relative PMT angular response
parameters obtained from the SNO and SNO+ MC data sets.

The relative PMT angular response is an effective treatment designed to charac-

terise the response of all normal-type PMTs and their reflectors. For MC studies,

this is reasonable as RAT assumes that all PMTs have the same efficiency and

are surrounded with as-new reflectors. However, in practice each individual PMT

will have its own intrinsic efficiency, and each set of reflectors will have its own

collection efficiency; a measure of the effectiveness of the reflectors to redirect light

onto the PMT face. These efficiencies are in part eliminated from the optical fit

by using the occupancy ratio method. Despite this there are two main in-situ phe-

nomena which affect the PMT response that are not yet accounted for by RAT.

As discussed in Section 4.2.4, one of these is the degradation of the reflectors over

time. At time of writing, a full ageing model of the PMT concentrators is not

currently implemented in RAT, but is the subject of an ongoing investigation at

UC Berkeley [104, 148].
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6.2.3 PMT Variability

In addition to the ageing of the reflectors, the other effect unaccounted for by

RAT is the PMT variability, δv (θγ). As discussed in Section 4.3.2, the PMT

variability characterises the observed correlation of increasing width in the effective

PMT efficiencies at larger incident angles; this increase being beyond that of the

counting statistics associated with the occupancies of the PMTs. The measure

of this width is given by the coefficient of variation, of which the variability is

the residual uncertainty once the statistical uncertainty has been subtracted (see

Equation 4.33). Shown in Figure 6.17 is an example comparison of the coefficient

of variation between the SNO and SNO+ MC data sets for a scan at 420 nm.

For the SNO+ MC data set, the variation is relatively constant with values in the

range 0.023-0.027, which are consistent with the uncertainty on the occupancy,

. 3%. There are therefore no contributions from the variability based on the

incident angle in MC data produced by RAT. The variation in the SNO data is

larger, and increases at larger incident angles i.e. δv (θγ) 6= 0. In both data sets,

the coefficient of variation is suppressed at small incident angles, θPMT ∈ (00, 50)

due to the improved statistics of the central runs (×4 those of off-axis runs) for

which all incident angles are small. It is the overall smaller variation in the SNO+

MC data which results in the narrower data point pull distributions (and hence

smaller final χ2 limits) which were discussed in Section 6.1.1.

As shown in Figure 6.18 the trend of increasing variation with incident angle is

similar across all wavelengths in the SNO scans. To account for this at each

PMT in the sample of the fit, linear and second-order degree polynomial functions

are fitted to the coefficient of variation distribution, two examples are shown in

Figure 6.19 for scans at 337 and 420 nm. This can then be used to estimate the

individual PMT variability in a given run, δvij (θγ,ij) using Equation 4.33. The

fitted functions are only intended to be an approximation to the coefficient of

variation, which can be parameterised by only two or three parameters based on

the order of the polynomial1.

The optics fit for the SNO data set is corrected for by introducing the PMT

variability term. A full fit without consideration for this effect yields reduced χ2

1In practice, there is nothing to stop one from using the individual variability values at each
incident angle. However, this introduces around 45 new parameters into the fit. It was verified
that this approach did not change the overall fit result compared to using two or three parameter
to define a function.
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Figure 6.17: Comparison between the calculated coefficient of variation for
SNO (red) and SNO+ MC data (blue) at 420 nm. The variation of the SNO data
increases with incident angle (δv (θγ) 6= 0) whereas little variability is exhibited

by the MC data.
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Figure 6.18: The coefficient of variation across all wavelengths of the SNO
October 2003 data set.

values ∼1.6-1.8, this is unreasonable given a fit consists of &100,000 data points.

Including the variability term restores the values of the reduced χ2 to ∼ 1.
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Figure 6.19: The coefficient of variation for the SNO October 2003 data set
at 337 nm (top) and 420 nm (bottom). Shown is the calculated coefficient of
variation for each 1o of the incident angle (black). The fitted polynomials (red)
are used to estimate the coefficient of variation from which the PMT variability

can be calculated.

6.2.4 Laserball Light Distribution

The total light distribution of the laserball, L (cos θLB, φLB) is a composite value

consisting of a two-dimensional angular distribution, H (cos θLB, φLB) multiplied
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by a degree-four polynomial mask function, P4 (cos θLB);

L (cos θLB, φLB) = P4 (cos θLB)×H (cos θLB, φLB) . (6.3)

Here, H (cos θLB, φLB) characterises the relative angular anisotropy in the local

(cos θLB, φLB) coordinate frame of the laserball. P4 (cos θ) characterises the overall

intensity of the laserball, which is generally smaller near the mounting hardware at

the top of the flask (cos θLB ' 1), and maximal near the bottom (cos θLB ' −1).

As discussed in Section 4.2.5, the angular distribution can either be defined as

a two-dimensional histogram with (12, 36) binning in (cos θLB, φLB); a total of

12 × 36 = 432 parameters, or alternatively as a sinusoidal distribution binned in

24 cos θLB slices, each with its own relative amplitude, Ak and sinusoidal phase,

δk; a total of 24× 2 = 48 parameters. Given the fewer parameters required by the

sinusoidal model this was chosen to be the distribution used in the fit. However,

as will be discussed, the binned distribution is useful to verify the sinusoidal input

used by RAT as the input for the SNO+ MC data set.

6.2.4.1 Laserball Mask Function

The laserball mask function, P4 (cos θLB) for each wavelength scan obtained from

both SNO and SNO+ MC data sets are shown in Figure 6.20. The function is

normalised to unity at the expected maximum, cos θ ' −1. In the high cos θLB

region the intensity decreases as a result of intrinsic shadowing introduced by the

mounting hardware which holds the laserball flask from directly above, cosLB θ ' 1.

In the case of the SNO+ MC data set, this data was produced by RAT which uses

a known form of the laserball mask obtained from measurements in SNO during

the August 2006 calibration period (see Section 5.1, Figure 5.3). Therefore, the

mask function obtained through the OCA fit procedure can be directly compared

to the MC-input used in simulations of the laserball. This provides a good test of

the OCA fit convergence to the true MC-inputs. The ratio of the fitted and MC-

input of the laserball mask function, P4 (cos θLB) for each comparable wavelength

is shown in Figure 6.21. In general, the fitted mask function is in good agreement

with the RAT input, with a fractional difference of at most 4.7% which occurs

for the 420 nm wavelength scan. For all wavelengths the fractional difference

is greatest near the very top of the laserball, cos θLB ' 1. This discrepancy is
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Figure 6.20: Shown are the fitted laserball distribution mask functions ob-
tained from the SNO (top) and SNO+ MC (bottom) data sets. The mask
function is normalised near the expected maximum intensity region, cos θLB '

−1, θLB ' π.

reasonable to expect as it is an unphysical region in which to expect light output

due to the shadowing caused by the mounting hardware.
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Figure 6.21: The fitted-to-MC-input ratio of the fitted laserball mask obtained
through OCA to that which is used by RAT to simulate the laserball. The
fractional differences are shown for all wavelengths of the SNO+ MC data set.

6.2.4.2 Laserball Angular Distribution

The fitted sinusoidal forms of the laserball angular distributions from the SNO and

SNO+ MC data sets are shown in figures 6.22 and 6.23 respectively. In both cases

the sinusoidal variation of 3-4% in the relative intensity about φLB is evident. The

clarity of this sinusoidal form is particularly clear in the SNO+ MC data set, as

this data was simulated using a sinusoidal characterisation of the laserball obtained

from SNO (see Section 5.1).

One feature to note about the angular distributions from the SNO data set is that

there are artefacts of the fitting procedure in the 337, 369, 385 and 420 nm data

sets at cos θLB ' 1. In this region, the anisotropy is discontinuous. Similarly to

the laserball mask functions in this region of cos θLB, the parameters are sampled

less by the data as they define the very top of the laserball flask which is shadowed

by the mounting hardware. There is no laserball geometry included in RAT and

therefore this feature does not appear in the distributions obtained from the SNO+

MC data set.
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Ultimately, the strength of the OCA fit to identify any intrinsic angular anisotropy

of the laserball distribution is governed by the inclusion of runs wherein the laser-

ball is positioned at one of the four different orientations inside the detector. In

doing this, any correlations between the angular distribution and mask function

is broken; this is illustrated in Section 6.2.5 by studying the covariance matrix

returned by the fitting procedure.

One final verification of the OCA fit procedure on the angular distribution is to

assume the SNO+ MC data was not produced with a sinusoidal model (even

though it was) and to fit for the angular distribution using the aforementioned

binned distribution, H (cos θLB, φLB) ≡ 12 × 36 bins. The advantage of a binned

distribution is that each of the 432 parameters are independent of one another,

and not characterised by any functional form as in the sinusoidal model. In doing

this, no prior bias is assumed on the form of the angular distribution. An example

of a fit using a binned distribution is shown for the 505 nm scan in Figure 6.24.

Comparing with the true input (see Section 5.1, Figure 5.2) the OCA procedure is

able to successfully identify the true sinusoidal nature of the RAT input to within

1%.
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Figure 6.22: The fitted laserball angular distributions from the SNO October
2003 data set. Distributions were fitted using a sinusoidal model composed of

24 cos θLB slices.
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Figure 6.23: The fitted laserball angular distributions from the SNO+ MC
data set. Distributions were fitted using a sinusoidal model composed of 24

cos θLB slices.
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Figure 6.24: Shown is the fitted laserball angular distribution from the 505 nm
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binned approximation to the angular anisotropy. Shown also (bottom) is the
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OCA fitting procedure obtains a fitted distribution to within 1% of the true

MC-input distribution.
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6.2.5 Covariance Matrix & Parameter Correlations

The covariance matrix is returned at the end of each fit. It is an Npar × Npar-

dimensional matrix, where Npar is the number of the parameters in the fit. The

specific ordering of the parameters is as follows;

• Index [1] - Inner AV region attenuation coefficient.

• Index [2] - AV acrylic attenuation coefficient.

• Index [3] - Outer AV region H2O attenuation coefficient.

• Indices [4 : 8] - Laserball mask function, P4 (cos θLB). Polynomial of order

four → 4 + 1 parameters.

• Indices [9 : 89] - Relative PMT angular response, R (θPMT). Incident angles

between 0 - 90 degrees, with one parameter per degree.

• Indices [90 : 137] - Laserball light distribution, L (cos θLB, φLB). Sinusoidal

model with 24 cos θLB slices, with two parameters per slice→ 48 parameters.

• Indices: [138 : (137 +Nruns)] - Nruns occupancy normalisations, one per

run.

A typical fit therefore returns a covariance matrix for 176 parameters (a typical

SNO+ MC wavelength scan contains Nruns = 39 runs). However, not all the

parameters vary in the fit, and in most cases some are fixed for which there is no

meaningful covariance information. The following subsets of parameters are fixed:

• Fixing of attenuation coefficients: For the SNO October 2003 data set,

the acrylic attenuation coefficient, αAV is fixed to ex-situ measurements. For

the SNO+ MC data set, the inner and outer AV regions are combined, αcomb.
H2O

as explained in Section 6.2, requiring one less parameter.

• Fixing of relative PMT angular response: For most laserball scans, the

range of incident angles probed at the PMTs is in the range θPMT ∈ [0o, 50o].

Therefore, approximately 40 parameters corresponding to the θPMT ∈ (50o, 90o]

range are not sampled and subsequently fixed.
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As a result of this parameter fixing, the subset of parameters which are of interest

(those which are not fixed) form a covariance matrix featuring 130-140 parame-

ters. In the following discussion, the covariance matrices, from which correlation

matrices are obtained, represent these subsets of varying parameters.

6.2.5.1 Correlation Matrices

The covariance matrix, CV consists of covariance values between parameters which

all vary based on the overall magnitude of the parameter value itself; this can be

between 10−6-102 depending on the particular parameter. It is therefore useful

to define a correlation matrix, CR which normalises the relationship between the

parameters to the range [−1, 1]; where values close to -1 or +1 denote a respective

tendency towards negative or positive correlation;

CR = D−1
V CVD

−1
V , where DV =

√
Diag. (CV ). (6.4)

In general, all equivalent parameters share the same correlations across both SNO

and SNO+ MC data sets and the different wavelength scans therein. An example

of the global parameter correlation space is shown in Figure 6.25 for the SNO+

MC data set at 420 nm. In particular it is interesting to note the correlations,

if any, between the three main composite subsets of parameters in the optical

model; the relative PMT angular response, the laserball angular distribution and

the intensity normalisations. The most prominent feature here is the slight neg-

ative correlation between the PMT angular response and the laserball intensity.

This is reasonable to expect as there is a slight positive correlation between both

the laserball intensity and the PMT angular response with the laserball position

radius; specifically in the |z|-coordinate direction. An example of this relationship

is shown in Figure 6.26 for a scan at 505 nm. The negative correlation between

the angular response and the laserball intensity can then be reasoned by consid-

ering that for a given number of hits, Nhit at a single PMT, this value will be

directly proportional to both the efficiency of the PMT (itself related to the an-

gular response i.e. ε (R (θPMT))) and the amount of light emitted by the laserball,

Nγ;

Nhit ∝ ε (R (θPMT))×Nγ. (6.5)
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Therefore, increases in one of either the angular response or the intensity are

compensated for by decreases in the other, thus resulting in a negative correlation.

Figure 6.25: The global correlation space for the varying parameters from the
SNO+ MC data set at 420 nm. Shown are the three main composite parameter
subsets; the relative PMT angular response, the laserball angular distribution
and the intensity normalisations. In the case of the PMT angular response, only

the correlations for the parameters in the range θPMT ∈ (0o, 50o) are shown.

As expected, the intrinsic laserball anisotropy characterised by the angular re-

sponse is not correlated to either the intensity of the laserball or the response of

the PMTs. More importantly however, and as shown in Figure 6.27, is that the

angular distribution does not share any correlations with the parameters that de-

fine the mask function which characterises the cos θLB dependence of the laserball

intensity. This supports the use of multiple laserball runs in the same position, but

at different angular orientations as it ensures that the fit can dissociate separate

φLB and cos θLB dependencies in the overall laserball light distribution.

The attenuation coefficients of the optical model only share correlations with the

PMT angular response. Specifically, it is only the attenuation coefficient of the

outer most region which shares a strong correlation; αH2O in the case of the SNO

data set and αAV in the case of the SNO+ MC data set (the outer water region

is combined with the inner region as part of αcomb.
H2O ). As shown in Figure 6.28,

the correlation is greatest in the high incident angle region, θPMT ∈ (30o, 45o).

The increase in the correlation is reflective of the quadratic relationship between
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Figure 6.26: Shown is the correlation in the fitted intensity normalisations
(black, left-axis) and the incident PMT angles (magenta, right-axis) at different
laserball positions in the |z|-direction. Data is taken from the SNO+ MC data

set at 505 nm.

Figure 6.27: The correlation matrix for the laserball intensity mask and an-
gular distribution parameters. No correlation is exhibited between these two

sets of parameters.

the path lengths in the outer most region, from which the attenuation coefficient



Chapter 6: Optical Fit in Water 195

is sampled, and the incident angle of the light at the PMT. An example of this

quadratic form is shown in Figure 6.29.

Parameters within the angular response distribution are themselves correlated

with other parameters within the distribution. This arises as a consequence of the

interpolation between neighbouring parameters performed for the evaluation of

each θPMT value in the fit. For example, in Figure 6.28 there is a particularly strong

correlation shared between the parameters with indices 3-6 ≡ θPMT ∈ (0o, 3o).

This occurs as a result of the fixing of the zeroth-degree parameter to 1 and

the aforementioned effects introduced by interpolation which propagate to the

neighbouring parameters θPMT ∈ (0o, 3o) thereafter.

Figure 6.28: The correlation matrix for the fitted attenuation coefficients,
αD2O and αH2O with the relative PMT angular response for the SNO October
2003 data set at 420 nm. The angular response is shown for values θPMT ∈
(0o, 45o). A strong correlation arises between αH2O and the angular response in

the θPMT ∈ (30o, 45o) region.
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Figure 6.29: Shown is the incident angle and the corresponding distance trav-
elled in the outer AV water region (red) for each PMT featured in the SNO
October 2003 fit at 420 nm. Overlaid is a fit of a quadratic function (black)
with corresponding coefficients p0, p1 and p2. Overall, the distance through the

water region increases quadratically with increasing incident angle.

6.2.6 Systematic Errors

Systematic errors are introduced through uncertainties in the calibration variables,

in particular those related to the laserball e.g. position, light distribution and

wavelength. In addition, and as discussed in Section 6.2.3, the PMT variability

which features in the SNO data set is also a systematic that needs to be accounted

for. The overall objective is to understand how robust the optical parameters are

- in particular the attenuation coefficients - to these systematic changes. The

following systematics were investigated:

• (1) Laserball radial 1% shift, |rLB| × 1.01: The radius of the laser-

ball position in each run is moved outward by 1%. This effectively reduces

the average time of flight for light to reach the PMTs from the laserball.

This therefore accounts for uncertainties related to the group velocity of the

detector materials and the timing of individual PMTs.

• (2) Laserball (x, y, z)-coordinate discrete shift, rx,y,z ± 50.0 mm:

Based on the uncertainties of the fitted laserball position in the x-, y- and
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z-coordinates from Figure 5.10 the position of the laserball is shifted by an

exaggerated value of 50.0 mm in either the positive or negative x-, y- or

z-directions.

• (3) Laserball wavelength shift, λ ± λRMS: From MC studies of the

detected wavelength distributions at PMTs for each of the laser dyes as

reported in Table 5.2, the wavelength is both increased and decreased by

the associated RMS value of its respective distribution. This small change

in wavelength is designed to test the change in the refractive indices and

consequently the related incident angles at the PMTs, θγ.

• (4) Squared laserball angular anisotropy, H2 (cosLB, φLB): The laser-

ball angular anisotropy is squared in order to probe the effect of the angular

distribution on the optical parameters. This increases the maximal nominal

laserball anisotropy in φLB from 4% to 8%.

• (5) Flat laserball angular anisotropy, H (cosLB, φLB) = 1.0: Similar

to the above, the assumption of a perfectly flat i.e. isotropic laserball angular

distribution is enforced in order to gauge its effect on the optical parameters.

• (6) Final upper χ2 limit, χ2
lim,f = 16,9: As discussed in Section 6.1.1,

the choice of the final upper χ2 limit determines the size of the data sample

over which the fit is performed. The upper limit is relaxed to χ2
lim,f = 16

in the case of the SNO and SNO+ MC data sets. An additional final limit

of χ2
lim,f = 9 is also imposed on the SNO+ MC data for which the nominal

limit is smaller (χ2
lim,f = 7).

• (7) Zero PMT variability, σPMT = 0: The PMT variability term, σPMT

which was observed for the SNO data set is removed from the calculation

of the χ2. This systematic is not applied for the SNO+ MC data set as no

variation was implemented into RAT.

• (8) Laserball flask radius, d−50.0mm
innerAV : The distance in the inner AV,

dinnerAV region is reduced by 50.0 mm (the approximate radius of the laserball

flask) to account for the fact that light will be emitted at the flask surface,

not the centre. This systematic is only applied to the SNO data set (the

SNO+ MC data set was not produced using a laserball geometry).
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For each systematic featured above, the systematic change was applied to the

associated variable and the entire optical fit was repeated. The subsequent out-

put parameters were then used to calculate the systematic change in the nominal

attenuation coefficient values. This systematic change was calculated by multiply-

ing the fractional difference in the two parameter values by a scaling factor, si. In

some cases, the systematic is applied to an exaggerated degree to ensure that the

change probes any sensitivity of the optical parameters to a significant extent. In

these cases the change is thereafter scaled down i.e. si < 1. The scaling factor

used for each systematic is shown in Table 6.3.

Systematic Scaling Factors

No. Systematic Scaling Factor, si
1 |rLB| × 1.01 0.2
2 rx,y,z ± 50.0 mm rx,y = 0.2, rz = 0.5
3 λ± λRMS nm 1.0
4 H2 (cos θLB, φLB) 0.05
5 H (cos θLB, φLB) = 1.0 0.05
6 χ2

lim,f = 16, 9 1.0
7 σPMT = 0 1.0
8 d−50.0mm

innerAV 1.0

Table 6.3: Systematic scaling factors.

The scaling factors, si are determined by the uncertainty on the aspect of the

optical response they affect. For example, the scaling of the laserball radius by

1% is multiplied by a factor of s1 = 0.2 to 0.2% in order to coincide with the

approximate uncertainty associated with the material group velocities and PMT

timings. Shifts in the laserball position by ±50.0 mm in the x- and y- directions are

scaled by a factor of s2 = 0.2 to approximate the 10.0 mm uncertainty associated

with the laserball position in these directions. As shown in Figure 5.10, the z-

coordinate is known to a lesser degree of accuracy, for which a larger scaling factor

of s2 = 0.5 is enforced. Variations in the laser wavelengths λ ± λRMS, used to

calculate the light paths and subsequent incident angles at the PMTs are expected

to be small, for this reason the systematic changes remain unscaled (s3 = 1.0).

Modifications to the laserball angular distribution (systematics 4 and 5) are scaled

by a value of s4,5 = 0.05 to reflect what is, at most, a ∼5% uncertainty associated

with variations in the angular distribution. Changes in the final upper χ2 limit,

χ2
lim,f remain unscaled (s6 = 1.0) as a change in this limit does not reflect any

physical uncertainties associated with the detector. Systematic 7 is also unscaled
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(s7 = 1.0) as a conservative measure to test the full effect of the PMT variability

being included as a systematic correction to the overall calculation of the χ2.

Finally, systematic 8 is unscaled (s8 = 1.0) as the shift enforced is equal to a well

known measurement of the laserball flask radius.

6.2.6.1 Systematic Variations

The range of uncertainties in the fitted attenuation coefficients for both the SNO

and SNO+ MC data sets across all wavelengths for each systematic are shown in

Table 6.4. The corresponding range of reduced χ2 values for each of the fits wherein

the systematic was applied for each data set is shown in Table 6.52. Examples of

the individual systematic contributions to the total uncertainty in αD2O and αH2O

for the SNO data set is shown in tables 6.6 and 6.7 for two wavelength scans at

369 and 505 nm. Similarly, tables 6.8 and 6.9 provide the same information on the

systematics for αcomb.
H2O and αAV obtained from the SNO+ MC data set in water at

369 and 505 nm. Information for all wavelengths scans in both data sets can be

found in Appendix C.1.

Attenuation Coefficient Uncertainties by Systematic

Systematic SNO, Oct’03, D2O SNO+ MC, H2O
αD2O αH2O αcomb.

H2O αAV

|rLB| × 1.01 3.58-16.85% 2.51-32.41% 1.39-2.90% 4.85-68.04%
rx,y,z ± 50.0 mm 0.04-7.69% 0.06-30.57% 0-1.09% 0.02-69.88%
λ± λRMS nm 0.02-1.11% 0.04-4.23% 0-0.01% 0.01-1.49%

H2 (cos θLB, φLB) 0-0.03% 0-0.16% 0-0.01% 0.01-0.07%
H (cos θLB, φLB) = 1.0 0.04-0.68% 0.09-0.89% 4.71-10.82% 0.36-7.47%

χ2
lim,f = 16 0.02-11.50% 1.24-74.52% 0.29-0.96% 4.66-66.74%
χ2

lim,f = 9 N/A N/A 0.03-0.29% 1.14-12.98%
σPMT = 0 2.79-18.86% 1.29-78.34% N/A N/A
d−50.0mm

innerAV 0-0.19% 0.01-1.50% N/A N/A
Total 6.21-29.24% 4.8-121.21% 5.01-11.42% 10.30-141.84%

Table 6.4: Shown is the range of systematic uncertainties across all wavelength
scans in the SNO and SNO+ MC data sets for their respective fitted attenuation

coefficients; αD2O, αH2O (SNO) and αcomb.
H2O , αAV (SNO+ MC).

2It was observed that the reduced χ2 of the SNO 337 nm scan was large for both nominal and
systematic fits, χ2/No.Dof ≥ 1.2, these values are not included in Table 6.5. This has previously
been observed and is possibly related to fluorescence in the optic fibre at this short wavelength
[133].
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Reduced χ2 by Systematic

Systematic Reduced χ2, χ2/No.Dof
SNO, Oct’03, D2O SNO+ MC, H2O

|rLB| × 1.01 0.97-1.02 1-1.02
rx,y,z ± 50.0 mm 0.97-1.03 1.02-1.04
λ± λRMS nm 0.98-1.02 1-1.02

H2 (cos θLB, φLB) 0.98-1.03 1-1.02
H (cos θLB, φLB) = 1.0 1.02-1.08 1.44-1.46

χ2
lim,f = 16 1.15-1.24 1.19-1.24
χ2

lim,f = 9 N/A 1.07-1.09
σPMT = 0 1.63-1.67 N/A
d−50.0mm

innerAV 0.98-1.02 N/A

Table 6.5: Shown is the range of reduced χ2 values across all wavelength scans
in the SNO and SNO+ MC data sets.

From the SNO data set, the combined systematic uncertainty of αD2O is ∼6-30%

in the 337-620 nm region. The largest contributions to this uncertainty come

from the radial laserball position shift, |rLB| × 1.01 and the removal of the PMT

variability, σPMT = 0. Respectively, both these systematics contribute between

∼4-17% and ∼3-19% based on the wavelength. Similarly, the radial shift in the

laserball position impacts the values of αH2O by up to ∼33%. However the largest

contributions to the uncertainty on αH2O comes from relaxing the final upper χ2

limit of the optical fit, χ2
lim,f = 16 leading to an uncertainty of up to ∼75% and

the removal of the PMT variability, ∼79%. Overall then, the value of αH2O varies

between ∼5-122%. It is clear that the systematic uncertainties in the attenuation

coefficients are non-negligible, especially in the case of αH2O where the uncertainty

can exceed 100%. However, it is important to remember that these systematics

are conservatively applied. Indeed, as shown in Table 6.5 the reduced χ2 values of

these larger contributions to the uncertainty are large χ2/No.Dof ≥ 1.15, and it is

arguable that these should be removed. In such cases the systematic uncertainty

is reduced.

The SNO+ MC data set theoretically provides a better measurement of αH2O than

the SNO data set as it combines the inner and outer AV regions. Values of αcomb.
H2O

are obtained with a systematic uncertainty in the range ∼5-12%. However, it is

likely that in practice this uncertainty will be larger, as it would receive contribu-

tions from the PMT variability which is not currently modelled in RAT. For this

MC data set, the largest contribution is from assuming a flat laserball angular
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anisotropy; L (cos θLB, φLB) = 1.0 which contributes ∼5-11% uncertainty. Given

that this data set was simulated with a known, non-flat distribution, removing

this systematic from consideration reduces the overall uncertainty on αcomb.
H2O to the

order of 1-3%. A measurement of the acrylic attenuation length is very difficult

overall. Values of αAV are heavily affected by systematic changes in the laserball

position, both by radial and linear shifts in the z-direction where the uncertainty

can reach ∼70%. Overall the acrylic uncertainties range between 10-142%.
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Attenuation Systematics - SNO October 2003, D2O, 369 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.93 0.00% 2.78 0.00% 0.98
|rLB| × 1.01 0.67 −5.58% −0.30 −22.16% 0.98
rx − 50.0 mm 0.93 0.14% 2.73 −0.40% 0.99
rx + 50.0 mm 0.91 −0.32% 2.71 −0.53% 0.99
ry − 50.0 mm 0.91 −0.40% 2.58 −1.49% 0.98
ry + 50.0 mm 0.94 0.30% 2.64 −1.00% 0.99
rz − 50.0 mm 0.98 2.89% 1.59 −21.44% 0.98
rz + 50.0 mm 0.87 −3.13% 3.79 17.97% 0.98
λ− λRMS nm 0.92 −0.34% 2.74 −1.62% 0.98
λ+ λRMS nm 0.93 0.33% 2.83 1.71% 0.98

H2 0.93 0.01% 2.78 −0.01% 0.98
H = 1.0 0.99 0.34% 3.16 0.68% 1.02
χ2

lim,f = 16 0.90 −2.62% 3.64 30.79% 1.16
σPMT = 0 1.03 10.76% 2.09 −24.93% 1.63
d-50.0mm

innerAV 0.93 0.04% 2.80 0.40% 0.98
Total 13.14% 53.41%

Table 6.6: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 369 nm.

Attenuation Systematics - SNO October 2003, D2O, 505 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.31 0.00% 4.87 0.00% 1.02
|rLB| × 1.01 0.05 −16.85% 1.86 −12.36% 1.02
rx − 50.0 mm 0.31 −0.22% 4.71 −0.65% 1.03
rx + 50.0 mm 0.31 −0.13% 5.01 0.56% 1.03
ry − 50.0 mm 0.28 −2.03% 4.67 −0.81% 1.02
ry + 50.0 mm 0.34 1.97% 4.73 −0.58% 1.03
rz − 50.0 mm 0.35 6.67% 3.64 −12.61% 1.02
rz + 50.0 mm 0.26 −7.69% 6.14 13.03% 1.02
λ− λRMS nm 0.31 −1.11% 4.80 −1.57% 1.02
λ+ λRMS nm 0.31 0.71% 5.08 4.23% 1.02

H2 0.31 −0.01% 4.89 0.02% 1.03
H = 1.0 0.35 0.68% 4.96 0.09% 1.08
χ2

lim,f = 16 0.28 −10.07% 5.78 18.72% 1.24
σPMT = 0 0.37 18.86% 3.59 −26.41% 1.65
d-50.0mm

innerAV 0.31 −0.01% 4.87 0.02% 1.02
Total 29.24% 39.39%

Table 6.7: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 505 nm.
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Attenuation Systematics - SNO+ MC, H2O, 369 nm

Systematic
αH2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 2.05 0.00% 1.39 0.00% 1.00
|rLB| × 1.01 1.78 −2.61% 0.35 −14.96% 1.00
rx − 50.0 mm 2.05 −0.05% 1.39 −0.09% 1.02
rx + 50.0 mm 2.05 −0.03% 1.43 0.53% 1.02
ry − 50.0 mm 2.01 −0.43% 1.23 −2.30% 1.02
ry + 50.0 mm 2.09 0.36% 1.55 2.31% 1.02
rz − 50.0 mm 2.09 0.91% 0.90 −17.65% 1.00
rz + 50.0 mm 2.01 −1.09% 1.82 15.36% 1.00
λ− λRMS nm 2.05 −0.01% 1.39 −0.01% 1.00
λ+ λRMS nm 2.05 −0.01% 1.40 0.31% 1.00

H2 2.05 0.01% 1.39 −0.03% 1.00
H = 1.0 −2.11 −10.13% 1.66 0.97% 1.44
χ2

lim,f = 16 2.05 −0.29% 1.52 9.28% 1.19
χ2

lim,f = 9 2.05 0.06% 1.43 2.40% 1.07

Total 10.58% 29.58%

Table 6.8: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 369 nm.

Attenuation Systematics - SNO+ MC, H2O, 505 nm

Systematic
αH2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 4.31 0.00% 0.29 0.00% 1.01
|rLB| × 1.01 4.01 −1.39% −0.69 −68.03% 1.02
rx − 50.0 mm 4.31 0.01% 0.33 3.41% 1.04
rx + 50.0 mm 4.31 0.00% 0.35 4.37% 1.03
ry − 50.0 mm 4.27 −0.19% 0.14 −10.42% 1.03
ry + 50.0 mm 4.35 0.18% 0.45 11.47% 1.03
rz − 50.0 mm 4.34 0.34% −0.13 −72.97% 1.02
rz + 50.0 mm 4.27 −0.41% 0.67 68.11% 1.01
λ− λRMS nm 4.31 0.00% 0.28 −1.49% 1.01
λ+ λRMS nm 4.31 0.00% 0.29 1.03% 1.01

H2 4.31 0.00% 0.28 −0.07% 1.01
H = 1.0 0.25 −4.71% 0.57 4.99% 1.46
χ2

lim,f = 16 4.27 −0.79% 0.47 64.05% 1.24
χ2

lim,f = 9 4.30 −0.20% 0.32 12.98% 1.09

Total 5.01% 138.43%

Table 6.9: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 505 nm.
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6.3 Laserball Water Phase Prospects

The water phase of SNO+ will allow for the first full calibration of the detector

since the end of SNO in 2006. This will provide clarification on any discrepancies in

the modelling of the optical response between RAT and the true detector response.

Most notably, the largest of these discrepancies is expected to be revealed by the

true state of the PMT reflectors and their efficiencies. In the context of the optical

model presented here, this will manifest in the PMT angular response. Indeed, a

discrepancy in the angular response between RAT and original SNO data is already

evident, with variations of up to 12% at large incident angles (θγ ≥ 30o) between

the MC and true response. This is largely due to the absence of an accurate PMT

ageing model in RAT. Work on such a model is ongoing.

The advantage of a water phase is that, of all three phases, it allows for the

most precise in-situ measurement of the water attenuation coefficient and the AV

acrylic attenuation coefficient. Using the configuration of runs considered here, a

combined treatment of the inner and outer AV water region has demonstrated that

the maximum uncertainty on the attenuation coefficient is reduced from ∼120%

to ∼12%. In addition, this treatment of combining the inner and outer AV regions

breaks the correlation between the acrylic and outer AV water regions. Despite

being a very thin region of the detector volume, it has been demonstrated that such

as treatment allows for the attenuation coefficient of the AV acrylic to be obtained.

However, its value is subject to large systematic errors between 10-142% based on

wavelength. In principle a scan consisting of laserball positions both inside and

outside the AV should constrain and therefore reduce these uncertainties. The

full, quantifiable extent of using laserball runs outside the AV is left for a future

study.

Most importantly, and as will be discussed next, it should be emphasised that a

determination of the water attenuation coefficient in the outer AV region during a

scintillator-based phase is difficult with laserball data alone (similarly, measuring

the AV acrylic attenuation is near impossible with scintillator in the detector).

This is largely because the scintillator is more attenuating than water, and in

cases of absorption and reemission the scintillation light is emitted isotropically.

In addition, the isotropic and longer wavelength nature of this emitted light masks

the PMT response at lower wavelengths. The water phase is therefore a critical pre-

requisite to the phases which will follow; it is the only opportunity to accurately
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understand the optical properties which determine a significant component of the

detector energy response; the attenuation coefficient of water and the PMT angular

response (as illustrated by Figure 4.1). Such measurements are also important as

they will be implemented into RAT for better tuning of MC data to that collected

during the scintillator-based phases.

The significance of the proposed measurements described above should also be

independently verified using data collected from the deployment of radioactive

sources during the energy calibration. This will help to discriminate correlations

associated with the model-dependent expectation of parameters presented here

from the intrinsic values of the parameters themselves. Specifically, in this anal-

ysis neighbouring parameters in some regions of the PMT angular response are

strongly correlated due to interpolation. This correlation is especially strong at

low incident angles, θγ ∈ (0o, 5o). Furthermore, the angular response itself is

negatively correlated to the intensity normalisations of individual laserball runs.

Finally, it is clear that further run positions may also be required in the inner AV

to compensate for the increased shadowing of PMTs. For a nominal central run

the shadowing is expected to increase from ∼11% (SNO) to ∼33% (SNO+) due

to the AV hold-down ropes.



7

Optical Fit in Scintillator

Constant new discoveries in chemistry and optics are widening our field consider-

ably and it is up to us to apply them to our technique; a technique that communi-

cates what we see.

The Mind’s Eye, Henri Cartier-Bresson

Presented in this chapter are the results from laserball scans in three different

scintillator mixtures;

• SNO+ MC laserball scans in LABPPO

– Laser wavelengths [nm]: 337, 369, 385, 400, 420, 505.

• SNO+ MC laserball scans in LABPPO+0.3%Te+bis-MSB

– Laser wavelengths [nm]: 337, 369, 385, 420, 446, 505.

• SNO+ MC laserball scans in LABPPO+0.3%Te+perylene

– Laser wavelengths [nm]: 337, 369, 385, 420, 490, 505.

All three data sets were produced in RAT, each containing scans at five of the orig-

inal laser wavelengths from SNO. The wavelength listed in bold is an additional

wavelength designed to match the reemission peak of the wavelength shifting com-

ponent of each mixture as described in Section 5.1.1.1. For brevity, henceforth and

where not explicitly stated, the three data sets will be referred to by the wavelength

206
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shifting component that characterises its scintillation profile, PPO (LABPPO),

bis-MSB (LABPPO + 0.3%Te + bis-MSB) and perylene (LABPPO + 0.3%Te +

perylene).

7.1 Optical Fit Results:

LABPPO(+0.3%Te+Bis-MSB/Perylene)

The approach taken to perform the OCA-fit procedure on MC scintillator laserball

data is no different to that used for the MC water laserball data as presented

in Chapter 6. Subsequently, the same data selection criteria - cuts based on the

prompt counts and PMT shadowing - as described in Section 4.4 are applied. The

MC scintillator data also exhibits statistical characteristics similar to that of the

MC water data; the data point pulls follow a Gaussian distribution with widths

of a comparable size, see Figure 7.1. Therefore, the same final χ2 upper limit

(χ2
lim,f = 7) is used in the fitting procedure.
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Figure 7.1: The fitted values of the Gaussian width, σλ for each of the data
point pull distributions across all laserball scans in the three scintillator data

sets.
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7.1.1 Attenuation Coefficients

Values of the fitted attenuation coefficients, αppo
scint α

bis.
scint and αpery.

scint alongside their

respective statistical and systematic uncertainties are shown in Table 7.1. Also

shown are the corresponding values of the water attenuation coefficients in the

outer AV region, αppo
H2O αbis.

H2O and αpery.
H2O as well as the reduced χ2 values.

SNO+ MC - LABPPO, α± stat.± sys.

λ [nm] αppo
scint [10−5 mm−1] αppo

H2O [10−5 mm−1] χ2/d.o.f. [2 d.p.]

337 10.66± 0.01± 0.22 9.21± 0.10± 2.02 137160 / 134109 = 1.02
369 15.04± 0.01± 0.25 9.81± 0.10± 1.98 121028 / 118564 = 1.02
385 10.22± 0.01± 0.22 5.06± 0.08± 1.82 131021 / 132776 = 0.99
400 6.88± 0.01± 0.26 4.96± 0.08± 1.48 115706 / 118545 = 0.98
420 5.06± 0.01± 0.24 4.86± 0.08± 1.56 117871 / 117670 = 1.00
505 2.37± 0.01± 0.24 6.65± 0.09± 1.55 114114 / 116871 = 0.98

SNO+ MC - LABPPO+0.3%Te+Bis-MSB, α± stat.± sys.

λ [nm] αbis.
scint [10−5 mm−1] αbis.

H2O [10−5 mm−1] χ2/d.o.f. [2 d.p.]

337 20.23± 0.01± 0.21 14.03± 0.10± 1.56 153472 / 132675 = 1.16
369 19.46± 0.01± 0.21 13.02± 0.10± 1.69 137958 / 122322 = 1.13
385 19.72± 0.01± 0.21 14.25± 0.10± 1.70 135668 / 119331 = 1.14
420 31.96± 0.01± 0.22 7.39± 0.08± 1.51 132680 / 127631 = 1.04
446 17.68± 0.01± 0.23 5.31± 0.08± 1.67 122536 / 123089 = 1.00
505 5.65± 0.01± 0.22 6.58± 0.09± 1.57 119010 / 120955 = 0.98

SNO+ MC - LABPPO+0.3%Te+Perylene, α± stat.± sys.

λ [nm] αpery.
scint [10−5 mm−1] αpery.

H2O [10−5 mm−1] χ2/d.o.f. [2 d.p.]

337 10.94± 0.01± 0.19 13.02± 0.13± 2.10 129457 / 121436 = 1.07
369 10.91± 0.01± 0.19 13.67± 0.12± 1.71 136878 / 127090 = 1.08
385 10.92± 0.01± 0.19 13.51± 0.12± 2.05 136771 / 128242 = 1.07
420 10.93± 0.01± 0.19 13.45± 0.12± 2.10 139176 / 128462 = 1.08
490 7.21± 0.01± 0.24 5.89± 0.09± 1.60 113591 / 115617 = 0.98
505 5.98± 0.01± 0.23 6.79± 0.09± 1.54 118106 / 119556 = 0.99

Table 7.1: Attenuation coefficients of the inner AV scintillator and outer AV
H2O regions of the PPO (top), bis-MSB (middle) and perylene (bottom) data

sets.

Across all data sets, each wavelength scan is fitted with a sample size consisting

of > 110, 000 data points. The statistical errors of the scintillator attenuation co-

efficients are therefore consistent with those obtained from studies of water data,

≤ 0.01 × 10−5 mm−1 ∼ 0.03-0.17%. However, the systematic uncertainties are

much smaller; the uncertainty on the scintillator attenuation coefficients is at
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most ∼10%. As will be discussed, the absorption and reemission properties of the

scintillator, and the overall higher attenuation in comparison to water reduces the

impact of the systematic uncertainties. Using the reduced χ2 as a measure of the

fit, the optical model generally performs best in regions where the laser wavelength

coincides, or is longer than the reemission peak of the wavelength shifting com-

ponent. In these regions, the reduced χ2 is close to 1, χ2/d.o.f. ∼ 1. Therefore,

absorption and reemission at shorter wavelengths reduces the accuracy to which

the model can describe the data; the effectiveness of which varies based on the

scintillator composition. This is related to the impact of absorption and reemis-

sion on the other parameters in the optical model; the PMT angular response

and the laserball light distribution. A discussion of this impact is discussed in

sections 7.1.2 and 7.1.3.

Shown for the PPO, bis-MSB and perylene data sets in figures 7.2 and 7.3 are

the fitted attenuation coefficients (black) plotted against the expected total atten-

uation of the scintillator (red), and the absorption and reemission profiles of the

relevant wavelength shifter (blue). Also shown for the bis-MSB and perylene data

is the absorption spectrum for the tellurium surfactant, PRS.
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Figure 7.2: Shown are the fitted attenuation coefficient values for LABPPO
(black). The expected attenuation of the scintillator as used by RAT is shown in
red. In solid and dashed blue are the respective PPO absorption and reemission

profiles. Both statistical and systematic errors are shown but are small.

Figures 7.2 and 7.3 illustrate three important and interesting characteristics that

scintillator and the action of absorption and reemission has on the optical model.
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Figure 7.3: Shown are the fitted attenuation coefficient values for the bis-
MSB (top) and perylene (bottom) data sets. The expected attenuation of the
scintillator as used by RAT is shown in red. In solid and dashed blue are the
respective bis-MSB/perylene absorption and reemission profiles. The absorption
coefficient spectrum of PRS is shown in green. Both statistical and systematic

errors are shown but are small.

The first feature of note is that for a given scintillator mixture, the effective atten-

uation coefficient at wavelengths for which light is absorbed and reemitted is the

same, regardless of the initial laser wavelength - it is wavelength independent. This

can be seen for the scans in bis-MSB at 368 and 385 nm, αbis.
scint ∼ 20×10−5 mm−1,
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and in perylene at 337, 369, 385 and 420 nm, αpery.
scint ∼ 10 × 10−5 mm−1,1. Con-

sequently, and as shown in Figure 7.3, the fitted attenuation coefficients appear

to flat-line in these wavelength regions. This flat distribution coincides where the

absorption length of the wavelength shifter is very small, ∼1-100 mm. It is rea-

sonable to expect; chemically, the wavelength shifter is blind to the specific energy

of an absorbed photon provided it is sufficient to excite electrons through which a

new reemission photon can be created.

The second important feature follows on from the first, and is related to the com-

posite nature of the scintillator mixtures themselves. As described in Chapter 3,

the emission of light by the scintillator is the result of an initial absorption by

the solvent (LAB) followed by a series of radiative or non-radiative energy trans-

fers that ultimately lead to the excitement of the wavelength shifter, emitting a

characteristic scintillation profile. Therefore, to ensure a sufficient light yield, the

wavelength shifter needs to be the most active, absorbing component during this

energy transfer prior to emission. This is especially true for the bis-MSB and pery-

lene mixtures which are required to shift the PPO emission spectrum to longer

wavelengths. Subsequently, the effective attenuation of reemitted light should co-

incide with the attenuation of the most absorbing scintillator component in the

reemission region. This is demonstrated well in the PPO data set for the 337 nm

scan, for which the attenuation coefficient, αppo
scint ' 10 × 10−5 mm−1, coincides

with the attenuation at ∼385 nm, which resides within the main reemission region

340-400 nm.

This characteristic is made more complex in the bis-MSB and perylene data sets

due to the presence of PRS. In the perylene data set, the perylene is far more

absorbing than either the LAB or the PRS in the 340-465 nm region, and approx-

imately equal to LAB at 337 nm. In the main reemission region 470-500 nm, the

absorption lengths of LAB, perylene and PRS are sufficiently long (≥ 10 m) that

the reemitted light can escape the AV without being reabsorbed. PRS becomes

problematic within the main reemission region of the bis-MSB data set at around

420 nm where the absorption length is approximately 5 m; less than the radius

of the AV. However, the fitted attenuations at 337, 369 and 385 nm for which

light is absorbed and remitted is less than that at 420 nm. This suggests that the

bis-MSB, on average, emits above 420 nm, which was indeed confirmed by MC

1Light is only absorbed and reemitted for one wavelength in the PPO data set at 337 nm.
However, more scans close to this wavelength would expect to reveal the same feature.
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studies in Section 5.1.1.1, and which motivated the additional scan in bis-MSB at

446 nm. Ultimately, in bis-MSB shorter wavelength light circumvent the higher

absorption regions of PRS, λ ∼ 390-430 nm by being absorbed and reemitted at

longer wavelengths, λ ≥ 430 nm where the PRS is sufficiently transparent for it

not to be reabsorbed.

The overall attenuation coefficient of the scintillator is determined by the individ-

ual properties of its constituent components. However, what is being measured

here is an effective in-situ attenuation that is not only determined by the scin-

tillator, but also the dimensions of the detector itself, specifically the radius of

the AV. This is the third and final notable feature. As described in the previous

paragraph, reemitted light is able leave the AV provided the absorption lengths

of the individual scintillator components are sufficiently large. This explains why

the fitted attenuation coefficient of reemitted light in the PPO and perylene data

sets are roughly equivalent, αscint ' 10 × 10−5 mm−1, corresponding to an atten-

uation length of ∼10 m. Despite using different wavelength shifters the data sets

are constrained by a fixed AV radius, whose dimensions ultimately impinge upon

the final fitted value. The PPO and perylene are similar in that their respective

wavelength shifters are the most absorbing components prior to reemission. This

is not shared with the bis-MSB data, where instead the PRS is the most absorbing

component in the reemission region. PRS does not reemit any light it absorbs,

and as a result, the fitted attenuation coefficient of reemitted light in this data

set is approximately twice as large, αbis.
scint ' 20× 10−5 mm−1 corresponding to an

attenuation length of ∼5 m.

Shown in Figure 7.4 is a comparison of the effective attenuation lengths of the

three scintillator mixtures. Also shown, and in relation to these are the geometric

aspects of the AV; its diameter, dAV = 12 m and the range of mean light path

lengths through the inner AV region, 〈dinnerAV〉 ∈ (5.2, 5.8) m. This illustrates the

similarities between the attenuation lengths and the dimensions of the AV. In the

337-390 nm region, the attenuation lengths are less than the diameter of the AV,

and as has been discussed, light is prone to being absorbed and reemitted (PPO,

perylene) and/or lost (bis-MSB) in this region depending on the scintillator. All

three scintillators are relatively transparent at long wavelengths, λ ≥ 480 nm.

This constraint of the detector geometry on the attenuation is perhaps the most

important of the three discussed here. The perylene and bis-MSB are currently



Chapter 7: Optical Fit in Scintillator 213

candidate mixtures, and the loss of light through PRS absorption disfavours the

bis-MSB mixture from being selected.
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Figure 7.4: The effective attenuation lengths in the three different scintillator
mixtures; PPO, bis-MSB and perylene. Values are based on the fitted attenua-
tion coefficients obtained from the optical fit. The error on each point is both
statistical and systematic. Shown also for comparison is the diameter of the AV
(dAV = 12 m) and the range of average light path lengths through the inner AV

(scintillator) region for a wavelength scan, 〈dinnerAV〉 ∈ (5.2, 5.8) m.

The fitted values of the water attenuations, αppo
H2O, αbis.

H2O and αpery.
H2O are inconsistent

with the expected values used in RAT. As shown in Figure 7.5, the values are much

larger, and at wavelengths that are absorbed and reemitted consistent with the

attenuation of the scintillator itself, αH2O ' 10× 10−5 mm−1. The only region for

which the fit provides near-consistent results is in the optically transparent region

at wavelengths 490 nm in perylene and at 505 nm in all three data sets. At 505 nm

the values obtained are all consistent with one another, but still out of systematic

uncertainty with the expected value.

A fit of the water region is therefore at a two-fold disadvantage in scintillator.

First, the water region is only probed by light after it has passed through a more

attenuating medium. Comparing the attenuation in scintillator with the water val-

ues obtained in Chapter 6, the attenuation in scintillator is up to 5 times stronger

than in water. This is compounded further by the fact that, on average, ∼63% of

the path length is through this more attenuating medium. The strong attenuation
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Figure 7.5: The fitted attenuations in the outer AV water region from the PPO
(blue), bis-MSB (green) and perylene (black) scintillator data sets. Shown in
red is the expected attenuation length used in RAT. Errors shown are both
statistical and systematic. Overall, the values of the water attenuation are
affected by absorption and reemission of light in the scintillator prior to leaving
the inner AV region. The attenuation lengths therefore do not coincide with

the expected value.

of the scintillator therefore biases the fitted values of the water attenuation coef-

ficients. This can be illustrated by considering the attenuation weighted by path

length;

αpath
total =

path∑
i

fiαi, fi = 〈di〉 /
path∑
i

〈di〉 , (7.1)

where i denotes the different components of the path length through the scintil-

lator, acrylic and water, 〈di〉 denotes the average path length over all laserball

positions in each of these regions and fi denotes the weight of this distance as a

fraction of the average total path length. A plot of this total attenuation is shown

in Figure 7.6 for the PPO data set. At 337, 369, 385, 400 and 420 nm the water

attenuations become biased by the strong attenuation of the scintillator. This

effect is inverted at longer wavelengths such as 505 nm where the water is more

attenuating.

The OCA-fit identifies the global χ2 minimum of the scintillator and water at-

tenuation coefficients. A χ2 scan about the minimum is shown in Figure 7.7 for
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Figure 7.6: Shown in green is the weighted path attenuation in LABPPO as
described by Equation 7.1. Shown in black and red are the attenuations of water
and scintillator in RAT. The points plotted in blue are the fitted attenuations
in the water regions obtained from an optical fit of laserball scans in LABPPO.

Errors are both statistical and systematic.

the PPO and perylene data set at 385 nm. As shown, the parameter space is

very steep in αppo
scint and αpery.

scint and broad in αppo
H2O and αpery.

H2O . This is reflective of

the aforementioned weakness of the fit to idenfity the expected attenuation in the

water region due to the attenuating strength of the scintillator.

Aside from long wavelength regions where the scintillator is relatively transparent,

both the attenuating strength of the scintillator and the action of absorption and

reemission affect the OCA-fit description of the other optical parameters. Its im-

pact on the water attenuation coefficient has been presented; what follows now is a

summary of the impact it has on the other parameters; the relative PMT angular

response and the laserball light distribution.
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Figure 7.7: The reduced χ2 surface between the inner scintillator and outer
AV water attenuation coefficients for the 385 nm laserball scans in LABPPO
(top) and LABPPO+0.3%Te+perylene (bottom). The surfaces are smooth with

the fitted values identified by the OCA fit residing in a global minimum.
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7.1.2 PMT Angular Response

The fitted relative PMT angular response distributions are shown in figures 7.8

and 7.9. These reflect the response at the wavelength at which light leaves the AV.

Consequently, at wavelengths that are absorbed and reemitted, the distributions

are equivalent, and reflect the response at the average reemission wavelength of

the respective wavelength shifter. The equivalence of distributions at reemitted

wavelengths is most prominent in the perylene data set, in which four of the six

wavelengths are absorbed and reemitted; 337, 369, 385 and 420 nm. Similarly,

the effect of absorption and reemission is exhibited in bis-MSB at 337, 369, and

385 nm and in PPO at 337 nm.
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Figure 7.8: The fitted relative PMT angular response for the LABPPO data
set. Errors are both statistical and systematic.

As expected, the PMT response is robust to systematic changes to the same extent

as those obtained from MC water data discussed in Section 6.2.2. The combined

statistical and systematic error on each parameter per degree of incident angle is

small, ∼ 0.1-1% in the range θPMT ∈ (0o, 42o) and at most ∼3% at higher angles

θPMT ≥ 42o.
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Figure 7.9: The fitted relative PMT angular response for the bis-MSB (top)
and perylene (bottom) data sets. Errors are both statistical and systematic.
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7.1.3 Laserball Light Distribution

At wavelengths that are absorbed, the isotropic nature of the subsequent scin-

tillation light suppresses the directional information of the laserball anisotropy.

Ultimately, this directional information is not preserved. This impacts the in-

terpretation of the optical model to the laserball mask and angular distribution.

The fitted laserball masks across all wavelengths of the PPO, bis-MSB and pery-

lene data sets are shown in Figure 7.10. The angular distributions are shown in

figures 7.11, 7.12 and 7.13. In the transparent wavelength regions the expected

form of the mask is returned. At absorbed wavelengths the mask functions are

relatively flat compared to the expected form. These flat distributions increase by

at most ∼10% above the normalisation value (P4 = 1, cos θLB = −1) as cos θLB

increases. This behaviour is counter-intuitive; increasing in intensity towards the

(known) shadowed regions of the laserball. This effect does not have a physical

interpretation; rather it is likely to compensate for fluctuations in the effectively

flat angular distributions at absorbed wavelengths.

Absorption and reemission mask the intrinsic ±4% angular anisotropy of the laser-

ball distribution which is only preserved at wavelengths where the scintillator is

optically transparent. This fact can be exploited to allow for a model-independent

test of the optical transparency of the scintillator along the wavelength spectrum

337-505 nm. In general, the anisotropy of the laserball is revealed by calculating

the ratio of PMT hits, NHit per PMT from two central laserball runs at differ-

ent orientations (where the laserball is rotated about φLB). If the scintillator is

strongly absorbing, this ratio is reduced to unity by the isotropic action of the

reemission. This ratio can therefore be used as a measure of where along the

wavelength spectrum a particular scintillator mixture transitions from being pre-

dominantly absorbing to relatively transparent. An example of these NHit ratios

at five wavelengths are shown in Figure 7.14 for the PPO and bis-MSB data sets.

Particularly in the case of the bis-MSB data set, this representation of the PMT

Nhit ratios provides further evidence that the source of the high attenuation in

the 390-430 nm region of this data set (see Section 7.1.1) is caused by the PRS

(the laserball anisotropy is preserved at 420 nm) and not the reemission following

absorption by the bis-MSB wavelength shifter.
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Figure 7.10: Shown are the fitted laserball masks at different wavelengths for
each of the PPO (top), bis-MSB (middle) and perylene (bottom) data sets.
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Figure 7.11: The fitted laserball angular distributions from the PPO data set.
Distributions were fitted using a sinusoidal model composed of 24 cos θLB slices.
At 337 nm the angular distribution is reduced to being relatively flat as a result

of absorption and reemission.
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Figure 7.12: The fitted laserball angular distributions from the bis-MSB data
set. Distributions were fitted using a sinusoidal model composed of 24 cos θLB

slices. At 337, 369 and 385 nm the angular distribution is reduced to being
relatively flat as a result of absorption and reemission.
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Figure 7.13: The fitted laserball angular distributions from the perylene data
set. Distributions were fitted using a sinusoidal model composed of 24 cos θLB

slices. At 337, 369, 385 and 420 nm the angular distribution is reduced to being
relatively flat as a result of absorption and reemission.
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Figure 7.14: The distribution of the NHit ratios for the PPO and bis-MSB
data sets at 337, 369, 385, 420 and 505 nm from central runs at two different

orientations: orientation-0: φLB = 0 and orientation-2: φLB = π.
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7.1.4 Covariance Matrix & Parameter Correlations

The optical model does not directly account for the action of absorption and

reemission on the detector response; these effects are only interpreted through

the parameter values and not the physics they describe. Therefore, the same

calculations of the optical model in scintillator as in water leave the correlations

largely the same. In the transparent regions of the scintillator they are no different

to water; an example of the correlations in the bis-MSB data set at 420 nm is shown

in Figure 7.15.

Figure 7.15: The global correlation space for the varying parameters from the
bis-MSB data set at 420 nm. Shown are the three main composite parameter
subsets; the relative PMT angular response, the laserball angular distribution
and the laserball intensity normalisations. In the case of the PMT angular
response, only the correlations for the parameters in the range θPMT ∈ (0o, 50o)

are shown.

Similarly, absorption of the light does not affect the known correlation between

the outer AV water attenuation coefficient, αH2O and the PMT angular response.

An example is shown in Figure 7.16 for the 369 nm scan (a short wavelength which

is absorbed and reemitted) from the perylene data set.
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Figure 7.16: The correlation matrix for the fitted attenuation coefficients,
αpery.

scint and αpery.
H2O with the relative PMT angular response for the perylene data

set at 369 nm. The angular response is shown for values θPMT ∈ (0o, 45o). A
strong correlation arises between αH2O and the angular response in the θPMT ∈

(30o, 45o) region.

7.1.5 Systematic Errors

The systematic uncertainties applied are the same as those applied to the SNO+

MC water data in Section 6.2.6. The uncertainties that each systematic contributes

to the attenuation coefficient values are shown in Table 7.2. The range shown for

the outer AV water region attenuation is representative of all three data sets.

Table 7.3 provides a summary of the reduced χ2 ranges for each systematic.

Overall, the impact of the systematic uncertainties on the optical model and the

attenuation coefficients is smaller in scintillator than in water. The uncertainty

on the scintillator attenuation varies between 1-10% in the PPO data set, and is

smaller for the bis-MSB and perylene data sets, 1-4%. The action of absorption and

reemission affects the model to a greater extent as it readjusts the transit of light

more so than any small changes in the laserball position. Therefore, this effectively

reduces the systematic impact of the uncertainties related to the laserball position.

The systematic uncertainties are most pronounced in the transparent wavelength

regions of each mixture where the data is subject to systematic changes in a

similar fashion to measurements in water. The increased uncertainty at longer

wavelengths is evident by comparing the systematic contributions between short
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(absorbed) and long (not absorbed) wavelengths. Examples are shown in tables 7.4

and 7.5 for PPO at 337 and 420 nm, tables 7.6 and 7.7 for bis-MSB at 337 and

420 nm and tables 7.8 and 7.9 for perylene at 385 and 505 nm. The tables for

each wavelength scan of each data set can be found in Appendix C.2.

Attenuation Coefficient Uncertainties by Systematic

Systematic PPO Bis-MSB Perylene Water

αppo
scint αbis.

scint αpery.
scint α

ppo/bis/pery
H2O

|rLB| × 1.01 0.33-0.67% 0.30-0.49% 0.35-0.50% 2.21-6.9%
rx,y,z ± 50.0 mm 0-4.24% 0-1.70% 0-1.64% 0-26.17%
λ± λRMS nm 0.53-1.17% 0.11-0.28% 0.17-0.75% 0.12-4.50%

H2 (cos θLB, φLB) < 0.01% < 0.01% < 0.01% 0-0.02%
H (cos θLB, φLB) = 1.0 1.17-8.07% 0.55-3.24% 1.42-3.10% 1.66-5.16%

χ2
lim,f = 16 0.01-0.51% 0.06-0.29% 0.01-0.26% 7.18-17.70%
χ2

lim,f = 9 0-0.23% 0.01-0.12% 0-0.15% 0.15-4.36%

Total 1.69-9.97% 0.70-3.95% 1.73-3.80% 12.52-35.97%

Table 7.2: Shown is the range of systematic uncertainties across all wavelength
scans in the three different scintillator mixtures for their respective fitted at-
tenuation coefficients; αppo

scint, α
bis.
scint and αpery.

scint . Alongside this is the range of
uncertainty associated with the water region attenuation coefficient across all

data sets, α
ppo/bis./pery.
H2O .

Reduced Chi-Square by Systematic

Systematic Reduced Chi-Square, χ2/No.Dof
PPO Bis-MSB Perylene

|rLB| × 1.01 0.99-1.06 1-1.19 1-1.11
rx,y,z ± 50.0 mm 0.97-1.05 0.97-1.18 0.97-1.10
λ± λRMS nm 0.97-1.03 0.98-1.17 0.98-1.08

H2 (cos θLB, φLB) 0.98-1.02 0.98-1.16 0.98-1.08
H (cos θLB, φLB) = 1.0 1.40-1.43 1.41-1.48 1.41-1.45

χ2
lim,f = 16 1.15-1.24 1.16-1.48 1.15-1.34
χ2

lim,f = 9 1.04-1.10 1.05-1.26 1.04-1.17

Table 7.3: Shown is the range of reduced χ2 values across all wavelength scans
in the PPO, bis-MSB and perylene data sets.
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Attenuation Systematics - SNO+ MC, LABPPO, 337 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.67 0.00% 9.21 0.00% 1.02
|rLB| × 1.01 10.40 −0.50% 7.02 −4.75% 1.05
rx − 50.0 mm 10.66 −0.01% 8.57 −1.38% 1.03
rx + 50.0 mm 10.66 −0.01% 8.53 −1.47% 1.03
ry − 50.0 mm 10.65 −0.04% 8.50 −1.54% 1.03
ry + 50.0 mm 10.69 0.03% 8.72 −1.06% 1.03
rz − 50.0 mm 10.75 0.37% 7.95 −6.85% 1.05
rz + 50.0 mm 10.53 −0.64% 7.21 −10.84% 1.00
λ− λRMS nm 10.74 0.66% 8.80 −4.44% 1.03
λ+ λRMS nm 10.60 −0.63% 8.20 −10.91% 1.01

H2 10.67 0.00% 9.20 −0.00% 1.02
H = 1.0 7.23 −1.61% 4.30 −2.66% 1.43
χ2

lim,f = 16 10.66 −0.07% 10.25 11.29% 1.24
χ2

lim,f = 9 10.67 0.04% 9.57 3.98% 1.10

Total 2.05% 21.99%

Table 7.4: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with PPO at 337 nm.

Attenuation Systematics - SNO+ MC, LABPPO, 420 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 5.07 0.00% 4.86 0.00% 1.00
|rLB| × 1.01 4.96 −0.41% 3.18 −6.90% 1.01
rx − 50.0 mm 5.07 0.03% 4.67 −0.75% 1.02
rx + 50.0 mm 5.06 −0.02% 4.50 −1.48% 1.01
ry − 50.0 mm 5.05 −0.05% 4.40 −1.89% 1.01
ry + 50.0 mm 5.09 0.10% 4.48 −1.57% 1.01
rz − 50.0 mm 5.25 1.80% 4.11 −7.69% 1.02
rz + 50.0 mm 4.85 −2.11% 2.43 −25.01% 1.00
λ− λRMS nm 5.10 0.61% 4.90 0.94% 1.00
λ+ λRMS nm 5.04 −0.53% 4.85 −0.18% 1.00

H2 5.07 0.00% 4.86 0.01% 1.00
H = 1.0 1.25 −3.77% 0.35 −4.64% 1.41
χ2

lim,f = 16 5.06 −0.02% 5.64 16.18% 1.18
χ2

lim,f = 9 5.06 −0.06% 5.00 3.01% 1.07

Total 4.76% 32.16%

Table 7.5: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with PPO at 420 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 337 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 20.23 0.00% 14.03 0.00% 1.16
|rLB| × 1.01 19.81 −0.41% 11.84 −3.13% 1.19
rx − 50.0 mm 20.23 −0.00% 13.58 −0.63% 1.16
rx + 50.0 mm 20.22 −0.01% 13.41 −0.88% 1.16
ry − 50.0 mm 20.20 −0.02% 13.66 −0.53% 1.16
ry + 50.0 mm 20.25 0.02% 13.87 −0.23% 1.16
rz − 50.0 mm 20.25 0.05% 12.74 −4.60% 1.18
rz + 50.0 mm 20.15 −0.20% 12.88 −4.11% 1.12
λ− λRMS nm 20.27 0.19% 13.40 −4.50% 1.16
λ+ λRMS nm 20.21 −0.12% 14.00 −0.19% 1.15

H2 20.23 0.00% 14.01 −0.01% 1.16
H = 1.0 16.90 −0.82% 9.03 −1.78% 1.47
χ2

lim,f = 16 20.28 0.27% 15.04 7.18% 1.48
χ2

lim,f = 9 20.25 0.12% 14.01 −0.15% 1.26

Total 1.02% 11.15%

Table 7.6: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 337 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 420 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 31.96 0.00% 7.39 0.00% 1.04
|rLB| × 1.01 31.48 −0.30% 6.57 −2.21% 1.07
rx − 50.0 mm 31.96 0.00% 7.27 −0.33% 1.05
rx + 50.0 mm 31.95 −0.00% 7.03 −0.96% 1.05
ry − 50.0 mm 31.93 −0.01% 7.23 −0.43% 1.05
ry + 50.0 mm 31.98 0.02% 7.49 0.29% 1.05
rz − 50.0 mm 32.04 0.13% 7.41 0.15% 1.07
rz + 50.0 mm 31.82 −0.22% 5.20 −14.82% 1.01
λ− λRMS nm 31.99 0.11% 7.35 −0.46% 1.04
λ+ λRMS nm 31.92 −0.12% 7.29 −1.39% 1.04

H2 31.96 0.00% 7.37 −0.01% 1.04
H = 1.0 28.44 −0.55% 1.98 −3.66% 1.41
χ2

lim,f = 16 31.98 0.06% 8.34 12.86% 1.24
χ2

lim,f = 9 31.96 0.02% 7.64 3.44% 1.11

Total 0.70% 20.46%

Table 7.7: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 420 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 385 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.92 0.00% 13.51 0.00% 1.07
|rLB| × 1.01 10.64 −0.50% 10.69 −4.17% 1.09
rx − 50.0 mm 10.92 0.00% 13.32 −0.29% 1.07
rx + 50.0 mm 10.91 −0.02% 13.14 −0.56% 1.07
ry − 50.0 mm 10.90 −0.04% 13.22 −0.44% 1.07
ry + 50.0 mm 10.94 0.03% 13.44 −0.11% 1.07
rz − 50.0 mm 10.99 0.33% 11.80 −6.33% 1.09
rz + 50.0 mm 10.77 −0.69% 11.08 −9.01% 1.04
λ− λRMS nm 10.94 0.17% 13.45 −0.45% 1.07
λ+ λRMS nm 10.90 −0.20% 13.54 0.19% 1.06

H2 10.92 −0.00% 13.51 −0.00% 1.07
H = 1.0 7.80 −1.43% 8.71 −1.78% 1.45
χ2

lim,f = 16 10.93 0.11% 14.73 8.97% 1.32
χ2

lim,f = 9 10.93 0.13% 13.84 2.38% 1.15

Total 1.73% 15.13%

Table 7.8: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+ MC
data set with perylene at 385 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 505 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 5.98 0.00% 6.79 0.00% 0.99
|rLB| × 1.01 5.85 −0.46% 5.19 −4.73% 1.01
rx − 50.0 mm 5.99 0.02% 6.83 0.12% 1.00
rx + 50.0 mm 5.98 −0.00% 6.60 −0.55% 1.00
ry − 50.0 mm 5.96 −0.07% 6.64 −0.43% 1.00
ry + 50.0 mm 6.01 0.09% 6.79 −0.01% 1.00
rz − 50.0 mm 6.14 1.33% 6.15 −4.70% 1.01
rz + 50.0 mm 5.79 −1.64% 4.81 −14.58% 0.98
λ− λRMS nm 5.99 0.22% 6.82 0.44% 0.99
λ+ λRMS nm 5.97 −0.25% 6.82 0.41% 0.99

H2 5.98 0.00% 6.78 −0.01% 0.99
H = 1.0 2.27 −3.10% 2.59 −3.09% 1.41
χ2

lim,f = 16 5.98 0.05% 7.82 15.13% 1.17
χ2

lim,f = 9 5.98 0.03% 7.09 4.36% 1.06

Total 3.80% 22.70%

Table 7.9: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+ MC
data set with perylene at 505 nm.
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7.1.6 Conclusion on Optical Fit in Scintillator

Overall, the optical model performs well in identifying the attenuation coefficient

of the candidate scintillator mixtures to a good degree of accuracy. The small

systematic uncertainties on the coefficients is reflective of the fact that the scintil-

lator is strongly attenuating, but also that the model does not explicitly account

for absorption and reemission2. This is evident by the overall larger reduced χ2

at shorter wavelengths. However, it is clear that absorption and reemission affects

the other parameters in the model. In the case of the laserball light distribution

and the PMT angular response, the fitted values are not necessary wrong, indeed,

they are as expected and imply absorption and reemission. Rather it is that these

processes are unquantified. This is because the model only describes the response

of the detector to the effective intensity of laser/scintillation light emitted, whether

or not it was absorbed. Better understanding of the absorption and reemission is

obtained by studying its impact on the timing at PMTs; an aspect to which the

optical model is not directly sensitive to. Using the scintillation time profile model

presented in Section 4.5.2, an approach to quantify the absorption and reemission

is discussed in the next.

Of the parameters in the model, the uncertainty on the water attenuation coef-

ficient is of most concern and remains largely unaccounted for (see Figure 7.5).

As demonstrated by Figure 7.6 it is clear that the larger and more attenuating

medium of the scintillator region biases the overall attenuation of light in the

detector. This makes an accurate measurement of the water attenuation with

laserball data in scintillator very difficult. Combined with absorption and reemis-

sion at shorter wavelengths, the optical model ultimately loses all sensitivity to

such a measurement. As discussed in Chapter 6 this reinforces the importance of

a water phase prior to the deployment of scintillator in SNO+; it is the only phase

in which an accurate characterisation of water in the detector can be made. In

general, for physics events in scintillator the light will be shifted to longer wave-

lengths where water is more attenuating. This presents uncertainties related to the

expected light yield of physics events if light is attenuated to an unknown extent

once it escapes the AV region. This subsequently manifests as uncertainties in the

reconstructed energy of all physics events.

2The only systematic to account for the absorption and reemission is the λ±λRMS systematic
which probes the change in wavelength due to reemission. However, its effect on the optical
parameters is small ∼1%
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Failing an accurate measurement of the water attenuation, this poses the question

of how the water attenuation could be regularly monitored during the scintillator

phases. In conclusion, it is clear that scintillator should not be deployed into the

detector until the optical properties of the water region is fully understood.

7.2 Scintillator Timing

Thus far it has been shown that the action of absorption and reemission of the

three scintillator mixtures can only be identified, not characterised, by studying

its effect on the output parameters of the optical model. An understanding of

absorption and reemission is instead developed through the timing information.

The scintillator time profile model as presented in Section 4.5.2 is designed to

characterise the effective absorption and reemission properties of the scintillator

components at specific wavelengths in terms of two parameters; the photon walk,

αw(λLB) and the scintillator emission time constant, τs.

The different wavelength shifting properties of PPO, bis-MSB and perylene is

exhibited by the time residual distributions from the central laserball runs in each

respective data set, see Figure 7.17. The most prominent feature of these plots is

the shift in the central value of the prompt peaks. The central value of the prompt

peak can be determined by the laserball position fit as described in Section 5.2.2;

it is the global time offset and is an estimator of the trigger time of the laser,

t0. However, in scintillator the value obtained from this fit is not the true trigger

time because it contains information about the absorption and reemission of the

initial laser light as shown. For example, at wavelengths that are absorbed and

reemitted in perylene; 337, 369, 385 and 420 nm the peak is shifted by ∼5 ns. At

larger residual values in the 410-440 ns region, any evidence of AV, PMT or PSUP

reflections is smeared completely. Evidence for absorption and reemission is also

evident in the PPO and bis-MSB data sets, but these effects are less pronounced

than in perylene.
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Figure 7.17: Shown are the time residual distributions from central laserball
runs at diffferent wavelengths for each of the PPO (top), bis-MSB (middle) and

perylene (bottom) data sets.
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The time profile model was implemented according to the time residual expression

in Equation 4.43;

t0 + tres = tPMT (αw(λLB), τs)−
∑
k

dk (~rLB)

vg,k (λemit)
− tbucket (θγ) , (7.2)

where tPMT (αw, τs) is the arrival time of the light at the PMT, as generated itera-

tively through MC according to Equation 4.40. It is the MC generated distribution

of t0 + tres that is used as the model prediction to the observed time residual dis-

tribution over which the minimisation of the log-likelihood (see Equation 4.48) is

performed. Here, t0 is the true time in the event window when the laserball was

triggered; it is a constant. This is known precisely in MC data as presented here,

with a nominal value of t0 = 350.0 ns. However, it may not be precisely known in

data and can be considered as a third parameter in addition to αw (λLB) and τs.

As will be discussed, this offset ultimately impacts the value of αw(λLB) as both

parameters characterise a shift in the central value of the prompt peak. Two fits

are therefore considered;

• t0-Fixed: The trigger time is set to the MC value, t0 = 350.0 ns and is

considered a systematic of the floating parameters αw(λLB) and τs.

• t0-Float: The trigger time is allowed to float and the fit is performed over

three parameters; αw(λLB), τs and t0.

Henceforth these fits will be referred to as t0-fixed and t0-float respectively.

7.2.1 Scintillator Time Model Results

The fits are performed using the central laserball runs at absorbed and reemitted

wavelengths as discussed in Section 7.1.1; these include PPO : {337 nm}, bis-

MSB : {337, 369, 385 nm} and perylene : {337, 369, 385, 420 nm}. Based on the

distributions in Figure 7.17, for the PPO and bis-MSB runs the time residual

distribution is restricted to a range of (345, 360) ns about the prompt peak. Due

to the larger offset of the prompt peak in the perylene data set, a wider range of

(345, 370) ns is selected. The choice of these time windows are made such that the

peak information, characterised by αw, and the immediate tail, characterised by

τs are both included in the fit. Beyond this, the true distributions begin to include
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reflection and PMT pulsing effects that are not included in the model. Both the

model predicted and observed time residual distributions use 0.25 ns binning.

The obtained values of αw(λLB) and τs for the t0-fixed fit are shown in Table 7.10.

The values of αw(λLB), τs and t0 from the t0-float fit are shown in Table 7.11. Both

parameter sets are presented alongside their respective statistical and systematic

uncertainties. The calculation of these uncertainties is discussed in Section 7.2.3.

t0-Fixed Parameters ±stat.± sys.

Data : λLB

[nm]
αw (λLB) [mm] τs [ns]

PPO : 337 1.00± 0.71± 144.46 1.47±< 0.01± 0.29
Bis. : 337 454.71± 0.35± 164.97 2.11±< 0.01± 0.32
Bis. : 369 125.10± 2.84± 115.58 1.15±< 0.01± 0.23
Bis. : 385 285.24± 1.90± 107.67 1.15±< 0.01± 0.27
Pery. : 337 875.07± 0.79± 221.60 9.88± 0.01± 1.07
Pery. : 369 187.59± 9.37± 736.31 8.11±< 0.01± 0.74
Pery. : 385 18.45± 0.86± 854.08 7.75± 0.01± 0.62
Pery. : 420 35.95± 1.06± 887.60 7.39±< 0.01± 0.61

Table 7.10: Fitted values of the photon walk, αw(λLB) and the emission time
constant, τs for absorbed wavelengths in the PPO, bis-MSB and perylene data

sets. Errors less than 2 d.p. are quoted as ±<0.01.

t0-Float Parameters ±stat.± sys.

Data : λLB

[nm]
αw (λLB) [mm] τs [ns] t0 [ns]

PPO : 337 1.00± 9.09± 9.00 1.47±< 0.01±< 0.01 350.05±< 0.01± 0.02

Bis. : 337 105.85± 1.02± 24.71 2.01±< 0.01±< 0.01 350.42±< 0.01± 0.02

Bis. : 369 123.32± 7.41± 150.33 1.15±< 0.01±< 0.01 350.03±< 0.01± 0.13

Bis. : 385 62.60± 0.94± 9.17 1.15±< 0.01±< 0.01 350.22± 0.01± 0.25

Pery. : 337 88.34± 2.82± 36.45 8.96± 0.01± 0.04 350.95±< 0.01± 0.05

Pery. : 369 1.00± 2.62± 104.85 7.91±< 0.01± 0.19 350.2±< 0.01± 0.10

Pery. : 385 1.00± 1..54± 52.42 7.75± 0.04± 0.20 350.00±< 0.01± 0.05

Pery. : 420 1.00± 1.70± 17.47 7.58± 0.02± 0.11 350.1±< 0.01±< 0.01

Table 7.11: Fitted values of the photon walk, αw(λLB) emission time constant,
τs and the laser trigger time, t0 for absorbed wavelengths in the PPO, bis-MSB

and perylene data sets. Errors less than 2 d.p. are quoted as ±<0.01.

Examples of the generated time residuals using the fitted values are shown in com-

parison to the observed distributions in Figure 7.18. Shown are the distributions

for the 337 nm runs in PPO, bis-MSB and perylene.
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Figure 7.18: Shown are the fitted model time residual distributions for the
337 nm runs in PPO (top), bis-MSB (middle) and perylene (bottom). The
observed residual distribution from the MC data is shown in black. The t0-

fixed and t0-float results are shown in red and green respectively
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The obtained values of αw(λLB) from the t0-fixed fit are generally larger in com-

parison to those obtained in the t0-float fit, for which values of t0 reside up to 0.95

ns above the true MC value of t0 = 350.0 ns. This slight shift in t0 is largest at

337 nm in the bis-MSB and perylene run. By allowing t0 to float, and increase,

it constrains αw(λLB) to be small . 125.0 mm; t0 and αw(λLB) are negatively

correlated. As the constraint on αw(λLB) is not present in the t0-fixed fit, it has

more resolving power to characterise shifts in the prompt peak and hence values of

αw(λLB) are larger. However, by including variations in t0 as a systematic, these

values of αw(λLB) carry a large uncertainty, and at the lower limits are close to,

if not consistent with, those obtained in the t0-float fit. For PPO at 337 nm and

perylene at 369, 385 and 420 nm these large uncertainties in αw(λLB) exceed the

parameter values, forcing the respective values of αw(λLB) to be consistent with

zero. The systematic uncertainties in the t0-float fit are smaller, but similarly the

values of αw(λLB) are consistent with zero across the same set of runs. As shown

in Figure 7.18 the large value of αw(λLB) in the t0-fixed fit slightly suppresses the

prompt peak in comparison to the small values in the t0-float fit.

The values of τs are more robust to changes in t0, and hence the values between

the two fits are relatively consistent, particularly at longer wavelengths in bis-MSB

and perylene. In both fits, these values of the time constant vary as the wave-

length probes different components in the scintillator. The complexity of this is

compounded for the bis-MSB and perylene runs, where the initial laser light is

absorbed by a first component, for which the reemitted light is then absorbed by

a second i.e. λLB → PPO→ perylene/bis-MSB. The values of the time constant

obtained are therefore effective values that encapsulate the total action of succes-

sive absorptions and reemissions between different components. It was discussed

in Section 7.1.1 that at absorbed wavelengths, the attenuation coefficient of the

scintillator is geometrically constrained by the dimensions of the detector, with

values of the attenuation coefficients ∼ 10−4 mm−1. It was shown that these val-

ues coincided in the region where the absorption length of the active wavelength

shifting component is ∼10 m. In absorption regions below this length, the size of

the detector gives the wavelength shifter enough space to reabsorb again. Subse-

quently, the time profile also contains information about the elastic behaviour of

the wavelength shifters that self-absorb their own, or another component’s emis-

sion spectrum. Using a value of 10 m as a threshold value for the absorption length,

the percentage of the reemission spectrum that is subject to elastic scattering can

be estimated, see Figure 7.19.
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Figure 7.19: Shown are the overlap regions for the PPO, bis-MSB and perylene
emission spectra when the absorption length of the respective wavelength shifter
is < 10 m, the approximate value of the absorption length beyond which light

is able to escape the inner AV region.

Given this behaviour, in order to interpret these effective time constants, τs it is

useful to discuss them relative to the individual time constants of the components

used in the MC; LAB, PPO, bis-MSB and perylene. These are shown in Table 7.12.

SNO+ MC Time Constant Values

Component τMC
s [ns]

LAB 5.80
PPO 1.60

Bis-MSB 1.40
Perylene 6.40

Table 7.12: The individual reemission time constant values for LAB, PPO,
bis-MSB and perylene. These are used in the MC scintillator mixtures in RAT.

The simplest of the values to interpret is that from the PPO data set, where there

is only one wavelength shifter. In both fits, the obtained value of τs = 1.47 ns for

the PPO run at 337 nm is within 10% of the true MC input, τMC
s = 1.60 ns. For

the t0-fixed fit it is within systematic uncertainty; τs = 1.47±< 0.01± 0.29 ns.
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For the ternary mixtures, it is useful to define the fraction of the the total absorp-

tion coefficient of the two wavelength shifting components at a given wavelength;

f abs
i = αabs

i /

Ncomp.∑
i

αabs
i , (7.3)

where αabs
i is the absorption coefficient for the i-th component. For the bis-MSB

and perylene mixtures considered here, Ncomp. = 2,3. The values of f abs.
i are

shown for these mixtures in Figure 7.20 as fractional percentages. These provide

a visual illustration to the competing nature of the wavelength shifters across

different wavelengths. For example, in the 337 nm run in perylene, the PPO

absorbs the initial laser light and reemits according to its emission spectrum; this

is then absorbed by the perylene. From Figure 7.20, at 337 nm the two successive

absorptions are equally separated between where the PPO is highly absorbing, and

where the perylene is highly absorbing. Therefore, the emission distribution in

time should be distributed as the equal sum of the PPO and perylene components

i.e.

e−t/τs ∼
(
e−t/τ

MC, ppo
s + e−t/τ

MC, pery.
s

)
. (7.4)

Using the values from Table 7.12, one can calculate the mean of this distribu-

tion over the reemission time window (τMC, pery.
s , 3τMC, pery.

s ) (as discussed in Sec-

tion 4.5.2, Equation 4.45);

〈t〉 =

∫ 3τMC, pery.
s

τMC, pery.
s

t
(
e−t/1.60 + e−t/6.40

)
dt = 10.76 ns. (7.5)

This is within uncertainty of the fitted values of τs at this wavelength in perylene

for the t0-fixed fit; τs = 9.88± 0.01± 1.07 ns. The value obtained by the t0-float

fit generally underestimates this value; τs = 8.96±0.01±0.04 ns. This calculation

can be similarly be applied to the 337 nm run in bis-MSB;

〈t〉 =

∫ 3τMC, bis.
s

τMC, bis.
s

t
(
e−t/1.60 + e−t/1.40

)
dt = 2.39 ns, (7.6)

3Technically the LAB does have its own emission spectrum, however, it is has a small emission
probability, εp ∼ 0.5. In addition, in the MC the LAB emission spectrum is set to match that of
PPO.
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which is consistent with the obtained value, τs = 2.11 ±< 0.01 ± 0.32 ns from

the t0-fixed fit. Similarly to perylene, the t0-float fit underestimates the value

with bis-MSB; τs = 2.01 ±< 0.01 ±< 0.01. Therefore, whilst the time constant is

generally robust to changes in t0, at smaller wavelengths it shares a slight negative

correlation with t0.

At longer wavelengths e.g. 369 and 385 nm the picture becomes more complicated.

The laser light is emitted over a broader wavelength spectrum (see Figure 5.1) be-

cause it is produced by a chemical compound in the laser-dye. In comparison, the

intrinsic spectrum of the N2 laser at 337 nm is near-monochromatic. As a result,

in both bis-MSB and perylene, the initial laser-dye spectrum overlaps the tran-

sition between regions of absorption dominated by PPO and bis-MSB/perylene,

350-370 nm. This region is shown in Figure 7.20. Consequently, some of the light

is directly absorbed by the secondary wavelength shifter and hence the values of

τs are smaller.

7.2.2 Shape Comparison

Beyond visual inspection, a quantifiable shape comparison between the model pre-

dicted and observed time residual distributions is done by computing the Bhat-

tacharyya distance measure (BDM) [149]. The BDM between two histograms, u

and v is computed as follows;

TBDM =

√
~u

Nu

· ~v
Nv

=

(
k∑
i=1

uivi
NuNv

)1/2

, (7.7)

where k is the number of histogram bins and ~u and ~v are vectors of the normalised

histogram bin entries;

~u =

(
u1

Nu

,
u1

Nu

, . . .
uk
Nu

)
, Nu =

k∑
i=1

ui, (7.8)

~v =

(
v1

Nv

,
v1

Nv

, . . .
vk
Nv

)
, Nv =

k∑
i=1

vi. (7.9)

The BDM is analogous to the dot product of two vectors; if identical, the two vec-

tors point in the same direction i.e. if the shapes of the histograms are identical
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Figure 7.20: Shown are the fractional percentages of the total absorption co-
efficients for each of the wavelength shifting components; PPO and bis-MSB
(top) and PPO and perylene (bottom). The fractional percentages are cal-
culated using Equation 7.3. The emission spectra of each component is also

shown.

TBDM = 1. The BDM was computed between each fitted model distribution and

the observed distribution; the values are shown in Table 7.13. Overall, the values

are small, which is due to discrepancies about the peak or in the tail of the distri-

bution as evident in Figure 7.18. In addition, the variation in the BDM measure

between t0-fixed and t0-float distributions is itself small, with the shape of the t0-

float distributions marginally favoured. This is consistent with a visual inspection
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of the distributions in Figure 7.18 which suggests that the t0-float distributions

are in better agreement with observations over the t0-fixed model. Ultimately,

the BDM values suggest that there are discrepancies in the model, especially for

bis-MSB which appear inconsistent both in the peak and tail shape.

BDM Measure Comparison

Data : λ [nm] t0-Fixed BDM t0-Float BDM
PPO : 337 0.15888 0.15896
Bis. : 337 0.15694 0.15799
Bis. : 369 0.16258 0.16258
Bis. : 385 0.16223 0.16241
Pery. : 337 0.11324 0.11427
Pery. : 369 0.11335 0.11341
Pery. : 385 0.11333 0.11329
Pery. : 420 0.11357 0.11345

Table 7.13: BDM measure for shape comparison for each run. The BDM
measure is computed for each model predicted distribution from each fit type

against the observed distribution.

7.2.3 Statistical and Systematic Uncertainties

Globally, the log-likelihood in each of the parameter directions has a well defined

form such that the minimum can be identified. An example of this is given in the

form of the log-likelihood (αw, τs)-plane in bis-MSB at 369 nm, and perylene at

337 nm as shown in Figure 7.21 for the t0-fixed fits. Shown also are the t0-float

slices in the t0-direction. However, given that the PDFs are generated through

binned MC distributions, not analytically, the log-likelihood is not locally smooth

and is limited by statistical fluctuations, 0.3-0.7% per bin. Although this fluc-

tuation is small, for a given parameter, pi it makes the log-likelihood difficult to

double-differentiate in order to estimate the parameter error, δpi = ∂2L /∂2pi
4.

Instead, as discussed in [150], it is appropriate to approximate the error as the

change in pi such that the difference in the log-likelihood changes by 0.5;

δpi = |pi,min − p∗i | s.t. L (pi,min ± p∗i )−L (pi,min) = 0.5, (7.10)

4This is the classical approximation to an error that is Gaussian about the minimum, which
is not guaranteed for the scenario considered here. Most textbooks quote the error as δpi =
−∂2L /∂2pi where the negative sign is due to the fact that it is most often a maximum of the
log-likelihood which is discussed. Here, the negative sign is implicit to the definition of L as
defined in chapter 4.
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Figure 7.21: Shown top-left and bottom-left are the log-likelihood scans for
the triggered laser time, t0 in perylene at 337 nm and bis-MSB at 369 nm for the
t0-float fit. Shown top-right and bottom-right are the log-likelihood (αw, τs)-

planes from the t0-fixed fits in perylene at 337 nm and bis-MSB at 369 nm.

where pi,min is the parameter value at the minimum. For the evaluation of the

error in each parameter direction, the re-minimised values of the other remaining

parameters is calculated. As presented in Table 7.10 and 7.11, the statistical

uncertainties are small, . 1% across all parameters in both fits.

The largest contributions to the uncertainty on the parameters come from the

systematic uncertainties. As described, one systematic is applied to both fits, and

a second to the t0-fixed fit:

• Reemitted attenuation length α
(
λemit

)
± 2δα: In generating the MC

distribution, once the light is absorbed and reemitted for a first time, the

path samples distances based on the attenuation length of the mean emitted

wavelength as described in Section 4.5.2 (see Equation 4.46). The values of



Chapter 7: Optical Fit in Scintillator 244

α
(
λemit

)
used are the attenuation lengths obtained from the optical model

fit in Section 7.1.1. The fit is performed using values α
(
λemit

)
± 2δα where

δα is the systematic error. Twice the error value is used to exaggerate the

effect of changing the attenuation length to ±10-20% of the original value.

The error in the fitted parameter is then rescaled by a factor of s1 = 0.5.

• Triggered laser time, t0±1.0 ns: The triggered laser time in the t0-float

fit is varied by 1.0 ns either side of the MC time, t0 = 350.0 ns. The error is

scaled by a factor of s2 = 0.25, such that it is equivalent to the 0.25 ns bin

width.

Scintillator Time Profile Model - Systematic Uncertainties

Data : λ [nm] Parameter
t0-Fixed t0-Float

αw
(
λemit

)
± 2δα t0 ± 1.0 ns α

(
λemit

)
± 2δα

PPO : 337
αw (λLB) 1746% 14381% 899.33%

τs < 0.01% 19.74% < 0.01%
t0 - - < 0.01%

Bis. : 337
αw (λLB) 13.68% 33.60% 23.35%

τs < 0.01% 15.04% < 0.01%
t0 - - < 0.01%

Bis. : 369
αw (λLB) 1.41% 92.38% 121.90%

τs < 0.01% 19.98% < 0.01%
t0 - - 0.04%

Bis. : 385
αw (λLB) 12.32% 35.68% 14.65%

τs < 0.01% 23.48% < 0.01%
t0 - - 0.01%

Pery. : 337
αw (λLB) 2.23% 25.22% 41.25%

τs 2.61% 10.52% 0.42%
t0 - - 0.01%

Pery. : 369
αw (λLB) 25.73% 391.66% 10447.9%

τs 1.23% 9.04% 2.41%
t0 - - 0.02%

Pery. : 385
αw (λLB) 299.11% 4613.19% 5238.9%

τs 2.58% 7.55% 2.58%
t0 - - 0.01%

Pery. : 420
αw (λLB) 68.74% 2468.02% 1746.27%

τs 2.20% 8.02% 1.41%
t0 - - 0.0%

Table 7.14: Shown are the systematic uncertainties as percentages of the
parameter values obtained for the t0-fixed and t0-float fits.
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The systematic contributions to each parameter are shown in Table 7.14. Overall,

the parameters in the t0-fixed fit are subject to large uncertainties due to the

inclusion of t0 as a systematic, producing variations of 25-35% in αw(λLB) for

values inconsistent with zero. In cases where the fitted value αw(λLB) is small or

consistent with zero, the systematic uncertainties, ≥ 100% are redundant. The

variations in t0 for the t0-fixed fit induce a 7-25% uncertainty in τs. In comparison,

the systematic uncertainty in α
(
λemit

)
give rise to small uncertainties, < 2.6% in

both fits.

7.2.4 Conclusion on Scintillator Time Profile Model

The time profile model provides sensitivity to the absorbing and reemitting action

of the scintillator. However, the model is largely dominated by uncertainties as-

sociated with the trigger time of the laser, t0. In practice, the trigger time cannot

be guaranteed to a sufficient degree of accuracy. One idea to partially resolve this

could be to calculate the global time offset as an estimator for t0 for a run close

to the reemitted wavelength i.e. PPO: 400 nm, bis-MSB: 446 nm and perylene:

490 nm, and use this value as the fixed trigger time at shorter wavelengths in

the model. However, again, this would require performing two successive laserball

runs in which only the dye is changed; even then it cannot be guaranteed that the

detector state would otherwise remain unchanged between these two runs.

A further problem is that the model assumes characteristics of the laser emission,

(σLB = 0.7 ns) and the PMT time response (σPMT = 1.7 ns). Again, in practice

these values cannot be assumed. In principle these could be added as additional

parameters into the fit, although this would ultimately over constrain the model

as presented here; a model that uses only one central run per wavelength, of which

a relatively small time residual window of 15-20 ns is used.

Despite these issues, the most interesting result from studying this model comes

from the emission time value, τs which is sensitive to the multi-component nature

of the ternary mixtures, identifying the variation in absorption strengths of the

different wavelength shifters across short wavelengths. Furthermore, the sensitivity

of τs is reasonably robust to changes in the trigger time depending on whether

it varies (or is fixed) in the fit with uncertainties ranging from 0.01-2.6% (8.0-

23.5%). To this extent, the model is in principle able to quantify the micro-physical

processes within the bulk liquid scintillator.
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The photon walk ultimately appears to be a minor effect in the model whose

systematic uncertainties ( > 1000% in perylene) are dominated by variations t0.

A re-parameterisation of the model could replace αw(λLB) with the rise-time of

the scintillator, τr as in Equation 3.6. Although the sensitivity to time would

remain; the rise time of most scintillators is typically no larger than 1 ns. The

value would therefore be minor in comparison to variations in t0 and the combined

uncertainties in the laser emission time and the PMT timing.



8

Conclusions

It’s a great thing when you realise you still have the ability to surprise yourself.

Makes you wonder what else you can do that you’ve forgotten about.

Lester Burnham (American Beauty), Alan Ball

The SNO+ experiment is a liquid scintillator based neutrino experiment. It is

a re-purposing of the original Cherenkov detector used to study solar neutrinos

in the SNO experiment. The experiment is sensitive to a variety of interesting

physics that include; invisible nucleon decay modes, pep-chain and CNO-cycle solar

neutrinos, geo-neutrinos, reactor anti-neutrinos, supernova neutrinos and 0νββ-

decay. To study these processes the experiment will operate over three phases;

water, scintillator and tellurium (loading of the scintillator with tellurium). The

primary objective is during the tellurium phase, in which SNO+ will search for

the 0νββ-decay of 130Te. This phase will begin by loading 780 tonnes of liquid

scintillator with 0.3% natural tellurium that has an abundance of ∼34% 130Te. At

0.3% loading this is equivalent to ∼800 kg of 130Te. Several upgrades have been

made to the detector to ensure it is compatible with scintillator. This includes the

installation of AV hold-down ropes and a variety of electronics upgrades to handle

the increased light yield, a factor of 50 times larger than that of the D2O used in

SNO.

The base scintillator mixture used is LABPPO, which consists of an LAB solvent

containing a PPO fluor. As part of the loading procedure for the tellurium phase, a

surfactant, PRS is added to the LABPPO to keep the tellurium in suspension. PRS

247
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is highly absorbing over the PPO emission spectrum and therefore a secondary

wavelength shifter is required. There are currently two candidates, bis-MSB and

perylene;

• Scintillator Phase: LABPPO

• Tellurium Phase - Candidate A: LABPPO+0.3%Te+Bis-MSB

• Tellurium Phase - Candidate B: LABPPO+0.3%Te+Perylene

The use of scintillator increases sensitivity to physics in a 1-3 MeV ROI. A variety

of internal and external backgrounds coincide with this ROI, contaminating the

signal region with unwanted physics events. The source of these backgrounds is

predominately from the radioactive decay of daughter nuclei from the 238U and
232Th chains. SNO+ has therefore imposed stringent radiopurity levels throughout

its commissioning which has included the construction of a scintillator plant. The

plant must be sealed from contaminants in the lab atmosphere such as radon

that emanates from the surrounding mine rock. To prevent such contaminants

entering the detector, the facility has been constructed with a per-component leak

rate ≤ 10−9 mBar L s−1.

Prior to collecting physics data in each of the three phases, a full detector calibra-

tion is required. This is further warranted by the fact that the original components

of the SNO detector, including the PMTs, are now ∼20 years old. The calibration

can be divided up into four procedures;

• Calibration of the electronic systems.

• Calibration of the PMTs.

• Calibration of the detector optical response.

• Calibration of the detector energy response.

The optical calibration aims to characterise optical effects in the detector such

as reflections, refraction and attenuation; the combined effect of scattering and

absorption. In addition, the optical calibration determines both the angular and

timing response of the ∼9000 PMTs in the detector. The overall objective of such

a calibration is to minimise the uncertainties associated with the PMT response
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such that the meaningful behaviour of physical interactions inside the detector can

be resolved i.e. the scintillation time profile.

Optical calibration is sought through two hardware systems, a fibre based laser/LED

injection system installed into the PSUP [107] and the laserball, a light diffusing

sphere [110]. The laserball, as discussed in this thesis can be used to collect data

over which a parameterisation of the detector optical response can be modelled.

This model characterises the PMT angular response and the attenuation of the

three main detector media; the inner AV region, the acrylic of the AV itself, and

the outer AV water region. The model can be applied to data collected in all three

detector phases.

In the water phase, a comparison between original SNO data and SNO+ MC

highlights differences between the ideal scenario as assumed in MC, and the reality

of the true detector state as in SNO. Most notably, the reflectors which surround

each PMT are not perfectly reflecting, and have been subject to degradation over

time. This introduces an additional systematic to the optical model known as the

PMT variability. The degradation of the PMT reflectors is important to monitor,

as it affects the overall optical response and the energy response that it underpins.

The water phase will be the first time that the inner AV and outer AV regions

have been occupied by the same material. This provides a good opportunity to

break the correlation between the attenuation coefficients of the AV acrylic and

the water of the outer AV region as observed in SNO. In doing so, the systematic

uncertainties on the water attenuation coefficient can be significantly reduced from

> 100% to < 12%. In addition, the broken correlation between the acrylic and

the water regions allows for an in-situ measurement of the acrylic attenuation

coefficient. However, given the thin 55.0 mm nature of the acrylic, these values of

the attenuation coefficient are subject to large systematic variations in the region

of 10-140%.

The scintillator phase presents a new phenomena which is observed in the detec-

tor; absorption and reemission. This impacts the optical response of the detector

as light that is emitted inside the detector at short wavelengths is absorbed and

reemitted at longer wavelengths. At these longer wavelengths the scintillator is rel-

atively transparent. The wavelength regions in which the scintillator is absorbing

varies based on the composition of the scintillator mixture; λ . 360 nm (PPO),

. 400 nm (bis-MSB) and . 450 nm (perylene). The attenuation of the scintillator
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has a strong resolving power in the fit of the optical model, and values are obtained

with relatively small systematic uncertainties, 1-10% for PPO, and < 4% for the

mixtures containing either bis-MSB or perylene. It is found that the values of the

attenuation coefficients at absorbing regions is constrained by the dimensions of

the detector; the inner AV radius. In cases where light is absorbed and reemitted,

the obtained attenuation coefficient coincides in the region where the absorption

length of the active wavelength shifting component is ∼10 m.

A scintillator time profile model can be used on central runs in scintillator to

quantify the multi-component nature of the scintillator. This is particularly inter-

esting for the ternary mixtures proposed for the tellurium phase. Through timing

information the model is able to quantify the different wavelength regions in which

the different components are most absorbing. However, the model is subject to

non-negligible systematic errors associated with the timing of the laserball trigger

time.

The laserball data presented in scintillator use five of the laser/dye profiles from

SNO; 337 nm (N2), 369 nm (PBD), 385 nm (BBQ), 420 nm (bis-MSB) and 505 nm

(COUMARIN-500). In addition, MC studies of the scintillator mixtures can be

used to inform the wavelength of an additional laser-dye whose peak emission value

coincides with the average reemitted wavelength of the scintillator. For the three

mixtures considered here, these are as follows:

• LABPPO:

– α-NPO, λ ∈ (391-425) nm, λpeak = 400 nm

• LABPPO+0.3%Te+Bis-MSB:

– COUMARIN-440, λ ∈ (420-475) nm, λpeak = 446 nm

• LABPPO+0.3%Te+Perylene:

– COUMARIN-481, λ ∈ (461-549) nm, λpeak = 490 nm

Probing the optical response at these wavelengths is of interest as they are located

at the transition boundary between the absorbing and transparent regimes of the

scintillator in the detector. It would be interesting to further probe this transition

region either side of the boundary at different wavelengths. However, this would

require near-monochromatic light sources; the distributions for the proposed dyes
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above are broad. This may be resolved through using an LED source, either as a

modification to the laserball or as part of the fibre based light injection system.

At time of writing, no final decision has been made for the scintillator mixture to be

used in the tellurium phase. However, the current consensus amongst the SNO+

collaboration favours bis-MSB over perylene due to its short mean emission time

(1.4 ns: bis-MSB, 6.4 ns: perylene) and an emission profile that coincides more so

with the optimal quantum efficiency of the PMTs than perylene. Most notably, the

shorter emission time is conducive to more accurate position reconstruction and

efficient background rejection through α-β discrimination. However, as discussed

here the bis-MSB emission competes with the PRS absorption around 420 nm.

Therefore further developments have been made recently to investigate the use

of an alternative loading technique that makes use 1,2 butanediol to molecularly

suspend the tellurium, forming an organometallic complex, in the liquid scintillator

[151]. Early indications are promising, but a final decision to implement this

technique is subject to tests of the complex stability over 6-12 months.

Given the above, deployment of the laserball is critical in SNO+. It is an im-

portant component of the detector calibration, and alongside data collected with

a complementary fibre-based LED system characterises the detector optical re-

sponse. This is required to interpret physics events, specifically the expected light

detected from candidate 0νββ-decay events and associated backgrounds in the

tellurium phase. However, given that these levels of detection, such as the PMT

response or attenuation of the detector regions may change over time, the optical

response will also change. Repeated deployment of the laserball therefore allows

for regular monitoring of the optical response ensuring data sets collected over

time are consistent with one another. Although the scintillator mixtures discussed

here are not finalised, the approach and analysis of laserball data presented here

outline the principle technique for which regular monitoring of the optical response

can be achieved.
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Optical Response Calculations

A.1 Light Path Derivation

Suppose there is a light path with a starting position inside the AV, ~ri and a

finishing position at PMT j, ~rj. In a coordinate frame whose origin is at the

centre of the AV, and using a combination of Snell’s law of refraction and sine and

cosine rules, one may derive the values of cos θ1, cos θ2 and cos θ3 as illustrated in

figure (4.2). The vectors ~r1 and ~r2 are the intersection points of the path between

the inner AV/AV and AV/outer AV regions respectively.

cos θ1: With reference to figure (4.2) and by using the cosine rule, a formula for

the distance through the scintillator region, dScint is obtained;

d2
Scint = |~ri|2 + |~r1|2 − 2 |~ri| |~r1| cos θ1. (A.1)

Using the sine rule;

dScint

sin θ1

=
|~r1|

sin (π − θγ)
=
|~r1|

sin θγ
. (A.2)

Rearranging for dScint in the above expression and substituting into equation (A.1),

with some trigonometric manipulation, the following expression is obtained;

cos2 θ1 − 2
|~ri|
|~r1|

sin2 θγ cos θ1 + sin2 θγ

(( |~ri|
|~r1|

)2

+ 1

)
− 1 = 0, (A.3)

252
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where the identitiy sin2 θ1 + cos2 θ1 = 1 has been used. Equation (A.3) is a

quadratic in cos θ1 and can therefore be solved using the standard quadratic for-

mula;

cos θ1 = − b

2a
± 1

2a

√
b2 − 4ac, (A.4)

where

a = 1, b = −2
|~ri|
|~r1|

sin2 θγ and c = sin2 θγ

(( |~ri|
|~r1|

)2

+ 1

)
− 1. (A.5)

Thus the expression for cos θ1 follows;

⇒ cos θ1 =
|~ri|
|~r1|

sin2 θγ

± 1

2

√
4

( |~ri|
|~r1|

)2

sin4 θγ − 4

( |~ri|
|~r1|

)2

sin2 θγ − 4 sin2 θγ + 4,

=
|~ri|
|~r1|

sin2 θγ

±
√( |~ri|
|~r1|

)2

sin2 θγ
(
sin2 θγ − 1

)
+ cos2 θγ,

=
|~ri|
|~r1|

sin2 θγ ± cos θγ

√
1−

( |~ri|
|~r1|

sin θγ

)2

. (A.6)

Similarly, an expression for cos θ2 can be obtained by transforming the points

which define the triangle for cos θ1 to those which define that for cos θ2 i.e.

~ri → ~r1, ~r1 → ~r2, and θγ → θb. (A.7)

This gives an expression for cos θ2;

cos θ2 =
|~r1|
|~r2|

sin2 θb ± cos θb

√
1−

( |~r1|
|~r2|

sin θb

)2

. (A.8)

Using Snell’s law of refraction for light passing from material a to material b with

respective refractive indices of na and nb (in this case from the scintillator region
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to the acrylic of the AV), sin θb can be expressed as follows;

sin θa
sin θb

=
nb
na

(Snell’s Law)

⇒ sin θb =
na
nb

sin θa. (A.9)

sin θb can subsequently be expressed in terms of θγ by use of the sine rule and

again, Snell’s law;

|~ri|
sin θa

=
|~r1|

sin (π − θγ)
=
|~r1|

sin θγ

⇒ sin θa =
|~ri|
|~r1|

sin θγ,

|~r2|
sin (π − θb)

=
|~r2|

sin θb
=
nb
na

|~r2|
sin θa

⇒ sin θb =
na
nb

sin θa =
na
nb

|~ri|
|~r1|

sin θγ. (A.10)

Using the above result and the transformations as in expression (A.7) one obtains

the final result for cos θ2;

cos θ2 =
1

|~r1| |~r2|

(
na
nb
|~ri| sin θγ

)2

±

√1−
(
na
nb

|~ri|
|~r1|

sin θγ

)2

×
√

1−
(
na
nb

|~ri|
|~r2|

sin θγ

)2
 . (A.11)

Finally, an expression for cos θ3 can be obtained using the same principle by a

transformation of variables;

~ri → ~r2, ~r1 → ~rj, and θγ → θd. (A.12)

This gives an expression for cos θ3;

cos θ3 =
|~r2|
|~rj|

sin2 θd ± cos θd

√
1−

( |~r2|
|~rj|

sin θd

)2

. (A.13)
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Using Snell’s law sin θd can be expressed as follows;

sin θd =
nb
nc

sin θc. (A.14)

By applying the sine rule, a relation between sin θc and sin θb can be obtained;

sin θc =
|~r1|
|~r2|

sin θb. (A.15)

Finally, using this and equation (A.10), sin θd can be expressed in terms of sin θγ

as follows;

sin θd =
nb
nc

|~r1|
|~r2|

sin θb =
na
nb

nb
nc

|~r1|
|~r2|
|~ri|
|~r1|

sin θγ =
na
nc

|~ri|
|~r2|

sin θγ. (A.16)

cos θ3 in terms of θγ is thus;

cos θ3 =
1

|~r2| |~rj|

(
na
nc
|~ri| sin θγ

)2

+

√1−
( |~ri|
|~r2|

na
nc

sin θγ

)2

×
√

1−
( |~ri|
|~rj|

na
nc

sin θγ

)2
 . (A.17)

A.2 PMT Bucket Time

As discussed in section (4.2.2), the light path calculation is calculated up to the

entrance of the PMT bucket. The time spent inside the bucket prior to the creation

of the photoelectron, tbucket (θγ) is an additional time discussed by the author here

[136]. Overall, the bucket time is a 0.45-0.7 ns correction, which can be assumed

wavelength independent given its size. The time is related to the incident angle of

the light entering the PMT bucket as shown in figure (A.1). It is calculated using

MC simulations.
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PMT Peak Bucket Time at 504nm

Figure A.1: The time spent inside the PMT bucket. This is measured as the
time spent between the photon entering the PMT bucket, and the creation of
the photoelectron at the PMT photocathode. The example above is shown for

504 nm, and is consistent with that observed for all wavelengths.

A.3 Fresnel Transmission Coefficient Calculation

The calculation of the Fresnel transmission coefficient assumes equal polarisation

of the laserlight; half perpendicular to the plane of incidence and half parallel.

The coefficient is calculated for both these components - perpendicular, T⊥ and

parallel, T‖ - at each material interface of the path between the laserball position

and the PMT; the inner AV/AV and AV/outer AV regions. For a light path

passing from material A to material B with refractive indices nA and nB at an

incident angle, θinc, the perpendicular and parallel components are calculated as

follows;

T⊥ =
4nA cos θincR (nA, nB, θinc)

(nA cos θinc +R (nA, nB, θinc))
2 , (A.18)

T‖ =
4nAn

2
B cos θincR (nA, nB, θinc)

(n2
B cos θinc + nAR (nA, nB, θinc))

2 , (A.19)



Appendix A: Optical Response Calculations 257

where,

R (nA, nB, θinc) =

{ √
n2
B − n2

A sin2 θinc if nB > nA sin θinc

0 if nB < nA sin θinc

. (A.20)

In the case of R (nA, nB, θinc) = 0, this is equivalent to total internal reflection.

For the light path as described in section (A.1), from position ~ri to PMT j with

position, ~rj the total transmission coefficient, Tij is the product of these terms;

Tij =
1

2

(
T IA
⊥ T

OA
⊥ + T IA

‖ T
OA
‖
)
, (A.21)

where {T IA
⊥ , T

OA
⊥ } and {T IA

‖ , T
OA
‖ } are the respective transmission coefficients from

the inner AV/AV (IA) and AV/outer AV (OA) material interfaces for the perpen-

dicular and parallel components. The factor of 1/2 is due to the equal polarisation

in both components as assumed. The value of θinc used in the calculations of the

coefficients is obtained from the vector description of the light path;

θIA
inc = cos−1

(
~̂r1 · ~̂rγ

)
, θOA

inc = cos−1


(
~̂r2 − ~̂r1

)
√

2
· ~̂r2

 , (A.22)

where ~rγ is the initial photon direction from the laserball, ~r1 is the intersection

point on the inner AV surface and ~r2 is the intersection point on the outer AV

surface. The refractive indices are functions of the wavelength i.e. nA (λ) , nB (λ),

whose values are obtained from the forms given in figure (4.3).

A.4 Scintillator Time Profile Model Timings

The scintillator time profile model as described in section (4.5.3) (see expres-

sion (4.47)) samples times according to the laserball pulse and PMT timing widths;

tσ,LB = 0.7 ns and tσ,PMT = 1.7 ns. These distributions are shown in figure (A.2),

and are the same time distributions implemented into RAT for the generation of

MC data.
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Figure A.2: Top: The laserball emission time. The distribution is truncated at
-1.5 ns. The width of the distribution (σ = 0.7 ns) is due to the light dispersion
in the ∼40 m optical fibres from the laser system on the upper deck above the
cavity to the laserball. Bottom: The time transit spread of the PMTs. The
time transit spread is the distribution in times over which a photoelectron is
accelerated through the PMT dynode stack. The spread of this distribution is

σ ' 1.7 ns.
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Monte-Carlo Data Production:

Extended

B.1 KITON-RED Laser-Dye for Monte-Carlo Pro-

duction

As stated in section (5.1.1), the KITON-RED laser-dye is omitted from the SNO+

MC data production. This is due to a combination of high attenuation in water at

long wavelengths, α ∼ 3× 10−4 mm−1 (see table (6.2)) and low PMT efficiency, <

2.5% (see figure (3.13)). Shown in figure (B.1) are the average detector occupancies

with varying intensities at 620 nm in water. Even at high intensities, the occupancy

is small, ≤ 0.2%. Extrapolating the linear response as shown, a target occupancy

of 3% would require 1236 × 103 photons pulse−1. This is computer intensive. In

principle, the PMT efficiencies could be scaled up, or the attenuation coefficient

could be scaled down. However, this is undesired given the aim of the optical model

is to directly probe the expected value of these properties across all wavelengths.
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Figure B.1: Values for the average occupancy per pulse for the laserball at 620
nm in water. Here, the average occupancy is the ratio of the mean number of
hits, NHits to the total number of PMTs, nPMT = 9728. Errors are statistical,

±
√
NHits. Photon units are in photons ×103 as simulated in RAT.



Appendix C

Optical Model Fits:

Extended Results

C.1 Attenuation Coefficient Systematics:

Water & D2O

The following are the full systematic contributions to the attenuation coefficients

for each of the wavelengths scans form the SNO October 2003 (D2O) and SNO+

MC data sets (H2O). The SNO data set used a fixed value of the AV acrylic, αAV

based on ex-situ measurements from SNO. The SNO+ MC data combined the

inner and outer AV water regions to fit for αcomb.
H2O and αAV.
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Attenuation Systematics - SNO October 2003, D2O, 337 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 1.44 0.00% 3.89 0.00% 1.20
|rLB| × 1.01 1.18 −3.58% 0.71 −16.38% 1.20
rx − 50.0 mm 1.43 −0.12% 3.55 −1.79% 1.21
rx + 50.0 mm 1.44 −0.04% 3.94 0.26% 1.21
ry − 50.0 mm 1.41 −0.45% 4.24 1.77% 1.20
ry + 50.0 mm 1.47 0.36% 3.47 −2.20% 1.21
rz − 50.0 mm 1.50 2.18% 2.89 −12.89% 1.20
rz + 50.0 mm 1.37 −2.49% 5.12 15.78% 1.20
λ− λRMS nm 1.44 0.02% 3.92 0.81% 1.20
λ+ λRMS nm 1.45 0.24% 4.00 2.62% 1.20

H2 1.44 −0.00% 4.02 0.16% 1.21
H = 1.0 1.43 −0.04% 4.31 0.53% 1.24
χ2

lim,f = 16 1.40 −2.57% 5.59 43.53% 1.47
σPMT = 0 1.48 2.79% 2.22 −43.09% 1.84
d-50.0mm

innerAV 1.44 0.19% 3.95 1.50% 1.20
Total 6.21% 66.76%

Table C.1: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 337 nm.

Attenuation Systematics - SNO October 2003, D2O, 369 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.93 0.00% 2.78 0.00% 0.98
|rLB| × 1.01 0.67 −5.58% −0.30 −22.16% 0.98
rx − 50.0 mm 0.93 0.14% 2.73 −0.40% 0.99
rx + 50.0 mm 0.91 −0.32% 2.71 −0.53% 0.99
ry − 50.0 mm 0.91 −0.40% 2.58 −1.49% 0.98
ry + 50.0 mm 0.94 0.30% 2.64 −1.00% 0.99
rz − 50.0 mm 0.98 2.89% 1.59 −21.44% 0.98
rz + 50.0 mm 0.87 −3.13% 3.79 17.97% 0.98
λ− λRMS nm 0.92 −0.34% 2.74 −1.62% 0.98
λ+ λRMS nm 0.93 0.33% 2.83 1.71% 0.98

H2 0.93 0.01% 2.78 −0.01% 0.98
H = 1.0 0.99 0.34% 3.16 0.68% 1.02
χ2

lim,f = 16 0.90 −2.62% 3.64 30.79% 1.16
σPMT = 0 1.03 10.76% 2.09 −24.93% 1.63
d-50.0mm

innerAV 0.93 0.04% 2.80 0.40% 0.98
Total 13.14% 53.41%

Table C.2: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 369 nm.
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Attenuation Systematics - SNO October 2003, D2O, 385 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.80 0.00% 3.90 0.00% 0.98
|rLB| × 1.01 0.54 −6.55% 0.55 −17.17% 0.97
rx − 50.0 mm 0.80 0.00% 3.87 −0.14% 0.98
rx + 50.0 mm 0.80 −0.22% 3.73 −0.87% 0.98
ry − 50.0 mm 0.78 −0.71% 3.67 −1.18% 0.97
ry + 50.0 mm 0.83 0.59% 3.70 −1.03% 0.98
rz − 50.0 mm 0.86 3.29% 2.57 −17.01% 0.98
rz + 50.0 mm 0.75 −3.48% 4.84 12.00% 0.97
λ− λRMS nm 0.80 −0.21% 3.87 −0.78% 0.98
λ+ λRMS nm 0.81 0.20% 3.91 0.18% 0.98

H2 0.81 0.00% 3.89 −0.01% 0.98
H = 1.0 0.89 0.52% 4.27 0.48% 1.01
χ2

lim,f = 16 0.78 −3.27% 4.74 21.38% 1.15
σPMT = 0 0.91 12.54% 2.58 −33.81% 1.63
d-50.0mm

innerAV 0.80 −0.01% 3.90 −0.14% 0.98
Total 15.33% 48.30%

Table C.3: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 385 nm.

Attenuation Systematics - SNO October 2003, D2O, 420 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.60 0.00% 1.78 0.00% 1.02
|rLB| × 1.01 0.35 −8.34% −1.10 −32.41% 1.01
rx − 50.0 mm 0.60 0.04% 1.82 0.55% 1.02
rx + 50.0 mm 0.59 −0.24% 1.76 −0.21% 1.02
ry − 50.0 mm 0.56 −1.35% 1.55 −2.52% 1.02
ry + 50.0 mm 0.63 1.15% 1.68 −1.09% 1.03
rz − 50.0 mm 0.66 5.27% 0.65 −31.67% 1.02
rz + 50.0 mm 0.53 −5.41% 2.86 30.57% 1.02
λ− λRMS nm 0.59 −0.61% 1.74 −2.06% 1.02
λ+ λRMS nm 0.60 0.18% 1.79 1.08% 1.02

H2 0.59 −0.03% 1.78 0.00% 1.02
H = 1.0 0.67 0.65% 2.09 0.89% 1.06
χ2

lim,f = 16 0.53 −11.50% 3.10 74.52% 1.23
σPMT = 0 0.69 16.03% 0.38 −78.34% 1.63
d-50.0mm

innerAV 0.60 −0.00% 1.78 0.01% 1.02
Total 22.80% 121.21%

Table C.4: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 420 nm.



Appendix C: Optical Model Fits: Extended Results 264

Attenuation Systematics - SNO October 2003, D2O, 505 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.31 0.00% 4.87 0.00% 1.02
|rLB| × 1.01 0.05 −16.85% 1.86 −12.36% 1.02
rx − 50.0 mm 0.31 −0.22% 4.71 −0.65% 1.03
rx + 50.0 mm 0.31 −0.13% 5.01 0.56% 1.03
ry − 50.0 mm 0.28 −2.03% 4.67 −0.81% 1.02
ry + 50.0 mm 0.34 1.97% 4.73 −0.58% 1.03
rz − 50.0 mm 0.35 6.67% 3.64 −12.61% 1.02
rz + 50.0 mm 0.26 −7.69% 6.14 13.03% 1.02
λ− λRMS nm 0.31 −1.11% 4.80 −1.57% 1.02
λ+ λRMS nm 0.31 0.71% 5.08 4.23% 1.02

H2 0.31 −0.01% 4.89 0.02% 1.03
H = 1.0 0.35 0.68% 4.96 0.09% 1.08
χ2

lim,f = 16 0.28 −10.07% 5.78 18.72% 1.24
σPMT = 0 0.37 18.86% 3.59 −26.41% 1.65
d-50.0mm

innerAV 0.31 −0.01% 4.87 0.02% 1.02
Total 29.24% 39.39%

Table C.5: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 505 nm.

Attenuation Systematics - SNO October 2003, D2O, 620 nm

Systematic
αD2O

10−5 mm−1 si ×∆α/α
αH2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 0.37 0.00% 32.68 0.00% 0.98
|rLB| × 1.01 0.10 −14.44% 28.59 −2.51% 0.98
rx − 50.0 mm 0.37 −0.28% 32.57 −0.07% 0.99
rx + 50.0 mm 0.37 0.02% 32.74 0.04% 0.99
ry − 50.0 mm 0.34 −1.52% 32.98 0.18% 0.99
ry + 50.0 mm 0.40 1.44% 32.39 −0.18% 0.99
rz − 50.0 mm 0.38 1.57% 31.04 −2.51% 0.98
rz + 50.0 mm 0.36 −2.31% 34.43 2.67% 0.98
λ− λRMS nm 0.37 −0.63% 32.65 −0.09% 0.99
λ+ λRMS nm 0.37 0.25% 32.69 0.04% 0.99

H2 0.37 0.00% 32.75 0.01% 0.99
H = 1.0 0.42 0.58% 33.42 0.11% 1.02
χ2

lim,f = 16 0.37 0.02% 33.09 1.24% 1.16
σPMT = 0 0.39 5.57% 32.26 −1.29% 1.67
d-50.0mm

innerAV 0.37 −0.11% 32.69 0.01% 0.99
Total 15.90% 4.80%

Table C.6: Systematic contributions to αD2O and αH2O from the SNO October
2003 data set with heavywater at 620 nm.
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Attenuation Systematics - SNO+ MC, H2O, 337 nm

Systematic
αcomb.

H2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 2.70 0.00% 4.82 0.00% 1.00
|rLB| × 1.01 2.44 −1.95% 3.65 −4.85% 1.00
rx − 50.0 mm 2.70 0.02% 4.87 0.23% 1.02
rx + 50.0 mm 2.70 −0.03% 4.90 0.36% 1.02
ry − 50.0 mm 2.66 −0.29% 4.68 −0.56% 1.02
ry + 50.0 mm 2.74 0.29% 5.00 0.76% 1.02
rz − 50.0 mm 2.75 0.85% 4.29 −5.46% 1.01
rz + 50.0 mm 2.65 −0.90% 5.33 5.34% 1.00
λ− λRMS nm 2.70 0.00% 4.81 −0.01% 1.00
λ+ λRMS nm 2.70 0.01% 4.81 −0.04% 1.00

H2 2.70 0.01% 4.81 −0.01% 1.00
H = 1.0 −1.29 −7.38% 5.16 0.36% 1.46
χ2

lim,f = 16 2.68 −0.82% 5.04 4.66% 1.20
χ2

lim,f = 9 2.69 −0.29% 4.87 1.14% 1.07

Total 7.79% 10.30%

Table C.7: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 337 nm.

Attenuation Systematics - SNO+ MC, H2O, 369 nm

Systematic
αcomb.

H2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 2.05 0.00% 1.39 0.00% 1.00
|rLB| × 1.01 1.78 −2.61% 0.35 −14.96% 1.00
rx − 50.0 mm 2.05 −0.05% 1.39 −0.09% 1.02
rx + 50.0 mm 2.05 −0.03% 1.43 0.53% 1.02
ry − 50.0 mm 2.01 −0.43% 1.23 −2.30% 1.02
ry + 50.0 mm 2.09 0.36% 1.55 2.31% 1.02
rz − 50.0 mm 2.09 0.91% 0.90 −17.65% 1.00
rz + 50.0 mm 2.01 −1.09% 1.82 15.36% 1.00
λ− λRMS nm 2.05 −0.01% 1.39 −0.01% 1.00
λ+ λRMS nm 2.05 −0.01% 1.40 0.31% 1.00

H2 2.05 0.01% 1.39 −0.03% 1.00
H = 1.0 −2.11 −10.13% 1.66 0.97% 1.44
χ2

lim,f = 16 2.05 −0.29% 1.52 9.28% 1.19
χ2

lim,f = 9 2.05 0.06% 1.43 2.40% 1.07

Total 10.58% 29.58%

Table C.8: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 369 nm.
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Attenuation Systematics - SNO+ MC, H2O, 385 nm

Systematic
αcomb.

H2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 1.88 0.00% 0.65 0.00% 1.00
|rLB| × 1.01 1.61 −2.90% −0.31 −29.67% 1.00
rx − 50.0 mm 1.88 −0.02% 0.69 1.25% 1.02
rx + 50.0 mm 1.88 −0.02% 0.68 1.00% 1.02
ry − 50.0 mm 1.84 −0.42% 0.52 −3.97% 1.02
ry + 50.0 mm 1.92 0.38% 0.83 5.46% 1.02
rz − 50.0 mm 1.91 0.80% 0.22 −32.85% 1.01
rz + 50.0 mm 1.85 −0.91% 1.04 30.35% 1.00
λ− λRMS nm 1.88 −0.01% 0.65 −0.18% 1.00
λ+ λRMS nm 1.88 −0.01% 0.65 0.31% 1.00

H2 1.88 0.00% 0.65 −0.01% 1.00
H = 1.0 −2.19 −10.82% 1.14 3.81% 1.46
χ2

lim,f = 16 1.85 −1.75% 0.85 30.32% 1.22
χ2

lim,f = 9 1.88 −0.28% 0.70 7.32% 1.07

Total 11.42% 62.58%

Table C.9: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 385 nm.

Attenuation Systematics - SNO+ MC, H2O, 420 nm

Systematic
αcomb.

H2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 2.05 0.00% 0.29 0.00% 1.02
|rLB| × 1.01 1.78 −2.63% −0.69 −68.04% 1.02
rx − 50.0 mm 2.05 −0.02% 0.29 0.02% 1.04
rx + 50.0 mm 2.05 0.02% 0.34 3.49% 1.03
ry − 50.0 mm 2.01 −0.39% 0.16 −8.76% 1.03
ry + 50.0 mm 2.09 0.35% 0.39 7.11% 1.03
rz − 50.0 mm 2.08 0.81% −0.15 −76.78% 1.02
rz + 50.0 mm 2.01 −0.95% 0.69 69.88% 1.01
λ− λRMS nm 2.05 −0.01% 0.28 −1.31% 1.02
λ+ λRMS nm 2.05 −0.00% 0.29 −0.26% 1.02

H2 2.05 0.00% 0.29 −0.04% 1.02
H = 1.0 −2.11 −10.15% 0.72 7.47% 1.45
χ2

lim,f = 16 2.03 −0.96% 0.48 66.74% 1.23
χ2

lim,f = 9 2.05 0.03% 0.31 7.81% 1.09

Total 10.62% 141.84%

Table C.10: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 420 nm.
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Attenuation Systematics - SNO+ MC, H2O, 505 nm

Systematic
αcomb.

H2O

10−5 mm−1 si ×∆α/α
αAV

10−3 mm−1 si ×∆α/α χ2/No.Dof

Nominal 4.31 0.00% 0.29 0.00% 1.01
|rLB| × 1.01 4.01 −1.39% −0.69 −68.03% 1.02
rx − 50.0 mm 4.31 0.01% 0.33 3.41% 1.04
rx + 50.0 mm 4.31 0.00% 0.35 4.37% 1.03
ry − 50.0 mm 4.27 −0.19% 0.14 −10.42% 1.03
ry + 50.0 mm 4.35 0.18% 0.45 11.47% 1.03
rz − 50.0 mm 4.34 0.34% −0.13 −72.97% 1.02
rz + 50.0 mm 4.27 −0.41% 0.67 68.11% 1.01
λ− λRMS nm 4.31 0.00% 0.28 −1.49% 1.01
λ+ λRMS nm 4.31 0.00% 0.29 1.03% 1.01

H2 4.31 0.00% 0.28 −0.07% 1.01
H = 1.0 0.25 −4.71% 0.57 4.99% 1.46
χ2

lim,f = 16 4.27 −0.79% 0.47 64.05% 1.24
χ2

lim,f = 9 4.30 −0.20% 0.32 12.98% 1.09

Total 5.01% 138.43%

Table C.11: Systematic contributions to αH2O and αAV from the SNO+ MC
data set with water at 505 nm.
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C.2 Attenuation Coefficient Systematics:

Scintillator

The following are the full systematic contributions to the attenuation coefficients

for each of the wavelengths scans form the SNO+ MC data sets in LABPPO,

LABPPO+0.3%Te+bis-MSB and LABPPO+0.3%Te+perylene.

Attenuation Systematics - SNO+ MC, LABPPO, 337 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.67 0.00% 9.21 0.00% 1.02
|rLB| × 1.01 10.40 −0.50% 7.02 −4.75% 1.05
rx − 50.0 mm 10.66 −0.01% 8.57 −1.38% 1.03
rx + 50.0 mm 10.66 −0.01% 8.53 −1.47% 1.03
ry − 50.0 mm 10.65 −0.04% 8.50 −1.54% 1.03
ry + 50.0 mm 10.69 0.03% 8.72 −1.06% 1.03
rz − 50.0 mm 10.75 0.37% 7.95 −6.85% 1.05
rz + 50.0 mm 10.53 −0.64% 7.21 −10.84% 1.00
λ− λRMS nm 10.74 0.66% 8.80 −4.44% 1.03
λ+ λRMS nm 10.60 −0.63% 8.20 −10.91% 1.01

H2 10.67 0.00% 9.20 −0.00% 1.02
H = 1.0 7.23 −1.61% 4.30 −2.66% 1.43
χ2

lim,f = 16 10.66 −0.07% 10.25 11.29% 1.24
χ2

lim,f = 9 10.67 0.04% 9.57 3.98% 1.10

Total 2.05% 21.99%

Table C.12: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 337 nm.
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Attenuation Systematics - SNO+ MC, LABPPO, 369 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 15.04 0.00% 9.81 0.00% 1.02
|rLB| × 1.01 14.79 −0.33% 8.01 −3.68% 1.06
rx − 50.0 mm 15.04 −0.01% 9.31 −1.01% 1.03
rx + 50.0 mm 15.03 −0.02% 9.02 −1.62% 1.03
ry − 50.0 mm 15.01 −0.04% 9.21 −1.22% 1.03
ry + 50.0 mm 15.05 0.01% 9.35 −0.93% 1.03
rz − 50.0 mm 15.17 0.42% 8.67 −5.81% 1.05
rz + 50.0 mm 14.83 −0.72% 7.87 −9.91% 0.99
λ− λRMS nm 15.13 0.56% 9.48 −3.41% 1.03
λ+ λRMS nm 14.95 −0.59% 8.70 −11.32% 1.01

H2 15.04 0.00% 9.82 0.00% 1.02
H = 1.0 11.53 −1.17% 4.76 −2.57% 1.40
χ2

lim,f = 16 15.06 0.08% 10.82 10.25% 1.21
χ2

lim,f = 9 15.05 0.04% 10.05 2.48% 1.09

Total 1.69% 20.23%

Table C.13: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 369 nm.
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Attenuation Systematics - SNO+ MC, LABPPO, 385 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.23 0.00% 5.06 0.00% 0.99
|rLB| × 1.01 10.02 −0.41% 3.53 −6.02% 1.00
rx − 50.0 mm 10.23 0.00% 4.69 −1.45% 1.00
rx + 50.0 mm 10.22 −0.01% 4.40 −2.60% 1.00
ry − 50.0 mm 10.21 −0.03% 4.41 −2.57% 0.99
ry + 50.0 mm 10.24 0.04% 4.49 −2.24% 1.00
rz − 50.0 mm 10.35 0.62% 4.36 −6.91% 1.00
rz + 50.0 mm 10.06 −0.82% 2.41 −26.17% 0.98
λ− λRMS nm 10.29 0.59% 5.15 1.78% 0.99
λ+ λRMS nm 10.17 −0.54% 4.33 −14.36% 0.98

H2 10.23 0.00% 5.06 0.00% 0.99
H = 1.0 6.74 −1.71% 0.20 −4.80% 1.42
χ2

lim,f = 16 10.21 −0.18% 5.87 16.12% 1.17
χ2

lim,f = 9 10.22 −0.03% 5.23 3.49% 1.05

Total 2.19% 35.97%

Table C.14: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 385 nm.

Attenuation Systematics - SNO+ MC, LABPPO, 400 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 6.88 0.00% 4.96 0.00% 0.98
|rLB| × 1.01 6.77 −0.34% 3.40 −6.27% 0.99
rx − 50.0 mm 6.89 0.01% 4.67 −1.15% 0.99
rx + 50.0 mm 6.88 −0.01% 4.57 −1.57% 0.99
ry − 50.0 mm 6.87 −0.04% 4.51 −1.80% 0.99
ry + 50.0 mm 6.90 0.05% 4.66 −1.18% 0.99
rz − 50.0 mm 7.07 1.33% 4.30 −6.63% 1.00
rz + 50.0 mm 6.67 −1.58% 2.63 −23.48% 0.97
λ− λRMS nm 6.96 1.17% 4.90 −1.15% 0.98
λ+ λRMS nm 6.82 −0.99% 4.54 −8.51% 0.97

H2 6.88 0.00% 4.96 −0.00% 0.98
H = 1.0 3.07 −2.77% −0.16 −5.16% 1.41
χ2

lim,f = 16 6.88 0.01% 5.55 11.91% 1.15
χ2

lim,f = 9 6.88 −0.00% 5.08 2.46% 1.04

Total 3.79% 29.86%

Table C.15: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 400 nm.
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Attenuation Systematics - SNO+ MC, LABPPO, 420 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 5.07 0.00% 4.86 0.00% 1.00
|rLB| × 1.01 4.96 −0.41% 3.18 −6.90% 1.01
rx − 50.0 mm 5.07 0.03% 4.67 −0.75% 1.02
rx + 50.0 mm 5.06 −0.02% 4.50 −1.48% 1.01
ry − 50.0 mm 5.05 −0.05% 4.40 −1.89% 1.01
ry + 50.0 mm 5.09 0.10% 4.48 −1.57% 1.01
rz − 50.0 mm 5.25 1.80% 4.11 −7.69% 1.02
rz + 50.0 mm 4.85 −2.11% 2.43 −25.01% 1.00
λ− λRMS nm 5.10 0.61% 4.90 0.94% 1.00
λ+ λRMS nm 5.04 −0.53% 4.85 −0.18% 1.00

H2 5.07 0.00% 4.86 0.01% 1.00
H = 1.0 1.25 −3.77% 0.35 −4.64% 1.41
χ2

lim,f = 16 5.06 −0.02% 5.64 16.18% 1.18
χ2

lim,f = 9 5.06 −0.06% 5.00 3.01% 1.07

Total 4.76% 32.16%

Table C.16: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 420 nm.

Attenuation Systematics - SNO+ MC, LABPPO, 505 nm

Systematic
α ppo

Scint

10−5 mm−1 si ×∆α/α
α ppo

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 2.37 0.00% 6.65 0.00% 0.98
|rLB| × 1.01 2.29 −0.67% 5.05 −4.81% 0.99
rx − 50.0 mm 2.37 0.03% 6.50 −0.44% 0.99
rx + 50.0 mm 2.37 0.00% 6.51 −0.42% 0.99
ry − 50.0 mm 2.36 −0.09% 6.38 −0.80% 0.99
ry + 50.0 mm 2.39 0.18% 6.49 −0.47% 0.99
rz − 50.0 mm 2.55 3.79% 6.06 −4.43% 0.99
rz + 50.0 mm 2.17 −4.24% 4.28 −17.79% 0.98
λ− λRMS nm 2.39 0.75% 6.66 0.16% 0.98
λ+ λRMS nm 2.35 −0.69% 6.65 0.04% 0.98

H2 2.37 0.00% 6.65 0.00% 0.98
H = 1.0 −1.45 −8.07% 2.31 −3.26% 1.41
χ2

lim,f = 16 2.36 −0.51% 7.48 12.54% 1.15
χ2

lim,f = 9 2.36 −0.23% 6.92 4.19% 1.04

Total 9.97% 23.37%

Table C.17: Systematic contributions to α ppo
Scint and α ppo

H2O from the SNO+ MC
data set with ppo at 505 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 337 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 20.23 0.00% 14.03 0.00% 1.16
|rLB| × 1.01 19.81 −0.41% 11.84 −3.13% 1.19
rx − 50.0 mm 20.23 −0.00% 13.58 −0.63% 1.16
rx + 50.0 mm 20.22 −0.01% 13.41 −0.88% 1.16
ry − 50.0 mm 20.20 −0.02% 13.66 −0.53% 1.16
ry + 50.0 mm 20.25 0.02% 13.87 −0.23% 1.16
rz − 50.0 mm 20.25 0.05% 12.74 −4.60% 1.18
rz + 50.0 mm 20.15 −0.20% 12.88 −4.11% 1.12
λ− λRMS nm 20.27 0.19% 13.40 −4.50% 1.16
λ+ λRMS nm 20.21 −0.12% 14.00 −0.19% 1.15

H2 20.23 0.00% 14.01 −0.01% 1.16
H = 1.0 16.90 −0.82% 9.03 −1.78% 1.47
χ2

lim,f = 16 20.28 0.27% 15.04 7.18% 1.48
χ2

lim,f = 9 20.25 0.12% 14.01 −0.15% 1.26

Total 1.02% 11.15%

Table C.18: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 337 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 369 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 19.46 0.00% 13.02 0.00% 1.13
|rLB| × 1.01 19.05 −0.42% 10.94 −3.20% 1.16
rx − 50.0 mm 19.46 −0.00% 12.85 −0.26% 1.13
rx + 50.0 mm 19.47 0.00% 12.65 −0.57% 1.13
ry − 50.0 mm 19.44 −0.02% 12.62 −0.63% 1.13
ry + 50.0 mm 19.49 0.03% 12.99 −0.05% 1.13
rz − 50.0 mm 19.48 0.05% 11.88 −4.38% 1.16
rz + 50.0 mm 19.39 −0.18% 11.39 −6.29% 1.09
λ− λRMS nm 19.50 0.18% 12.48 −4.21% 1.14
λ+ λRMS nm 19.44 −0.13% 13.06 0.31% 1.12

H2 19.46 0.00% 13.00 −0.01% 1.13
H = 1.0 16.02 −0.88% 7.20 −2.24% 1.46
χ2

lim,f = 16 19.52 0.29% 14.09 8.20% 1.41
χ2

lim,f = 9 19.49 0.11% 13.41 2.97% 1.23

Total 1.07% 12.99%

Table C.19: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 369 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 385 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 19.73 0.00% 14.22 0.00% 1.14
|rLB| × 1.01 19.31 −0.43% 12.06 −3.05% 1.17
rx − 50.0 mm 19.72 −0.01% 14.23 0.00% 1.14
rx + 50.0 mm 19.73 −0.00% 13.91 −0.45% 1.14
ry − 50.0 mm 19.70 −0.03% 13.98 −0.34% 1.14
ry + 50.0 mm 19.75 0.02% 14.02 −0.29% 1.14
rz − 50.0 mm 19.74 0.03% 12.99 −4.35% 1.17
rz + 50.0 mm 19.65 −0.20% 12.24 −6.99% 1.10
λ− λRMS nm 19.76 0.16% 13.93 −2.09% 1.15
λ+ λRMS nm 19.70 −0.13% 14.14 −0.62% 1.13

H2 19.73 0.00% 14.22 −0.00% 1.14
H = 1.0 16.35 −0.86% 8.58 −1.98% 1.48
χ2

lim,f = 16 19.78 0.28% 15.26 7.26% 1.42
χ2

lim,f = 9 19.75 0.10% 14.52 2.05% 1.24

Total 1.04% 11.96%

Table C.20: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 385 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 420 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 31.96 0.00% 7.39 0.00% 1.04
|rLB| × 1.01 31.48 −0.30% 6.57 −2.21% 1.07
rx − 50.0 mm 31.96 0.00% 7.27 −0.33% 1.05
rx + 50.0 mm 31.95 −0.00% 7.03 −0.96% 1.05
ry − 50.0 mm 31.93 −0.01% 7.23 −0.43% 1.05
ry + 50.0 mm 31.98 0.02% 7.49 0.29% 1.05
rz − 50.0 mm 32.04 0.13% 7.41 0.15% 1.07
rz + 50.0 mm 31.82 −0.22% 5.20 −14.82% 1.01
λ− λRMS nm 31.99 0.11% 7.35 −0.46% 1.04
λ+ λRMS nm 31.92 −0.12% 7.29 −1.39% 1.04

H2 31.96 0.00% 7.37 −0.01% 1.04
H = 1.0 28.44 −0.55% 1.98 −3.66% 1.41
χ2

lim,f = 16 31.98 0.06% 8.34 12.86% 1.24
χ2

lim,f = 9 31.96 0.02% 7.64 3.44% 1.11

Total 0.70% 20.46%

Table C.21: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 420 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 446 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 17.68 0.00% 5.31 0.00% 1.00
|rLB| × 1.01 17.41 −0.31% 4.07 −4.66% 1.01
rx − 50.0 mm 17.69 0.00% 5.14 −0.65% 1.01
rx + 50.0 mm 17.69 0.01% 5.29 −0.07% 1.01
ry − 50.0 mm 17.67 −0.01% 5.06 −0.96% 1.01
ry + 50.0 mm 17.71 0.03% 5.57 0.99% 1.01
rz − 50.0 mm 17.83 0.41% 5.00 −2.93% 1.01
rz + 50.0 mm 17.51 −0.48% 2.71 −24.45% 0.98
λ− λRMS nm 17.73 0.27% 5.40 1.64% 1.00
λ+ λRMS nm 17.64 −0.22% 5.25 −1.18% 1.00

H2 17.68 0.00% 5.31 −0.00% 1.00
H = 1.0 14.06 −1.02% 0.71 −4.33% 1.41
χ2

lim,f = 16 17.70 0.07% 6.25 17.70% 1.18
χ2

lim,f = 9 17.69 0.04% 5.54 4.27% 1.06

Total 1.29% 31.38%

Table C.22: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 446 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Bis-MSB, 505 nm

Systematic
α bis.

Scint

10−5 mm−1 si ×∆α/α
α bis.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 5.65 0.00% 6.58 0.00% 0.98
|rLB| × 1.01 5.51 −0.49% 4.83 −5.32% 1.00
rx − 50.0 mm 5.65 −0.00% 6.38 −0.60% 1.00
rx + 50.0 mm 5.64 −0.02% 6.34 −0.72% 1.00
ry − 50.0 mm 5.63 −0.07% 6.25 −0.98% 1.00
ry + 50.0 mm 5.66 0.06% 6.51 −0.19% 1.00
rz − 50.0 mm 5.80 1.34% 5.80 −5.88% 1.00
rz + 50.0 mm 5.45 −1.70% 4.37 −16.80% 0.97
λ− λRMS nm 5.66 0.29% 6.59 0.27% 0.99
λ+ λRMS nm 5.63 −0.28% 6.51 −0.97% 0.98

H2 5.65 0.00% 6.57 −0.00% 0.98
H = 1.0 1.98 −3.24% 2.31 −3.24% 1.42
χ2

lim,f = 16 5.65 0.09% 7.50 14.02% 1.16
χ2

lim,f = 9 5.65 0.01% 6.82 3.76% 1.05

Total 3.95% 23.85%

Table C.23: Systematic contributions to α bis.
Scint and α bis.

H2O from the SNO+ MC
data set with bis-MSB at 505 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 337 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.94 0.00% 13.02 0.00% 1.07
|rLB| × 1.01 10.69 −0.46% 10.41 −4.02% 1.09
rx − 50.0 mm 10.94 0.00% 13.06 0.06% 1.07
rx + 50.0 mm 10.93 −0.01% 12.64 −0.59% 1.07
ry − 50.0 mm 10.92 −0.04% 12.81 −0.33% 1.07
ry + 50.0 mm 10.96 0.04% 12.97 −0.09% 1.07
rz − 50.0 mm 11.03 0.43% 11.57 −5.60% 1.09
rz + 50.0 mm 10.77 −0.78% 11.17 −7.10% 1.03
λ− λRMS nm 10.96 0.18% 12.92 −0.82% 1.07
λ+ λRMS nm 10.92 −0.19% 13.04 0.12% 1.06

H2 10.94 0.00% 13.02 −0.00% 1.07
H = 1.0 7.81 −1.43% 8.15 −1.87% 1.45
χ2

lim,f = 16 10.95 0.09% 14.57 11.86% 1.32
χ2

lim,f = 9 10.94 0.05% 13.52 3.85% 1.15

Total 1.77% 16.06%

Table C.24: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 337 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 369 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.91 0.00% 13.67 0.00% 1.08
|rLB| × 1.01 10.65 −0.48% 11.10 −3.76% 1.10
rx − 50.0 mm 10.91 −0.00% 13.47 −0.30% 1.08
rx + 50.0 mm 10.91 0.00% 13.26 −0.61% 1.08
ry − 50.0 mm 10.90 −0.03% 13.31 −0.53% 1.08
ry + 50.0 mm 10.93 0.03% 13.60 −0.11% 1.08
rz − 50.0 mm 10.99 0.38% 12.16 −5.54% 1.10
rz + 50.0 mm 10.75 −0.72% 11.83 −6.74% 1.05
λ− λRMS nm 10.93 0.19% 13.60 −0.52% 1.08
λ+ λRMS nm 10.89 −0.20% 13.51 −1.17% 1.07

H2 10.91 −0.00% 13.64 −0.01% 1.08
H = 1.0 7.82 −1.42% 9.13 −1.66% 1.45
χ2

lim,f = 16 10.91 0.01% 14.70 7.56% 1.32
χ2

lim,f = 9 10.91 0.00% 13.95 2.03% 1.16

Total 1.73% 12.52%

Table C.25: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 369 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 385 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.92 0.00% 13.51 0.00% 1.07
|rLB| × 1.01 10.64 −0.50% 10.69 −4.17% 1.09
rx − 50.0 mm 10.92 0.00% 13.32 −0.29% 1.07
rx + 50.0 mm 10.91 −0.02% 13.14 −0.56% 1.07
ry − 50.0 mm 10.90 −0.04% 13.22 −0.44% 1.07
ry + 50.0 mm 10.94 0.03% 13.44 −0.11% 1.07
rz − 50.0 mm 10.99 0.33% 11.80 −6.33% 1.09
rz + 50.0 mm 10.77 −0.69% 11.08 −9.01% 1.04
λ− λRMS nm 10.94 0.17% 13.45 −0.45% 1.07
λ+ λRMS nm 10.90 −0.20% 13.54 0.19% 1.06

H2 10.92 −0.00% 13.51 −0.00% 1.07
H = 1.0 7.80 −1.43% 8.71 −1.78% 1.45
χ2

lim,f = 16 10.93 0.11% 14.73 8.97% 1.32
χ2

lim,f = 9 10.93 0.13% 13.84 2.38% 1.15

Total 1.73% 15.13%

Table C.26: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 385 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 420 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 10.93 0.00% 13.45 0.00% 1.08
|rLB| × 1.01 10.65 −0.50% 10.66 −4.15% 1.11
rx − 50.0 mm 10.92 −0.01% 13.37 −0.12% 1.09
rx + 50.0 mm 10.92 −0.01% 13.25 −0.30% 1.09
ry − 50.0 mm 10.90 −0.04% 13.28 −0.26% 1.08
ry + 50.0 mm 10.94 0.03% 13.45 0.00% 1.09
rz − 50.0 mm 11.00 0.32% 11.88 −5.82% 1.11
rz + 50.0 mm 10.78 −0.67% 11.60 −6.86% 1.05
λ− λRMS nm 10.95 0.19% 13.32 −0.95% 1.09
λ+ λRMS nm 10.90 −0.19% 13.60 1.11% 1.08

H2 10.92 −0.00% 13.47 0.01% 1.08
H = 1.0 7.79 −1.43% 8.62 −1.80% 1.44
χ2

lim,f = 16 10.95 0.26% 14.95 11.18% 1.34
χ2

lim,f = 9 10.94 0.15% 13.89 3.24% 1.17

Total 1.74% 15.47%

Table C.27: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 420 nm.
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Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 490 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 7.21 0.00% 5.90 0.00% 0.98
|rLB| × 1.01 7.08 −0.35% 4.10 −6.10% 1.00
rx − 50.0 mm 7.21 0.02% 5.74 −0.54% 0.99
rx + 50.0 mm 7.20 −0.02% 5.46 −1.48% 0.99
ry − 50.0 mm 7.19 −0.05% 5.51 −1.31% 0.99
ry + 50.0 mm 7.23 0.07% 5.82 −0.25% 0.99
rz − 50.0 mm 7.38 1.22% 5.09 −6.83% 1.00
rz + 50.0 mm 6.99 −1.47% 3.58 −19.67% 0.97
λ− λRMS nm 7.26 0.75% 6.03 2.28% 0.98
λ+ λRMS nm 7.16 −0.58% 5.92 0.46% 0.98

H2 7.20 −0.00% 5.88 −0.02% 0.98
H = 1.0 3.46 −2.60% 1.09 −4.08% 1.41
χ2

lim,f = 16 7.21 0.09% 6.80 15.28% 1.15
χ2

lim,f = 9 7.21 0.02% 6.11 3.54% 1.04

Total 3.38% 27.26%

Table C.28: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 490 nm.

Attenuation Systematics - SNO+ MC
LABPPO + 0.3%Te + Perylene, 505 nm

Systematic
α pery.

Scint

10−5 mm−1 si ×∆α/α
α pery.

H2O

10−5 mm−1 si ×∆α/α χ2/No.Dof

Nominal 5.98 0.00% 6.79 0.00% 0.99
|rLB| × 1.01 5.85 −0.46% 5.19 −4.73% 1.01
rx − 50.0 mm 5.99 0.02% 6.83 0.12% 1.00
rx + 50.0 mm 5.98 −0.00% 6.60 −0.55% 1.00
ry − 50.0 mm 5.96 −0.07% 6.64 −0.43% 1.00
ry + 50.0 mm 6.01 0.09% 6.79 −0.01% 1.00
rz − 50.0 mm 6.14 1.33% 6.15 −4.70% 1.01
rz + 50.0 mm 5.79 −1.64% 4.81 −14.58% 0.98
λ− λRMS nm 5.99 0.22% 6.82 0.44% 0.99
λ+ λRMS nm 5.97 −0.25% 6.82 0.41% 0.99

H2 5.98 0.00% 6.78 −0.01% 0.99
H = 1.0 2.27 −3.10% 2.59 −3.09% 1.41
χ2

lim,f = 16 5.98 0.05% 7.82 15.13% 1.17
χ2

lim,f = 9 5.98 0.03% 7.09 4.36% 1.06

Total 3.80% 22.70%

Table C.29: Systematic contributions to α pery.
Scint and α pery.

H2O from the SNO+
MC data set with perylene at 505 nm.
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